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In the late 1990s, Type Ia supernovae (SNeIa) led to the discovery that the Universe is

expanding at an accelerating rate due to dark energy. Since then, many different tracers of

acceleration have been used to characterize dark energy, but the source of cosmic acceleration

has remained a mystery. To better understand dark energy, future surveys such as the

ground-based Large Synoptic Survey Telescope and the space-based Wide-Field Infrared

Survey Telescope will collect thousands of SNeIa to use as a primary dark energy probe.

These large surveys will be systematics limited, which makes it imperative for our insight

regarding systematics to dramatically increase over the next decade for SNeIa to continue to

contribute to precision cosmology. I approach this problem by improving statistical methods

in the likelihood analysis and collecting near infrared (NIR) SNeIa with their host galaxies

to improve the nearby data set and search for additional systematics.

Using more statistically robust methods to account for systematics within the likelihood

function can increase accuracy in cosmological parameters with a minimal precision loss.

Though a sample of at least 10,000 SNeIa is necessary to confirm multiple populations of

SNeIa, the bias in cosmology is ∼ 2 σ with only 2,500 SNeIa. This work focused on an

example systematic (host galaxy correlations), but it can be generalized for any systematic

that can be represented by a distribution of multiple Gaussians.
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The SweetSpot survey gathered 114 low-redshift, NIR SNeIa that will act as a crucial

anchor sample for the future high redshift surveys. NIR observations are not as affected by

dust contamination, which may lead to increased understanding of systematics seen in optical

wavelengths. We obtained spatially resolved spectra for 32 SweetSpot host galaxies to test

for local host galaxy correlations. For the first time, we probe global host galaxy correlations

with NIR brightnesses from the current literature sample of SNeIa with host galaxy data

from publicly available catalogs. We find inconclusive evidence that more massive galaxies

host SNeIa that are brighter in the NIR than SNeIa hosted in less massive galaxies.
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1.0 INTRODUCTION

The Universe is vast and dark with only small pockets of shining light that one can observe.

Though we cannot see it, the Universe is, in reality, a very crowded place. The light and

matter that we see make up a mere 4% of our Universe. 26% comes from a mysterious

particle or several particles dubbed “dark matter” as we have only detected its (or their)

interactions with normal matter through gravity and not through electromagnetic interac-

tions that would allow us to observe it directly. The rest of the Universe, the other 70%, is

an unknown component similarly called “dark energy”. Dark energy is responsible for the

accelerated expansion of our Universe; however, we know almost nothing else about it.

This dissertation is focused on how to characterize dark energy using exploding stars re-

ferred to as supernovae. I explore improved statistical techniques and examine phenomeno-

logical correlations which will lead to improved models for supernova cosmology.

1.1 SUPERNOVA COSMOLOGY

1.1.1 Constraining Dark Energy

Cosmology refers to the study of the origin, evolution, and constituents of the Universe as

a whole. One way to probe the evolution of the Universe is by using supernovae in their

capacity as standard candles. If one knows the absolute brightness of an object, it can be

compared to the observed brightness with the difference between them determining a relative

distance. The distance is relative and not absolute because the rate of expansion is not well

constrained by this method, but the relative distance provides enough information to resolve
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the density of dark energy and matter in the Universe.

Distance is affected by the composition and evolution of the Universe. If the Universe

were dominated by matter, the gravitational attraction would cause it to contract after its

initial expansion. The Universe was expected to be matter dominated since matter was the

only thing previously observed by astronomers. However, we found that when we looked at

the distant Universe, objects (such as supernovae) appeared fainter and thus farther away

from us than expected for a matter dominated Universe. This dimming of distant objects is

attributed to a dark energy that is stretching space itself, which is causing objects to recede

from each other and thus increasing the relative distance between them.

Not only is dark energy stretching space, but it is doing so at an accelerating rate (Riess

et al., 1998; Perlmutter et al., 1999), which means that objects farther away from us are

moving away from us at a faster rate than objects closer to us. For example, if there were

objects located 1, 2, and 3 Gpc away from Earth, over the same time interval they would

move to 2, 4, and 6 Gpc away, respectively. The expansion is homogeneous and isotropic

meaning that is happening in every direction and is seen as the same effect everywhere in

the Universe, i.e. the object that is 1 Gpc away will see the Earth move to 2 Gpc away in

the same time interval. Gravitationally bound objects such as the solar system, the Milky

Way, or even the local group of galaxies are not affected by the accelerating expansion.

There are many different theories about what dark energy may be (this discussion based

on reviews from Weinberg et al., 2013; Arun et al., 2017; Zhan & Tyson, 2017). The currently

accepted theory is that dark energy is Einstein’s cosmological constant that is interpreted

as an additional energy component of the Universe with the equation of state parameter

w = −1. Another way to describe dark energy is through the quintessence model (Peebles

& Ratra, 1988), which describes it as a field with negative pressure that evolves with time.

In this case, the equation of state parameter is limited to −1 < w < 1. Quintum dark

energy (Huterer & Cooray, 2005; Cai et al., 2010) is also a common way to describe dark

energy that evolves with redshift and introduces two new scalar fields that allow w to be

greater than −1 but evolve to less than −1. The alternative to framing dark energy as a new

component of the Universe is that the theory of gravity is wrong or incompatible at cosmo-

logical scales. Dvali-Gabadadze-Porrati (DGP) gravity (Dvali et al., 2000) allows gravity to
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leak into a fifth dimension and lessen its effect on matter. f(R) gravity (Capozziello & Fang,

2002; Carroll et al., 2004) modifies the Ricci scalar to be a function. Tracing expansion and

growth of structure with time can distinguish between these different models; however, some

parameterizations of a new energy component and modified gravity may not be discernible.

One way to trace the expansion of the Universe is through the redshift (z). When a

photon is emitted from a source and starts traveling towards the Earth, the Universe is

expanding around it and causes the photon to lose energy. Redshift is defined as z =

(λobserved − λemit)/λemit, which traces the energy lost during travel from the amount of ex-

pansion the photon experienced. Galaxies also experience motions relative to other galaxies

called peculiar velocities due to gravitational effects. At z < 0.03, which corresponds to a

recessional velocity of 8990 km/s at a distance of 128 Mpc away1, peculiar velocities are the

dominant source of error in the redshift.

If the absolute luminosity of an object is known, we can track its change in brightness as

a function of distance to map the evolution of the Universe through the luminosity distance

defined as:

d2
L =

L

4πF
, (1.1)

where L is the luminosity and F is the measured flux. Most observations in astronomy are

measured in “magnitudes” where a magnitude is related logarithmically to an object’s flux.

Expressing the luminosity distance in terms of magnitudes gives the distance modulus (µ):

µ ≡ 5 log10(dL/10 pc) = m−M, (1.2)

where m is the apparent magnitude, which is related logarithmically to the observed flux,

and M is the absolute magnitude of an object located 10 pc away, which is related logarith-

mically to the intrinsic luminosity. The luminosity distance is divided by 10 pc to mirror the

absolute magnitude by setting the distance relative to 10 pc away, i.e. the distance modulus

would be zero if the object were 10 pc away. This equation is only valid for bolometric

luminosities and magnitudes. Section 1.2.2 discusses the additional term that is added to

Equation 1.2 for it to be true over different wavelength ranges.

1Assuming the Hubble constant is 70 km/s/Mpc
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Luminosity distance is related to the comoving distance that describes the distance be-

tween two objects that stays constant as the Universe expands. We can express the co-

moving distance and thus the luminosity distance using the Friedmann-Robertson-Walker

(FRW) metric with cosmological parameters such as the energy density of matter (baryons

plus dark matter) ΩM , the energy density of dark energy ΩDE, and the equation of state

parameter w:

dL(z) = (1 + z) χ(z), (1.3)

assuming the Universe is flat. χ(z) is the comoving distance defined as

χ(z) =
c

H0

∫ z

0

dz′

[ΩM(1 + z′)3 + ΩDE(1 + z′)3(1+w)]1/2
, (1.4)

where H0 is the Hubble constant that describes the expansion of the Universe at the present

day and c is the speed of light. Equation 1.4 assumes the Universe is homogenous, isotropic,

and flat with ΩM + ΩDE = 1. Here w is also assumed to be constant; however, one

could choose a different functional form to describe dark energy that evolves with redshift.

The current best fit cosmology for the Universe corresponds approximately to the ΛCDM

model where ΩM ∼ 0.3, ΩDE is Einstein’s cosmological constant (Λ) with ΩΛ ∼ 0.7, and

w ∼ −1 (Betoule et al., 2014; Planck Collaboration et al., 2016).

By using Equation 1.3 in Equation 1.2, the observed redshift, the observed flux in mag-

nitudes m, and the absolute luminosity in magnitudes M , we can find the cosmology that

best explains the observed data. Figure 1.1 illustrates this by plotting three different models

of the Universe on what is called the Hubble diagram (distance modulus versus redshift).

The red line is a dark energy-only Universe, the blue line is a matter only Universe, and the

black line is the current best-fit cosmology. All of these models assume a flat universe with

w = −1. If the Universe were matter dominated, we would see distant objects brighter than

if the Universe had dark energy. If we can put data points on this plot, we can determine

which cosmology corresponds the best to our Universe. This formulation is dependent on an

intrinsic luminosity that is constant throughout space and time, which we believe applies to

the majority of Type Ia Supernovae (SNeIa).
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Figure 1.1 Distance modulus versus redshift, commonly referred to as Hubble Diagram. The

three lines correspond to 3 different models of the flat Universe. The red line is a Universe

consisting of only dark energy, the black line represents the current standard model, and the

blue line represents a Universe with only matter. Note that in the magnitude system, lower

numbers are brighter.
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1.1.2 Supernovae

A supernova is an exceptionally luminous explosion of a star and can be produced by two

different mechanisms: core collapse or thermonuclear runaway.

Core-Collapse Supernovae (ccSNe) occur in stars with mass greater than 8 times the

mass of our Sun (M�) (Carroll & Ostlie, 2006, pgs 529–543). An explosion results when

a star can no longer fuse smaller elements into more massive elements to produce energy.

Once a star’s core consists of iron, fusion stops because iron takes energy to fuse instead of

creating it, and the star can no longer counteract the force of gravity such that it collapses in

on itself. As the outer layers begin to fall in, they hit the core and are rebounded off causing

a massive explosion called a supernova. This release of energy is so large that it can be seen

out to ∼ 4.5 Gpc 2 away and leaves the core of the star as either a black hole or neutron star

depending on its initial mass. The explosion can be identified by its spectrum or by measur-

ing its flux as a function of time (lightcurve). These types of explosions usually exhibit large

amounts of hydrogen, though certain types (stripped envelope supernovae) have had their

outer layer of hydrogen removed but can still be separated from thermonuclear explosions

by their lack of silicon lines. ccSNe can be distinguished by their lightcurve because they do

not get as bright as SNeIa and they have a lower decline rate than SNeIa.

Though the explosion is bright, it is not very uniform. ccSNe brightness is dependent on

initial mass, which could range from 8–100 M�. This variation causes a large intrinsic scat-

ter between the luminosity output from different explosions and makes them poor distance

indicators.

The second kind of explosion is referred to as a thermonuclear runaway. A star with a

mass less than 8 M� is not hot enough to fuse elements beyond carbon and oxygen after

it leaves the main sequence of hydrogen burning; therefore, this star never experiences the

explosive end that larger stars do (Carroll & Ostlie, 2006, pgs 457–474). Once it stops fusing

hydrogen into helium, the center of the star shrinks and the outer layers expand and cool

down. Material falls onto the core causing it to heat up which forms a hydrogen burning

shell, then it shrinks and heats up until it starts burning helium. The star briefly burns

2https://sne.space/sne/SDSS-II%20SN%2020450/
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brighter and hotter but slowly loses its outer layers as they float off to become a planetary

nebula. Once the core has finished burning the helium into carbon and oxygen, it shrinks

until it is held up by electron degeneracy pressure and slowly cools forever (Carroll & Ostlie,

2006, pgs 559–569). These carbon-oxygen white dwarfs (CO WDs) typically form with a

mass of 0.42–0.7 M� with a peak around 0.56 M�.

CO WDs are the progenitors of type Ia supernovae (SNeIa). From fundamental laws

of quantum mechanics (the Heisenberg Uncertainty principle and Pauli exclusion principle),

the electron degenerate nature of a WD can only support a mass up to 1.4 M�, the Chan-

drasekhar limit (Carroll & Ostlie, 2006, pgs 569–572). A result of using electron degeneracy

pressure to counteract the force of gravity is that the CO WD mass becomes inversely related

to its volume such that there is a finite mass that leads to a volume of zero. Once a WD

obtains this mass, the electrons become unstable, and electron degeneracy fails. The CO

WD then collapses causing the temperature to increase enough to begin carbon fusion which

then causes nuclear fusion to propagate throughout the WD in a massive release of energy

that has been seen up to ∼ 15.8 Gpc (Jones et al., 2013) away. These explosions produce

no hydrogen lines but do have a recognizable silicon line in their spectra.

It is because all CO WDs have the same fundamental mass limit that they explode with

a similar energy which makes them excellent standard candles. In the 1990s, SNeIa were

used in this capacity to discover that our Universe is expanding at an accelerating rate (Riess

et al., 1998; Perlmutter et al., 1999).

1.1.2.1 The Progenitor Problem

As outlined in the previous section, there is a fundamental mass limit for CO WDs; however,

if they form with a mass ∼ 0.6 M�, then how does it get additional material? This question

has plagued researchers that study SNeIa explosion models and supernova cosmologists alike.

No progenitor system has ever been directly observed though multiple scenarios have been

suggested.

Up to 50% of stars form in binary systems. When one star dies, the other star can

continue to be gravitationally bound to its remnant. The two most popular theories for

the SN Ia progenitor system are the Single Degenerate (SD) and the Double Degenerate

7



(DD) scenarios. The SD scenario supposes that there is a single CO WD and either a main

sequence or a red giant branch companion star (Whelan & Iben, 1973), hence one degenerate

object. The WD and companion star can be so close together that their gravitational fields

are interlocked causing mass from the companion star to overflow onto the surface of the

WD (Roche lobe overflow) until the WD reaches the Chandrasekhar limit. This scenario

presents multiple problems such as how a WD would increase in total mass when adding

matter would first cause small explosions (novae) from nuclear fusion on its surface that

would leave the WD with less mass. Also, the companion star would not be destroyed in

the explosion and should still be observable; however, there has been no concrete evidence

that a companion has been found.

The DD scenario occurs when two CO WDs, two degenerate objects, orbit around each

other and slowly fall into one another by losing angular momentum through gravitational

waves (Webbink, 1984). The smaller WD can be ripped apart and fall onto the surface of

the larger WD, or two WDs can directly merge into one “super-massive” (> 1.4 M�) WD

that will then explode. However, theoretically, these mergers could result in a direct collapse

into a neutron star instead of a supernova. Since this explosion leaves nothing behind,

astronomers search for super-Chandrasekhar mass objects that are about to explode, but no

unambiguous candidates have been found.

Though both SD and DD scenarios present theoretical and observational challenges,

in 2015 two papers were published that presented convincing observational evidence for

both scenarios. Cao et al. (2015), for the intermediate Palomar Transient Factory (iPTF),

observed an SN Ia within four days of the explosion and showed an increase of flux in the

ultraviolet (UV) than what is expected from typical explosion models. This extra UV flux

is attributed to ejecta from the supernova hitting the companion star. Olling et al. (2015)

used the Kepler satellite to observe three SNeIa within a half hour of their explosions and

continued to observe them at 30-minute intervals over the next 60 days. They report no

additional flux in the lightcurve that is unaccounted for by the supernova explosion and

thus no flux from ejecta interacting with a companion star. It is highly likely that at least

these two scenarios do form SNeIa. If there are different explosion mechanisms, then it is

conceivable that SNeIa may exhibit increased intrinsic variations; i.e., our standard candles
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are not very standard.

1.2 STANDARDIZING TYPE IA SUPERNOVAE

SNeIa are at their most luminous 15–20 days after the initial explosion and the flux of SNeIa

when they are at their brightest is used for cosmology. Since SNeIa must first be discovered

but the night sky spans 41,253 square degrees to search through, it is not always possible to

observe an SNeIa exactly at peak luminosity. Monitoring an SN Ia many over several weeks

make it possible to estimate its apparent magnitudes at the time of maximum light. SNeIa

start to dim at the time of the explosion, increase to peak brightness of ∼ −19.3 magnitudes

in 15–20 days, decline by ∼ 3 mags in a month, then steadily decline by 1 magnitude per

month until it is no longer visible. In the near infrared (NIR), SNeIa experience a second

peak in brightness 20–30 days after the initial peak before they start to fade continuously.

Supernovae stay bright enough to be observed for ∼ 1 − 3 months. When nuclear fusion is

triggered, carbon and oxygen fuse to form 56Ni, which powers supernova lightcurves through

the decay chain of 56Ni→56Co→56Fe. The second hump in the NIR is from the recombina-

tion of cobalt and iron from doubly ionized to singly ionized as the supernova cools (Kasen,

2006).

Large surveys such as the ESSENCE survey (Wood-Vasey et al., 2007; Miknaitis et al.,

2007), Lick Observatory Supernova Search (Li et al., 2000; Filippenko et al., 2001), Palomar

Transient Factory/intermediate Palomar Transient Factory (Rau et al., 2009), Panoramic

Survey Telescope and Rapid Response System (Pan-STARRS; Rest et al., 2014; Scolnic

et al., 2014), Sloan Digital Sky Survey II Supernova Search (Frieman et al., 2008; Sako

et al., 2014), and SuperNova Legacy Survey (Astier et al., 2006; Guy et al., 2010) have all

made use of sky searches that can return to the same patch of sky within a week in order to

find any object that has changed. They continue to observe the same areas of the sky every

few days to gather large samples of lightcurves. The latest survey, Pan-STARRS, observed

70 square degrees on the sky every 3 nights for 4 years and gathered ∼ 1000 SNeIa though

not all are spectroscopically confirmed (Jones et al., 2017).
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The observations of the SNeIa are then compared with templates of lightcurves previ-

ously collected to determine the time and apparent magnitude at peak brightness. At this

point, the scatter in peak brightness is roughly 0.6 magnitudes. Two lightcurve correlations

help to decrease this scatter: stretch- and color-corrections. Phillips (1993) showed that

brighter SNeIa take longer to fade than dimmer SNeIa (“brighter-broader” effect). This cor-

relation uses the full lightcurve information to measure the stretch. To further standardize

the lightcurves, Riess et al. (1996) and Tripp (1998) showed that bright SNeIa were also

bluer than dimmer SNeIa (“brighter-bluer” effect). By applying these two empirical corre-

lations, the scatter in the peak brightness of the lightcurves was reduced to 0.15 mag, which

corresponds to an error in distance of only ∼ 7%.

After these two corrections have been applied, there is evidence that more correlations

may be impacting the scatter of the distribution. Many papers have explored how the

stretch- and color-corrected luminosities may be correlated with different host galaxy prop-

erties (Sullivan et al., 2006; Gallagher et al., 2008; Kelly et al., 2010; Sullivan et al., 2010;

Lampeitl et al., 2010; Gupta et al., 2011; D’Andrea et al., 2011; Hayden et al., 2013; Jo-

hansson et al., 2013; Childress et al., 2013a,b; Rigault et al., 2013; Pan et al., 2014; Kim

et al., 2014; Rigault et al., 2015; Kelly et al., 2015; Jones et al., 2015; Moreno-Raya et al.,

2016; Wolf et al., 2016; Campbell et al., 2016; Roman et al., 2017). The most statistically

significant trend found has been with host galaxy mass (e.g., Sullivan et al., 2010; Johansson

et al., 2013; Campbell et al., 2016). It is best parameterized by a step function (Childress

et al., 2013b) and indicates that SNeIa exploding in galaxies with mass > 1010 M� are

brighter than SNeIa hosted in less massive galaxies by ∼ 0.1 mag. Most likely this trend is

reflecting a more fundamental property such as metallicity (Hayden et al., 2013), but this

is still an active area of investigation. It has also been shown that the brightness is more

correlated with properties within 1–2 kpc of the supernova explosion site than with global

characteristics (Rigault et al., 2013, 2015). Much research supports some correlation with

host galaxy properties, but some claim this is an error on the human side of the analysis

with insufficient lightcurve fitters (Kim et al., 2014) or inconsistent sample cuts (Jones et al.,

2015).

The addition of lightcurve and host galaxy corrections may create a more precise distance
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indicator, but they also serve to obfuscate what is truly being used for cosmological analyses.

For example, both interceding dust from the supernova host galaxy and the intrinsic color

differences between SNeIa cause the “brighter-bluer” effect; however, most analyses do not

distinguish between these two properties. (Guy et al., 2007, 2010; Betoule et al., 2014; Rest

et al., 2014).

1.2.1 SNeIa in the NIR: The true standard candles?

The stretch and color corrections are undoubtedly useful when observing optical lightcurves;

however, NIR lightcurves (0.8 < λ < 2.2 µm) do not need these corrections to produce a

scatter of only 0.15–0.2 mag (Kasen, 2006; Folatelli et al., 2010; Kattner et al., 2012; Wood-

Vasey et al., 2008; Barone-Nugent et al., 2012). Being able to use the apparent magnitude

instead of a corrected magnitude reduces the systematics introduced in the analysis such

as the distinction between intrinsic color and dust since dust does not affect the NIR. The-

oretical evidence from Kasen (2006) shows that the first peak in the NIR, and especially

the H-band centered at λ = 1.6 µm, is less sensitive to initial 56Ni mass and progenitor

metallicity. There is some evidence that applying a stretch or decline rate parameter will

improve precision in fitting for a lightcurve template, but no correlation between stretch

and NIR brightness has been found (Kattner et al., 2012; Burns et al., 2014). No studies

of correlations between host galaxy properties have been conducted with NIR lightcurves.

To test for these possible correlations, more NIR SNeIa need to be gathered to increase the

current public data set, which is ∼ 200 SNeIa. With the dedicated surveys currently running

in the NIR such as Carnegie Supernova Project (Contreras et al., 2010; Stritzinger et al.,

2011; Kattner et al., 2012) and SweetSpot (Weyant et al., 2014, 2017), we will be able to

further explore these possible natural standard candles to a greater extent.

1.2.2 K-corrections

K-corrections are necessary for any observation to transform the flux from observer frame

to restframe and allows the comparison of nearby to distant objects (Oke & Sandage, 1968;

Hogg et al., 2002). As one looks further into the Universe, the light from astronomical

11



objects is experiencing more expansion causing the redshift to increase – meaning that the

light shifts into redder wavelengths. A supernova or galaxy that may be bright at optical

wavelengths in the nearby Universe may appear dim in optical wavelengths at higher redshifts

but bright in the infrared. K-corrections are used for photometric observations to account

for the flux shifted out of or into a particular filter utilizing the spectral energy distribution

(SED) and redshift of an object. It provides an additional term to the distance modulus

(µ = m −M −K) to shift the observed magnitude to the restframe magnitude. However,

the K-correction is highly dependent on the validity of the SED for an object. SNeIa at

optical wavelengths have been studied in depth and have robust templates (Kim et al., 1996;

Nugent et al., 2002; Hsiao et al., 2007). In the NIR, this correction needs more research

and more well-observed SEDs. The latest publicly available templates are from Hsiao et al.

(2007) with other studies utilizing their unpublished templates (e.g., Stanishev et al., 2015).

K-corrections must be applied to SN Ia lightcurves so that SNeIa at varying redshifts can

be compared and used for cosmological analyses.

1.3 FUTURE IN LARGE SURVEYS

The future of SNeIa cosmology lies in large, wide-field surveys. The Large Synoptic Survey

Telescope (LSST, LSST Science Collaboration et al., 2009) will conduct a wide, fast, and

deep 10-year survey that can record the entire observable night sky in the Southern Hemi-

sphere every 4 days. LSST will observe at least 10,000 well-sampled SNeIa, 100,000 decently

sampled SNeIa, and over 1 million SNeIa detected in ugrizy bands, which span wavelengths

of ∼ 0.350 − 1.060µm. This telescope is currently being built in Chile, will have first light

in 2020, and will begin full survey operations in 2023. This ground based telescope will fo-

cus on the night sky in optical wavelengths whereas an upcoming space-based telescope, the

Wide-Field Infrared Survey Telescope (WFIRST, Spergel et al., 2015), will observe the night

sky at NIR wavelengths. WFIRST is focused on cosmology and exoplanets while LSST will

be optimized to observe asteroids, dark energy probes, the Milky Way, and transients. The

WFIRST satellite is planned to launch in the mid-2020s with operations soon to follow. It is
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expected to collect roughly 2,500 high redshift SNeIa with filters that range in wavelengths

of 0.76− 2.0 µm. Both of these surveys will be operational by the mid to late 2020s, so the

time to prepare for them is now.

SN Ia cosmology has not been limited by statistical error for ∼ 10 years. The only way

to improve the precision of cosmological parameters derived using these large data sets is

to understand the remaining systematics. Systematics are errors and biases that cannot be

removed by adding more SNeIa and reflect technical challenges or a lack of understanding

in astrophysical processes.

A few of the current dominant systematics include flux calibration, Milky Way dust,

selection bias, and host galaxy correlations (Conley et al., 2011; Scolnic et al., 2014; Be-

toule et al., 2014). The largest systematic today is that of flux calibration and calibration

between observational surveys. This systematic is being addressed by building better tele-

scopes/detectors and having large teams design better algorithms to reduce the data. With

the upcoming large surveys, it will be possible to use only one survey for the high redshift

sample to do precision cosmology thus reducing one of the primary sources of error. Dust

from the Milky Way causes a 10% correlated uncertainty in all reddening corrections from

converting the dust column density to extinction (Conley et al., 2011); however, large NIR

surveys would circumvent this problem as the NIR is unaffected by dust. The correction

for selection bias, including Malmquist bias (Malmquist, 1936), is dependent on observing

strategy and changes based on the survey or even the individual running the telescope on a

given night. This bias is estimated for large surveys by assuming targets are randomly se-

lected. Smaller surveys used as low redshift anchors will produce higher errors from selection

biases due to low number statistics and more significant variations in observing. Finally, the

systematic focused on in this thesis is host galaxy correlations, which could potentially affect

every sample of SNeIa. In the literature, host galaxy correlations have best been parameter-

ized by a step function, but this model is not astrophysically motivated. More SNeIa with a

variety of host galaxy properties measured are needed to create better models to understand

and correct for this bias.

WFIRST will additionally be constrained because the low redshift, restframe NIR sam-

ple of SNeIa is much smaller than the optical sample of SNeIa. Higher redshift SNeIa probe
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different dark energy models more effectively, but low-redshift SNeIa are crucial to anchor

the Hubble diagram. Having a smaller low-redshift sample would result in increased errors

on dark energy constraints.

1.4 DISSERTATION OVERVIEW

This dissertation presents several efforts to prepare for the future large scale surveys through

improved statistical techniques, new observations, and phenomenological studies. To begin,

I develop a framework to more robustly determine cosmological parameters and add astro-

physical models directly to the analysis. I then update the status of the SweetSpot survey,

which aimed to gather a larger sample of low redshift NIR SNeIa. I begin to explore corre-

lations between local and global host galaxy properties and NIR SNeIa with spectroscopic

observations and catalogs of publicly available data. A summary of each chapter is presented

below.

In Chapter 2, we present a Bayesian analysis for determining cosmological parameters.

This framework incorporates the full distribution of the SN Ia population that would be

necessary if the distribution was non-Gaussian. Previous analyses have assumed that the

underlying probability density function of the luminosity of SNeIa is Gaussian, which re-

duces the computational difficulty of fitting for dark energy. However, if the fundamental

distribution of SNeIa is not a single Gaussian, then additional biases are being added to

cosmology. We explore the consequences of having multiple populations of SNeIa expressed

through a Gaussian Mixture Model (GMM). Empirical findings expressed in host galaxy cor-

relations and several possible progenitor systems suggests that there may be more than one

population of SNeIa. We find that even though multiple populations may bias the cosmolog-

ical parameters, the existence and characteristics of a non-Gaussian distribution may not be

constrained. We would need 10,000 SNeIa to statistically confirm a GMM distribution with

a difference in luminosity of 0.1 magnitude, but the cosmology will be noticeably biased with

only 2,500 SNeIa. This chapter was published in the Astrophysical Journal in 2016 (Ponder

et al., 2016).
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I outline my observational work in Chapter 3. Since 2014 I have been the lead graduate

student for the SweetSpot survey that was introduced by Weyant et al. (2014). This survey

collected 114 SNeIa over 88 nights in 3 years to expand the NIR data set in the nearby

smooth Hubble Flow (0.03 < z < 0.08). These SNeIa will be instrumental in exploring the

standard nature of SNeIa in NIR and providing a well-calibrated restframe data set. To

study local host galaxy properties in the NIR, I observed 32 galaxies that previously hosted

SweetSpot supernovae with an integral field unit (IFU) that yields spatially resolved spectra.

I continue in Chapter 3 to outline the observations, data reductions, and some results from

these spectra.

Chapter 4 uses publicly available galaxy photometry to search for global host galaxy cor-

relations with NIR brightnesses for the first time. We used optical photometry of galaxies

that hosted SNeIa from the Sloan Digital Sky Survey (SDSS; SDSS Collaboration et al., 2016)

and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS; Chambers

et al., 2016; Flewelling et al., 2016; Magnier et al., 2016) with supporting NIR data from the

Two Micron All-Sky Survey (2MASS; Skrutskie et al., 2006) and UV data from the Galaxy

Evolution Explorer3 (GALEX). We explore correlations between host galaxy mass, restframe

g − r color, and absolute r band magnitude and both NIR brightnesses and optical bright-

nesses that correspond to our NIR data set. We confirm the ∼ 0.1 mag host galaxy mass

step at 1010M� with the standardized brightness of optical SNeIa with the SNooPy fitter,

but only find conclusive evidence for a correlation with H-band brightness. However, our

sample contains an outlier population of NIR bright SNeIa in the nearby smooth Hubble flow

that are hosted by massive (> 1010M�), red (g− r > 0.6 mag), and bright (Mr < 21.0 mag)

galaxies. I summarize my results and conclusion in Chapter 5.

3http://galex.stsci.edu/GR6/
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2.0 INCORPORATING ASTROPHYSICAL SYSTEMATICS INTO A

GENERALIZED LIKELIHOOD FOR COSMOLOGY WITH TYPE IA

SUPERNOVAE

This chapter was published in the Astrophysical Journal in July 2016 and was authored by

K.A.P, W. Michael Wood-Vasey, and Andrew R. Zentner (Ponder et al., 2016).

Traditional cosmological inference using Type Ia supernovae (SNeIa) have used stretch-

and color-corrected fits of SN Ia light curves and assumed a resulting fiducial mean and sym-

metric intrinsic dispersion for the resulting relative luminosity. As systematics become the

main contributors to the error budget, it has become imperative to expand supernova cos-

mology analyses to include a more general likelihood to model systematics to remove biases

with losses in precision. To illustrate an example likelihood analysis, we use a simple model

of two populations with a relative luminosity shift, independent intrinsic dispersions, and

linear redshift evolution of the relative fraction of each population. Treating observationally

viable two-population mock data using a one-population model results in an inferred dark

energy equation of state parameter w that is biased by roughly 2 times its statistical error

for a sample of N & 2500 SNeIa. Modeling the two-population data with a two-population

model removes this bias at a cost of an approximately ∼ 20% increase in the statistical con-

straint on w. These significant biases can be realized even if the support for two underlying

SNeIa populations, in the form of model selection criteria, is inconclusive. With the current

observationally-estimated difference in the two proposed populations, a sample of N &10,000

SNeIa is necessary to yield conclusive evidence of two populations.
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2.1 INTRODUCTION

Type Ia supernovae (SNeIa) are excellent standardizable candles that enabled the discovery

of the expansion of the Universe in the late 1990s by Riess et al. (1998) and Perlmutter

et al. (1999). Originally, SNeIa were used as standard candles from empirical evidence with

a scatter of only ∼0.3 magnitudes (Baade, 1938; Kowal, 1968). As data sets grew, patterns

appeared in the light curves yielding the brighter-slower (Phillips, 1993) and brighter-bluer

(Riess et al., 1996; Tripp, 1998) relationships, which standardized the supernovae further by

reducing their scatter down to ∼ 0.15 magnitudes.

The goal of this paper is to create a framework to properly model effects that change

the distribution of expected SN Ia apparent brightness at each redshift. If unmodeled, these

effects lead to systematic biases in cosmological inference. We propose using general and

flexible likelihood functions that have the ability to handle insufficiently modeled system-

atics. As an example, we simulate a simplistic toy model of two SN Ia populations with

a small relative shift in absolute magnitude. The relative rate of these two populations

changes linearly with redshift. We examine the systematic errors in cosmological parameters

caused by incorrectly fitting multiple populations with a single Gaussian model and show

that these errors can be eliminated by using a multiple population model to fit the SN Ia

magnitude–redshift relation. In this paper, we focus on this toy model to demonstrate the

validity of this framework. The consideration of more complex multiple-population models

or other astrophysical or observational effects that lead to shifting magnitude distributions

with redshift will be considered in subsequent papers.

Though the two population model is intended as an example, there are several motivators

for multiple populations of SNeIa. For instance, after adjusting the light curves with these

observed relationships, there is still an unaccounted for feature in the corrected brightness

residual with respect to the distance-redshift relationship (Hubble residual) that appears to

be correlated with host galaxy properties. In the last five years, there have been myriad

studies (Kelly et al., 2010; Sullivan et al., 2010; Lampeitl et al., 2010; Gupta et al., 2011;

Johansson et al., 2013; Childress et al., 2013b; Rigault et al., 2013, 2015; Kelly et al., 2015)

comparing host galaxy mass, metallicity, and/or star formation rate to residuals in the Hub-
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ble diagram. Rigault et al. (2013) examined the relationship between global and local star

formation rates through H-alpha and found that SNeIa in locally passive environments were

brighter than those in locally star forming environments. Rigault et al. (2015) and Kelly

et al. (2015) used GALEX ultraviolet observations and confirmed this correlation between

Hubble residual and local star-formation rate.

It is possible that the host galaxy correlations are caused by something more fundamental

such as the nature of the progenitor. Though the evidence for host galaxy correlations may

be controversial (Jones et al., 2015), there is increasing evidence that there are two different

progenitor channels that could create a multiple population effect (Greggio, 2005; Cao et al.,

2015; Olling et al., 2015).

The most recent analysis of SNeIa for cosmology comes from Betoule et al. (2014) with

the Joint Lightcurve Analysis (JLA). They account for the observed correlation between

Hubble residual and host galaxy mass by creating a step function for the absolute mag-

nitude of each supernova based on the host galaxy mass. They then implicitly assume a

Gaussian likelihood and fit for parameters using a χ2 method. We will expand this method

by defining a continuous function for absolute magnitude and finding the most probable pa-

rameter regions with a generalized likelihood through Markov Chain Monte Carlo (MCMC)

techniques.

Being able to identify and accurately correct for systematics is becoming more impor-

tant as the number of SNeIa drastically increases with current surveys such as Dark Energy

Survey (DES)1, Panoramic Survey Telescope and Rapid Response System (Pan-STARRS,

Scolnic et al., 2014; Rest et al., 2014). The amount of SN Ia data available for cosmological

analyses will continue to increase into the future with surveys such as the Large Synoptic

Survey Telescope (LSST, LSST Science Collaboration et al., 2009), Wide-Field Infrared

Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA, Spergel et al.,

2015), and the European Space Agency’s Euclid2 mission on the horizon (Astier et al., 2014).

Supernova cosmology is no longer statistically limited and is rapidly becoming systematically

limited. Now is the time to explore different avenues for undertaking unbiased cosmological

1http://www.darkenergysurvey.org/
2http://sci.esa.int/euclid/
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analyses with large data sets.

In Section 2.2 we discuss non-Gaussian error distributions as modeled by multiple Gaus-

sian populations. Section 2.3 defines how mock SN Ia data sets are generated. Here, we

introduce a toy model that represents a redshift evolution of the populations to probe uses

of the framework. In Section 2.4 we define the likelihood to be used in the MCMC and the

different model selection techniques. Section 2.5 shows that both population and cosmolog-

ical parameters are biased if multiple populations are not included in the analysis. Though

it has more model parameters, the Gaussian mixture model recovers input cosmology with

only a ∼ 1− 3% loss in precision. We show that current and future data sets will have the

cosmology biased before there are enough statistics to characterize the underlying system-

atic or to robustly require a more complicated model. Section 2.6 discusses how the models

presented here relate to current cosmological analyses and presents possible astrophysical

motivations for multiple populations. In Section 2.7 we summarize our results and discuss

ways to improve and expand this framework.

2.2 NON-GAUSSIAN ERROR DISTRIBUTIONS

The most commonly used method for cosmological parameter estimation in supernova cos-

mology is χ2 minimization. Implicit in this method is the assumption that the overall

probability density function (PDF) of supernovae follows a Gaussian distribution or can be

linearly corrected to do so. With motivations such as the host galaxy correlations, complex-

ities in the analysis from Malmquist bias, and uncertainties about dust, there are too many

unknowns within supernova cosmology for SNeIa to be adequately described by a single

point estimator in a Gaussian PDF. The PDF of SNeIa needs to be expanded to be able to

more fully model the systematic effects underlying the observed luminosity distribution of

SNeIa.

Here we will explore one possible expansion to the PDF of SNIa luminosity. While this

example is inspired by the recent discussions of correlations between SNIa corrected luminos-

ity and host galaxy properties, its use here is intended as a demonstration of the framework.
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We are not arguing for any particular specific model as being representative of the SNIa

population extant in the Universe.

2.2.1 Gaussian Mixture Models

Karl Pearson popularized using multiple Gaussians to describe non-Gaussian data in 1894

when he showed that two Gaussians were a better fit to crab morphologies which strengthened

the claim for evolution (Pearson, 1894).3

A distribution consisting of multiple Gaussian populations with different peaks and/or

dispersions is referred to as a Gaussian mixture model (GMM) and the probability density

function (PDF) that describes it is

pGMM(x) =
N∑
j=1

nj√
2πσ2

j

exp

(
−(x− λj)2

2σ2
j

)
(2.1)

where N is the number of populations; and for each population j: nj is the relative normal-

ization

(
N∑
j=1

nj = 1

)
; λj is the mean; and σj is the standard deviation.

For the sake of simplicity and because it is motivated by current observational literature,

in this paper we focus on a model with only two populations: A and B. Under this model

Eq. 2.1 then becomes

pGMM(x) =
nA√
2πσ2

A

exp

(
−(x− λA)2

2σ2
A

)
+

nB√
2πσ2

B

exp

(
−(x− λB)2

2σ2
B

)
. (2.2)

There are five parameters that need to be specified: λA, λB, σA, σB, and nA (nB is

implicitly specified under the constraint that nA+nB = 1). Once the PDF has been defined,

the log-likelihood function for the two-population model, L, is simply

L = lnL =
N∑
i=1

ln
[

nA√
2πσ2

A

exp
(
−(xi−λA)2

2σ2
A

)
+

nB√
2πσ2

B

exp
(
−(xi−λB)2

2σ2
B

) ]
, (2.3)

3Thanks to S. Peng Oh for this reference.
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where N is the total number of objects included in the analysis, xi is some observed quan-

tity per object, and (λA, σA), (λB, σB) are the model mean and standard deviation for the

populations A and B.

In the case of SN Ia cosmology, xi is the observed width-color-corrected apparent magni-

tude of supernovae, and (λA, σA), (λB, σB) would correspond to models of two different SN Ia

populations with different absolute magnitudes and intrinsic dispersions, each propagated

through the same cosmological model for the luminosity distance modulus.

2.3 GENERATING MOCK DATA SETS

We begin exploring a two-population GMM for SNeIa by generating a sample of mock SN Ia

data sets from Eq. 2.2. We represent the difference in the two populations as a difference in

absolute magnitude MX for X = A or B populations. The parameters in Eq. 2.2 can thus be

redefined as: λA →MA, λB →MB. While we will discuss absolute magnitude distributions

in this section in order to emphasize the different populations, later we will consider fitting

the mock data as “observed” apparent magnitudes. We define the relative mean magni-

tude shift between the populations such that ∆M ≡ MA −MB and re-parameterize MB in

terms of MA and ∆M as MB = MA −∆M . The relative magnitude difference ∆M is thus

applicable to either absolute or apparent magnitude, and the overall normalization of the

absolute magnitude – which is generally marginalized over – is absorbed into one term for

both populations. The variance of each population (σ2
X) is defined as σ2

X = σ2
int,X + σ2

phot

including the intrinsic dispersion of the population σint,X and the dispersion introduced from

observational errors σphot.

Figure 2.1 illustrates graphically the five parameters of our two-population GMM: MA,

∆M , σA, σB, and nA and the two parameters of a single-Gaussian model (SGM): M and

σ fit to the GMM-generated data. For visual clarity, this example has nA = 0.7 and shows

an extreme shift of ∆M = 1.0 mag. We expect realistic models to be on the order of

∆M . 0.1 mag.

We simulate mock data sets assuming the peaks of the populations average to the
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Figure 2.1 A histogram of mock supernovae with two populations are shown in grey and fit

with a GMM and SGM. M and σ are the peak and dispersion from a SGM. The GMM model

includes the location of both peaks, MA and MB, and the dispersion of both populations, σA

and σB. ∆M is the different between MA and MB in magnitudes. The relative number of

SNeIa in each population is nA/nB (where nA + nB = 1). In this example, ∆M = 1.0 mag

and nA = 0.7.
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estimated value of M such that (MA + MB)/2 = −19.5 mag with intrinsic dispersions of

σint,X = 0.1 mag and σphot = 0.1 mag for both populations. σphot was chosen to reflect the

observational error that JLA achieved (∼ 0.115 mag). The supernovae are constrained to

a redshift range of 0.05 < z < 1.5 to cover the low redshift anchors and the high redshift

cosmology probes.

Because host galaxy properties are on average different at z ∼ 0 and z ∼ 1, it becomes

sensible to explore the possibility of redshift evolution between the relative number of SNeIa

in each population. As a toy model we simulate a redshift dependence of the relative nor-

malizations by having the populations evolve linearly in redshift: nA = n′A,0z + nA,0. Where

nA,0 is nA(z) evaluated at z = 0 and n′A,0 is the first derivative of nA(z) evaluated at z = 0.

We then impose boundary conditions such that the total population of supernova is dom-

inated by a single population at the lowest redshift nA(zmin = 0.05) = 1 and the other

population dominates the total population at the highest redshift nA(zmax = 1.5) = 0 to get

nA,0 = 1.003 (no units) and n′A,0 = −0.627 in units of 1/redshift. The two populations have

an equal number of supernovae at z = 0.775 as set by the slope and intercept of nA(z). This

value is derived only from relative normalizations and is independent of other supernova

population parameters.

A linear evolution with redshift is an overly simplistic model. The evolution of multiple

populations or other astrophysical systematics will likely be a smooth, potentially mono-

tonic, function of redshift. While a power law or logarithmic function might suggest itself

as a good model for a variety of phenomena, a linear dependence is at least a reasonable

description of a function for which we have a strong bias that should be varying slowly.

As such, it is informative to explore a linear model, which is likely to capture a significant

amount of the overall trend of the true astrophysical systematics. In Greggio et al. (2008),

Figure 7 (top panel) shows the relative rates of the single degenerate channel versus dou-

ble degenerate channels as a function of redshift. These are clear parallels to our relative

population parameters, and one of the models shows a linear trend. The modeling of SNeIa

progenitors is still incomplete and different models can provide drastically different rates.

The GMM does not rely on a linear model for the evolution of the relative populations and

can easily be constructed with different forms such as a power law or logarithmic function.
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We randomly draw a redshift from a uniform distribution in the range 0.05 < z < 1.5,

then generate a GMM PDF corresponding to that redshift, and randomly draw an absolute

magnitude from that PDF.

Figure 2.2 illustrates how the absolute magnitude distribution of SNeIa evolves with red-

shift for two different ∆Ms. While the redshift evolution is a small effect for small ∆M , the

shift between different populations becomes understandably more clear when ∆M = 0.5 mag.

We generate 108 different data sets with a range of number of supernovae in each set:

N = 100, 1000, 2500, 10000 and a range of shifts between the two supernovae populations:

∆M = 0.0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 mag. Each permutation of N with ∆M

is performed three times to help average over random fluctuations in the data sets. The

number of supernovae correspond to a small sample, the order of current data sets (1000),

and the expected yields from WFIRST-AFTA (2500) and LSST (10, 000).4 ∆M = 0.0 mag

is consistent with a single Gaussian population while ∆M = 0.1 mag is close to the number

quoted from Rigault et al. (2015) for the difference in brightness between supernovae located

in active versus passive local environments. Though this framework is discussed with a spe-

cific systematic as an example motivation, it is general and can be applied to any systematic

that can be described by an effective distribution in the likelihood.

In order to use apparent magnitudes instead of absolute magnitude, we add the cos-

mological distance modulus µ(z; ΩM , w) to produce an apparent magnitude (m). We chose

our default cosmology to be that of WMAP9 with ΩM = 0.2865, ΩL = 0.7134, w = −1,

H0 = 69.32 km Mpc−1 s−1 (Hinshaw et al., 2013). We do not simulate a distribution of

stretch and color or the resulting correction process. This process is thus rather generically

applicable to any luminosity distance indicator with no particular restriction to SNeIa be-

yond the parameters chosen for the GMM.

In the present work, we also neglect the effects of gravitational lensing on SN Ia analy-

ses. Though the dispersion induced by lensing may be non-negligible in forthcoming analyses

(Zentner & Bhattacharya, 2009), lensing does not shift the average brightness (setting aside

observational selection effects for the moment) and is unlikely to bias cosmological results

4Current estimates of cosmologically useful SNeIa from LSST range from 10,000s to 100,000. We have
chosen a very conservative value here.
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Figure 2.2 Absolute magnitude distribution of 10,000 mock SNeIa separated into 15 redshift

bins denoted by color. A histogram is generated at each redshift then stacked upon the

previous redshift’s histogram. Left: A small separation of ∆M = 0.05 mag is a subtle shift.

Right: A exaggerated separation of ∆M = 0.5 mag makes the evolution visually obvious.
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(Helbig, 2015). We defer a more complex analysis including lensing to future work.

2.4 METHODS

2.4.1 Markov Chain Monte Carlo

We use standard Markov Chain Monte Carlo (MCMC; Metropolis et al., 1953) techniques

to fit for model parameters. In particular, we utilize the affine-invariant ensemble sampler

from Goodman & Weare (2010) and implemented in python with emcee (Foreman-Mackey

et al., 2013). We test the convergence of our chains by checking that the autocorrelation of

points sampled from the posterior approaches zero for large lags (Box & Jenkins, 1976).

The likelihood including cosmology used for the MCMC analysis is defined as

L =
N∑
i=1

ln

[
nA(z)√

2πσ2
A

exp

(
−(mi −mA)2

2σ2
A

)
+

(1− nA(z))√
2πσ2

B

exp

(
−(mi −mB)2

2σ2
B

)]
(2.4)

where:

• N is the number of supernovae in the mock data set;

• nA(z) is the relative normalization of population A,

nA(z) = n′A,0z + nA,0 ;

• σX is the standard deviation of the two populations such that

σ2
X = σphot

2 + σ2
int,X where X = A or B;

• mi is the generated “observed” apparent magnitude for supernova i in the mock data

set;
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Table 2.1. Flat Priors

ΩM w M/MA ∆M σint,X n′A,0 nA,0

[0,1] [-3,1] [-10, 5] [0, 5] [0.0, 0.3] [-1,0] [0, 2]

• mA and mB are predicted apparent magnitudes based on cosmological parameters

through the Hubble constant-free luminosity distance,

mA = 5 log(DL(z; ΩM , w)) +MA

where MA = 25− 5 logH0 +MA

and

mB = 5 log(DL(z; ΩM , w)) +MB

where MB =MA −∆M.

We assume a flat Universe (ΩM +ΩΛ = 1) and fit for the matter density ΩM and the dark

energy equation of state parameter w. In the case of the GMM fits, we also fit for six nuisance

parameters: MA, ∆M, σint,A, σint,B, n
′
A,0 and nA,0 which incapsulate the information

about the underlying SN Ia populations. However, since we used the Hubble constant

free luminosity distance, we must still specify H0 to completely describe the underlying

populations.

In addition to our GMM analysis, we also fit each data set using a single-Gaussian model

(SGM) for the underlying SN Ia population; these fits have just two nuisance parameters:

M and σint.

For all parameters we use the flat priors defined in Table 2.1 and an extra prior in the

GMM on the combination of n′A,0 and nA,0 such that 0 ≤ nA(z) ≤ 1.

2.4.2 Model Comparison

We have introduced a GMM to treat the cosmological analyses of SN Ia data. The GMM

is more complex than the SGM as evidenced, in part, by the fact that the GMM has four

more nuisance parameters. The question arises whether or not the additional complexity is
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Figure 2.3 Left: Apparent magnitude versus redshift (top panel) and the Hubble residual

(bottom panel) for parameter inferences using a GMM with ∆M = 0.5 mag and N = 10, 000

SNeIa. The black line cutting across the data is the expected magnitude redshift relation

in our fiducial ΛCDM cosmology. At each of ten evenly-spaced redshift bins the blue (left-

directed) curves show the PDFs of m inferred from a SGM fit to the GMM mock data while

the red (right-directed) curves show the PDFs of m inferred by fitting the data with a GMM.

Clearly the inferred m are biased in the SGM fits to the GMM mock data. Right: Luminosity

distance modulus versus redshift (top panel) and residual (bottom panel) for ∆M = 0.5 mag

with N = 10, 000. The line is the distance modulus calculated from ΛCDM. The data points

are the mock data sets minus the model for absolute magnitude (µ = m −Mmodel) using

the SGM (blue) with Mmodel ≡M and the GMM (red) with Mmodel ≡ nAMA + nBMB with

values derived from fit models holding cosmology and H0 constant. 1 σ error bars have been

plotted but are too small to see.
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demanded by the data or, in our case, by the mock data used to mimic forthcoming analyses.

We employ three statistical tests to indicate whether or not the additional complexity is

required by the data: the Akaike Information Criterion (AIC; Akaike, 1974); the Bayesian

or Schwartz Information Criterion (BIC; Schwarz, 1978); and the Deviance Information

Criterion (DIC; Spiegelhalter et al., 2002). For a review of these three methods we refer the

interested reader to Liddle (2007) and for a more in-depth discussion of AIC and DIC see

Gelman et al. (2014).

The AIC and BIC are calculated from the maximum likelihood Lmax, the number of

model parameters k, and the number of data points N as

AIC = −2 lnLmax + 2k +
2k(k + 1)

N − k − 1
(2.5)

and

BIC = −2 lnLmax + k lnN. (2.6)

Models with lower values of these information criteria are favored. Both the AIC and BIC

penalize models with a greater number of parameters (greater k) because Lmax can only

increase with increased parameter freedom, while the BIC also penalizes larger data sets

(greater N) to reduce the risk of over fitting.

The DIC is more suited for analyses with MCMC outputs because it directly uses the

resulting samples from the posterior. The DIC can be computed from these samples in the

MCMC chain as

DIC = 2D(θ)−D(θ̃), (2.7)

where θ is the set of parameters directly from the samples in the chain (in our case these

are the cosmological parameters w and ΩM along with the parameters of either the SGM or

GMM), D(θ) is the deviance,

D(θ) = −2 lnL(θ) + C, (2.8)

L(θ) is the likelihood evaluated at parameters θ, and C is a normalizing constant that

cancels when comparing different models. D(θ) is the average of the deviance evaluated at

each step in the chain and D(θ̃) is the deviance evaluated at the mean, median, or some other
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summary point in parameter space θ̃. In our samples, we find that the median is a better

representation of our data because many of the posterior distributions are non-Gaussian,

which can result in a mean value strongly influenced by tails.

2.5 RESULTS

2.5.1 An Illustration of Parameter Bias

We illustrate the potential for bias in the inferred cosmological parameters due to multiple

SN Ia populations by first presenting Hubble diagrams. We consider data generated from an

underlying GMM but fit with both a SGM likelihood and a GMM likelihood. The fit using

a SGM likelihood function is intended to mimic an analysis in which there is no mechanism

to account for two distinct populations.

Figure 2.3 shows the results of a comparison between a SGM and GMM analysis using one

data set with an exaggerated shift in the magnitude difference between the two populations,

∆M = 0.5 mag. We use this large shift here for illustrative purposes and more realistic

values are ∆M . 0.1. The upper panel of the left figure in Figure 2.3 shows, within ten

evenly-spaced redshift bins, the PDF of apparent magnitude inferred from both the SGM

and GMM fits to the underlying, multi-modal, GMM mock data. The parameters of these

PDFs are determined by the fits through the MCMC process described in Section 2.4 with

the cosmological parameters held constant for simplicity. The SGM was fit at each redshift

bin while the GMM was fit using all the data at once to constrain the parameters of redshift

evolution. The peak of the SGM PDF in the residual (mdata − mΛCDM) exhibits a linear

evolution getting brighter as redshift increases, which is the result of the redshift evolution

in the data set.

The right plot in Figure 2.3 shows the same data set and MCMC fit (with cosmology

constant) converted into distance modulus versus redshift. Simply subtracting the absolute

magnitude derived from the MCMC fit of the mock data yields this information. The absolute

magnitude for the SGM can be taken straight from the chains (MSGM = M); however, the
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absolute magnitude for the GMM is a function of redshift and multiple fitted parameters

(MGMM(z) = nA(z)MA+nB(z)MB). The inferred SN Ia population parameters M and σ for

the SGM have no way to account for the relative shift between the two SN Ia populations as

a function of redshift and so the SGM fits show a systematic, redshift-dependent deviation

in the distance modulus as a function of redshift. Notice that the mock GMM data set was

generated such that at z = 0.775, the two populations have an equal number of SNeIa and,

as expected, MSGM = MGMM at z = 0.775. The population parameters are recovered well

for the GMM fit and there is clearly no bias in this case.

2.5.2 Cosmological Parameters

From the perspective of exploiting SNeIa as a probe of cosmology, the greatest concern caused

by multiple populations of SNeIa is that insufficiently accurate modeling of the multiple

populations will lead to biased cosmological parameters. Exploring this possibility is the

primary purpose of this paper. To explore the potential importance of multiple SN Ia

populations on cosmology, we fit each of the 108 mock data sets described in Section 2.3 for

the cosmological parameters, ΩM and w, and SN Ia population parameters simultaneously.

Figure 2.4 displays the Hubble diagram inferred from both SGM and GMM fits to a GMM

model from a single data set with N = 10, 000 SNeIa and an extreme value of ∆M = 0.5 mag.

This large value of ∆M is used to produce this figure only because it has the pedagogical

value of making the influence of the two-populations model on inferred cosmology obvious.

Clearly the GMM fits yield an unbiased Hubble diagram and we infer unbiased values of

both ΩM and w.

On the other hand, the SGM fits to the GMM produces a biased inferred Hubble

diagram and biased inferences for the cosmological parameters. Compare Fig. 2.4 to the

right plot of Fig. 2.3. Notice that the results of the two fits no longer cross near z = 0.775

once cosmological parameters are fit simultaneously with SN Ia population parameters. The

SGM fits to the GMM mock data result in cosmological parameters and SN Ia population

parameters that are simultaneously significantly biased. As a result, the inferred Hubble

diagram differs from the true underlying dependence of distance modulus on redshift. Most
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modulus calculated from cosmology derived from the MCMC fits. The data points are the
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Figure 2.5 The median and 68% confidence region from the MCMC analysis using a SGM

likelihood plotted within the limits of each prior (except M). Each ∆M is given its own

color and shape. To avoid overlap in the error bars, we present the increasing ∆M values

with a small offset in ordinate value within each N bracket. The grey vertical line in each

plot marks the fiducial value of that parameter.
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importantly, the bias in the cosmological parameters is significant. We infer ΩM = 0.69±0.01

and w = −2.85+0.19
−0.11 and rule out the true underlying cosmology with high confidence. Of

course, this model with ∆M = 0.5 mag is extreme, but we will now move on to a discussion

of inferred cosmological parameters in each of our 108 mock data sets and show that viable

two-population SN Ia models yield biases in cosmology that are non-negligible compared to

statistical errors.

We present medians and 68% confidence regions of the fitted parameters by combining

the MCMC results from the 3 different data sets at each value of N and at each value of

∆M . We define the 68% confidence region as the area contained within the 16th and 84th

percentiles, which enforces an equal probability in the tails at either end of the posterior

distribution. In order to combine the three data sets, we calculate the average of the medians,

and we calculate the 16th and 84th percentiles as

σ% =

√
σ2

%,1 + σ2
%,2 + σ2

%,3

3
, (2.9)

where σ% is the 16th or 84th percentile and σ%,i corresponds to the 16th or 84th percentile

calculated from the ith data set.

Fig. 2.5 shows the medians and 68% confidence regions in the inferred parameters in our

fits using a SGM to describe GMM mock data. As Fig. 2.5 clearly shows, for ∆M = 0,

the inferred parameters are unbiased: the true, underlying value of each of the cosmological

parameters is inferred to within statistical precision. This is unsurprising. We have assumed

that both sub-populations have the same intrinsic dispersion, so a model in which ∆M = 0

is tantamount to a SGM for SNeIa. This is nothing more than a validation of this procedure

for a single population of SNeIa. Models with ∆M 6= 0 correspond to GMM models. Both

cosmological and SN Ia population model parameters exhibit increasing biases as ∆M in-

creases. Moreover, many of these biases are quite statistically significant suggesting that it

is possible to rule out the correct underlying models due to these systematic errors. We note

that in some cases (∆M & 0.4) the inferred values of w are strongly influenced by the hard

prior w > −3 that we have enforced. Table 2.2 summarizes only the results for cosmological

parameters with 68% confidence regions for SGM and GMM results.

Fig. 2.6 is an analogous plot focusing on the inferred values of w, which is the primary
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science goal of dark energy probes, and observationally-plausible values of ∆M ≤ 0.1. Even

in this restricted range of ∆M it is apparent that neglecting the possibility of multiple pop-

ulations can lead to biases in the inferred value of w that are non-negligible compared to the

statistical errors in these parameters. This is clearly a challenge to precision measurements

of the dark energy equation of state that must be overcome in order to fully exploit SNeIa.

In comparison, the inferred parameters in the GMM model fits to the GMM mock

data can be seen in Figure 2.7 and Figure 2.8. In all such cases we recover the correct

cosmological parameters to within statistical precision. Indeed this is not entirely surprising

because this is now a fit with a model that correctly describes the mock data. Indeed, we

are able to infer all of the model parameters in an unbiased way except for n′A,0 and nA,0

when ∆M . 0.2 mag. The fiducial values are recovered within the 99% confidence region for

the intercept nA,0 and within ∼ 99.9% confidence region for the slope n′A,0. It is clear that

n′A,0 and nA,0 are biased in Figure 2.7 in a way that favors less redshift dependence (smaller

n′A,0) except for large shifts in peaks of the two populations. Even though these parameters

are biased, they do not introduce an increase in the variance of cosmological parameters.

This counter intuitive result can be explained through Figure 2.10, which shows that the

posterior distributions of the population versus cosmological parameters are parallel to the

population parameters meaning they have little to no degeneracy with cosmological param-

eters. When ∆M is sufficiently small, data with the precision and size of our mock data

sets cannot clearly distinguish the two peaks because the separation between the peaks is

comparable to the dispersion in any one of the sub-populations. It is important to note that

cosmological parameters can be strongly biased despite the fact that a fit to the underlying

data cannot clearly distinguish the two populations. This is relevant to the results of the

following subsection.

Clearly, an underlying model in which ∆M = 0 and σA = σB can be described by a SGM

with no bias. Using a GMM model to describe such data introduces additional parameters

and necessarily leads to less restrictive constraints on the cosmological parameters of interest.

This loss in precision is the cost of using a model with the parameter freedom to account for

the possibility of multiple SNeIa sub-populations. For a data set with the precision expected

of N = 2500 (N = 10, 000) SNeIa, the loss of precision in ΩM is ∼ 20% (∼ 25%) while the
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Figure 2.7 The GMM fit results for the same simulations as in Figure 2.5 and displayed

with the same ordinate offsets. The GMM model correctly recovers the fiducial cosmology

and accounts for the multiple input populations. The multiple-population parameters (σA,

σB) are not well constrained for small ∆M , and the normalization factors (nA,0 and n′A,0)

are even clearly biased at low ∆M due to the reduced leverage they have on the output.

But the resulting cosmological parameters are well-constrained when marginalizing over the

multiple-population parameters.
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Figure 2.8 The GMM fit results for parameters dependent on ∆M from the same simulations

as in Figures 2.5 and 2.7 and displayed with the same ordinate offsets. Each specific ∆M

has a vertical line denoting the different fiducial values. While Figure 2.5 and Figure 2.7 are

plotted over the entire range of the uniform prior, in this figure we focus on a range much

smaller than the prior to show the detailed effect.
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loss of precision in w is approximately . 1% (. 3%). This very moderate cost in precision

greatly outweighs the potential ∼ 2σ statistical error that can be induced by treating a two

populations of SNeIa with ∆M ∼ 0.1 as a single populations (see Table 2). This finding

reaffirms that the precision does not significantly decrease when these population parameters

are added to the model.

Figure 2.9 shows the cosmological parameter posteriors from one data set for the inter-

esting case of N = 1, 000 and ∆M = 0.1 mag. These numbers are interesting since the JLA

has ∼ 1000 SNeIa, and the current estimated discrepancy in Hubble residuals is equivalent

to ∆M ∼ 0.1 mag. The contours continue to show that the GMM is less biased but also

slightly less precise. These are not large offsets, but it could lead to a small systematic error

in the next stages of observational cosmology.

2.5.3 Model Selection

To determine if the additional complexity of a given model is demanded by the (mock)

data, we use the information criteria described in Section 2.4.2. In order to compare two

models, one can compute the information criteria for each and take the difference between

the two results. For example, if we compute the AIC for each model, we would compute

∆AIC = AICGMM − AICSGM where AICGMM is the value of AIC in the GMM model and

likewise for AICSGM. We follow this convention, subtracting the SGM criteria from the

GMM criteria, so that lower values of the difference between information criteria (IC) favor

the GMM model. With these conventions, any change in information criteria (generically, ∆

IC) will favor the GMM if ∆IC < 0 and strongly favor the GMM if ∆IC < −5. Conversely,

a positive ∆ IC favors the SGM while ∆IC > 5 strongly favors the SGM.

We look for the minimum ∆M for each N that strongly favors the GMM. The results

of this comparison are summarized Table 2.3 for all of the IC and in Fig. 2.11 for the AIC

alone. The AIC, BIC, and DIC all give very comparable results. Notice that ∆M must be

relatively large in order for the IC to indicate that the data demand a two-population model

of SNeIa. Indeed, a data set of N & 10, 000 SNeIa is required in order for the IC to prefer
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Figure 2.9 Cosmological contours for ∆M = 0.1 mag and N = 1000. Made with

triangle.py from Foreman-Mackey et al. (2014). The blue contours and histograms corre-

spond to the mock data being fit with SGM likelihood and the red contours and histograms

correspond to the GMM likelihood. The dashed lines are the medians of the populations.

The dark navy lines are the fiducial values. The GMM is less precise but also less biased.
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Figure 2.10 Full triangle plot of posterior distributions from a GMM likelihood for a single

data set with N = 1, 000 and ∆M = 0.1 mag. Made with triangle.py from Foreman-

Mackey et al. (2014)
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Table 2.3. Minimum ∆M (in mag) with strong evidence for GMM.

N AIC BIC DIC

100 0.40 0.45 0.41
1000 0.21 0.25 0.23
2500 0.12 0.21 0.23

10000 0.10 0.14 0.10

strongly the GMM with ∆M ∼ 0.1 over the SGM.

There is an important point regarding the interpretation of the results of this section

in conjunction with those of the previous subsections. The fact that the data may not

demand a GMM to describe SNeIa does not mean that a multiple-population SNeIa model is

not necessary. As we have shown, statistically significant biases in cosmological parameters

can be inferred when two-population data are analyzed as a single population, even when

the information criteria do not unambiguously demand the GMM rather than the SGM. If

by “necessary” one means that the model is needed in order to infer unbiased cosmological

parameters, then the GMM may be necessary even when the IC yield only marginal evidence.

IC that do not clearly demand the more complex model (the GMM in this case) are not

sufficient justification for using only the simpler model (the SGM in this case) in cosmological

analyses because significant parameter biases may still be realized using the simpler approach.

2.6 DISCUSSION

2.6.1 Usage of the SGM

The SGM was meant to be representative of the latest supernova cosmology analysis, namely

the Joint Lightcurve Analysis (JLA); however, the SGM cannot be directly compared to the

JLA. Unlike the SGM, the JLA further standardizes each supernova by applying an offset

to the absolute magnitude of each supernova using an empirically-derived step function in

host galaxy mass. This standardization follows from the observed Hubble residual trend
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Figure 2.11 AIC(GMM)−AIC(SGM) for N=[100,1000,2500,1000] as a function of the sepa-

ration of peaks. GMM is considered strongly favored once ∆AIC< −5.
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with host galaxy properties that was one of the motivations for introducing multiple popu-

lations. Leaving out the host galaxy standardization enables this present study to avoid any

unintended bias from using the step function, conceptually compare the SGM to the GMM,

and create a general framework that can be applied to other systematics. The goal of this

paper is not to implement a new model for the correlation between the SN Hubble residual

and host-galaxy properties, but to introduce a statistical framework in which to implement

a future model.

The likelihoods for the SGM and JLA are the same except that the JLA utilizes the host

galaxy mass standardization and a full covariance matrix. JLA uses a χ2 minimization for

parameter estimation, which is equivalent to maximizing a Gaussian likelihood. The JLA

uses a frequentist approach with χ2 minimization, but we use the SGM to explore parameter

space through Bayesian statistics with MCMC. However, χ2 minimization and the SGM

likelihood analysis both use a Gaussian single-point estimate of the SN corrected bright-

ness to infer cosmological parameters. Using single-point estimate (µ, σ) does not provide

framework to deal with insufficient population modeling and data with large error bars on

parameters used for systematics modeling5, both of which are found in the current data sets.

This present paper shows that updating the likelihood to incorporate non-Gaussian effects

can remove bias on cosmology without precise modeling of the underlying populations.

2.6.2 Connection To Astrophysical Properties

A relationship with host galaxy mass is currently used to correct SN Ia apparent brightness;

however, host mass must be an indicator of a different galactic property that has a connection

to the brightness of a supernova such as local metallicity, star formation rate, and stellar

population age (Johansson et al., 2013). One possible explanation for the host mass effect

is different progenitor ages. The overall mass of the galaxy is correlated with progenitor

age through stellar population ages. SNeIa occur in both active and passive star forming

regions, which implies that they have both short delay times (∼ 100−500 Myr) and long delay

times (∼ 5 Gyr) between progenitor formation and supernova event (Mannucci et al., 2005;

5The mass of each host galaxy is determined from photometry in the JLA sample has a typical uncertainty
of ∼ 0.8 dex.
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Scannapieco & Bildsten, 2005; Mannucci et al., 2006; Sullivan et al., 2006). The different

progenitor ages could be motivated by different channels for a thermonuclear explosion:

single degenerate (SD) where a white dwarf accretes matter from a main sequence or red

giant companion (Whelan & Iben, 1973) and double degenerate (DD) where two white dwarfs

merge (Webbink, 1984). The SD and DD can both explain the population with short delay

times; however, SD models do not support the long delay times (Greggio, 2005, see Maoz

et al. (2014) for comprehensive review).

Several papers have begun to examine the connections between host galaxy mass and

stellar population ages. Johansson et al. (2013) showed that the stretch-host galaxy mass

relationship is caused by the correlation between host galaxy mass and stellar population

age. Childress et al. (2013b) fit the Hubble residual versus host galaxy mass with different

functional forms and examined different physical causes of the relationship. They found the

best physical link to the step function was the evolution of the prompt fraction of SN Ia

progenitors, but the fit is not adequate enough to be the only source of the effect. Childress

et al. (2014) focused on modeling stellar population age as a function of host galaxy mass

at different redshifts. The paper showed a bimodal distribution in progenitor age versus

stellar mass and that this bimodality is evident out to a redshift . 0.5. These results clearly

motivate adopting a GMM approach where the two populations changing with redshift.

Unfortunately, the way the populations evolve with redshift is determined through star

formation histories and delay time distributions, which is considerably more complicated

than the simple linear evolution probed here. Creating better astrophysical models for the

evolution of systematics is an active area of research, and we present this generalized PDF

approach as the appropriate framework to incorporate them into.

2.7 CONCLUSION

This paper explored expanding supernovae analyses into a broader scope with a generalized

likelihood model. For illustration we used a toy example of two-population GMM with a

simple linear evolution in relative population with redshift. We explored different distribu-
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tions of likelihood functions and showed that in mock data sets using our toy GMM example

multiple SNeIa sub-populations may lead to significant biases in cosmological parameters

inferred from SNeIa data. In particular, when N = 1, 000 and ∆M = 0.1 mag, biases

may be 2-4 times that of the statistical uncertainty. Incorporate this model into the PDF

removes systematic errors (biases) in inferred cosmological parameters at a small statisti-

cal cost, roughly 2% in the marginalized uncertainty on w. Large data sets (N > 10,000)

are necessary to yield unambiguous evidence of multiple populations according to various

model selection criteria. However, even when model selection does not clearly favor multiple

populations, the presence of multiple populations in the data can severely bias cosmologi-

cal parameters. Our approach of modeling the possibility of multiple populations not only

mitigates biases from them, but also yields a small penalty in precision if there is only one

population.

The existence of multiple populations is still being debated as seen in Jones et al. (2015),

which advocates for a single population; however, a GMM likelihood has the capability of

determining if there is only one population and thus is a more rigorous way to analyze the

data to ensure more systematics are included.

We have assumed an example model of two populations with a difference in the abso-

lute magnitude, but there are clearly other channels in which separate populations might

be expressed depending on the astrophysical cause. It is possible that a different supernova

property can better parameterize the stellar population age of the progenitor. If we did not

use the width-color-corrected apparent magnitude, then the apparent magnitudes would be

defined as MX ≡MBband,X−αx1+βC, where x1 is the stretch calculated from each supernova

light curve, α is the stretch parameter determined for the entire supernova population, C is

the color of each supernova at time of maximum light, and β is the color parameter deter-

mined for the entire supernova population. One example has been provided by Milne et al.

(2015) which shows two different populations with a difference in near ultraviolet (NUV)

u − v color of 0.4 magnitudes (0.1 mag in b − v) with the relative fractions of populations

evolving with redshift. This color dependence would fit nicely into our framework since we

could alternatively model the absolute magnitude as MX ≡MBband − αx1 + βXC.

This framework is tested with the host galaxy mass dependence as an example; however,
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it is suitable for accounting for any systematic that may have multiple values based on super-

nova parameters. For example, surveys with different selection effects could also be included

as different PDFs, either in intrinsic distribution or in redshift evolution, for each survey.

Corrections for Malmquist bias (Malmquist, 1936) could be handled more cleanly by using

the full PDF instead of using the mean computed correction for the sample (e.g., Perrett

et al., 2010; Conley et al., 2011; Rest et al., 2014; Scolnic et al., 2014; Betoule et al., 2014)) or

priors on the light-curve fitting parameters applied on per-object basis (e.g., Wood-Vasey

et al., 2007). Currently forward-modeling approaches that simulate entire surveys (e.g.,

SNANA; Kessler et al., 2009, 2010) carry through this modeling all the way; we believe

there can be significant gains in translating much of this information into empirical PDFs

that can then be interpolated and used in a generalized full-likelihood fitting (work towards

this has begun in Rubin et al. (2015)).

Supernova cosmology would benefit from incorporating a non-Gaussian likelihood with

an MCMC analysis to model the many systematics involved in order to remove biases with

a minimal precision loss.
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3.0 PHOTOMETRIC OBSERVATIONS AND SPECTROSCOPIC DATA

REDUCTIONS FOR THE SWEETSPOT SURVEY

The portions of this chapter that outline HexPak data reductions and results will be submit-

ted to the American Astronomical Society Journals authored by K.A.P., W. Michael Wood-

Vasey, Lori Allen, Llúıs Galbany, Saurabh W. Jha, Richard Joyce, and Thomas Matheson.

We present an overview of the SweetSpot survey that collected 115 supernovae in the

NIR. We observed 32 galaxies that previously hosted SweetSpot SNeIa with an integral field

unit (IFU) spectrograph with the primary goal of measuring Hα emission lines. Included

here are detailed data reductions and spatial maps of Hα equivalent widths, Hα surface

brightness, Hα velocities, and reconstructed SDSS r-band flux.

3.1 INTRODUCTION

The cosmological usefulness of Type Ia supernovae (SNeIa) lies in their uniformity of lu-

minosity at peak brightness. Current evidence (Kasen, 2006; Folatelli et al., 2010; Kattner

et al., 2012; Wood-Vasey et al., 2008; Barone-Nugent et al., 2012) suggests that SNeIa are

more standard at near infrared wavelengths (NIR). They require fewer lightcurve corrections

such as stretch (Phillips, 1993) and color (Riess et al., 1996; Tripp, 1998) that are critical

for optical SNeIa. This phenomenon is partially due to the decreased dust extinction ex-

perienced at these wavelengths and partially because the explosion models show decreased

sensitivity to initial nickel mass (Kasen, 2006). However, the current sample size of NIR

lightcurves is only ∼ 200 SNeIa whereas there are over 1000 well-observed SNeIa at optical
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wavelengths.

Several surveys have already been done, and some are still on going to increase this

sample size including CSP-I, II (Contreras et al., 2010; Stritzinger et al., 2011; Kattner

et al., 2012), CfA (Wood-Vasey et al., 2008; Friedman et al., 2015), and RAISINS (Kirshner,

2012). Work has also been done on a more individual scale from Kevin Krisciunas (Krisci-

unas et al., 2000, 2004a,b, 2009) (to name a few), Barone-Nugent et al. (2012), hereafter

BN12, and Stanishev et al. (2015), hereafter S15. Except for BN12, RAISINS, and S15, all

of the supernovae have been gathered at redshifts less than 0.03. Below z = 0.03 the peculiar

velocities of host galaxies are a significant source of error when determining distances. BN12

observed 12 SNeIa at 0.0312 < z < 0.0817, RAISINS uses the Hubble Space Telescope to

observe the second peak in NIR lightcurves at 0.2 < z < 0.5 but have not yet published any

data, and S15 observed 16 SNeIa with 0.037 < z < 0.183. SweetSpot was created to help fill

in the redshift space in the nearby smooth Hubble flow.

SweetSpot was a National Optical Astronomy Observatory (NOAO) survey program to

gather NIR lightcurves of SNeIa located in the nearby smooth Hubble flow at redshifts

0.03−0.08. Its goal was to collect 144 SNeIa in 72 nights over three years during the NOAO

semesters 2012B - 2015A at the WIYN 3.5-m Observatory1 located at Kitt Peak using the

WIYN High Resolution Infrared Camera (WHIRC; Meixner et al., 2010; Smee et al., 2011).

The primary goals of this survey are to extend the Hubble diagram out to a redshift of 0.08

in H-band, quantify how standard SNeIa are in the NIR with a focus on the H-band, im-

prove understanding of NIR colors, and provide a well-calibrated NIR restframe sample for

future higher-redshift surveys such as WFIRST. Among the currently published data sets,

SweetSpot will not only increase the sample size by 50% but will also be the largest data set

from a single survey.

A current major area of research with optical lightcurves is exploring how host galaxy

properties correlate with the brightness of SNeIa. Optical studies have shown that after

correcting lightcurves for stretch and color, there still appears to be a correlation with char-

acteristics of its host galaxy such as mass, metallicity, age, and local and global star formation

1These observations were taken when the WIYN Observatory was a joint facility of the University of
Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatory.
http://www.wiyn.org
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rates (SFRs) (Sullivan et al., 2006; Gallagher et al., 2008; Kelly et al., 2010; Sullivan et al.,

2010; Lampeitl et al., 2010; Gupta et al., 2011; D’Andrea et al., 2011; Hayden et al., 2013;

Johansson et al., 2013; Childress et al., 2013a,b; Rigault et al., 2013, 2015; Moreno-Raya

et al., 2016; Campbell et al., 2016). These analyses have not been conducted using NIR

lightcurves as the data sample has not been sufficiently large. However, the addition of

SweetSpot SNeIa will drastically increase the NIR sample size reducing the statistical noise

as well as reducing systematics since all of the SweetSpot SNeIa will be calibrated to the

same system. Chapter 4 will explore global correlations between NIR lightcurves and global

host galaxy properties using publicly available data. Rigault et al. (2013, 2015) showed a

strong correlation with local (within 1-2 kpc of the supernova site) star formation rates,

which is more significant than trends with global SFRs. This analysis was done using in-

tegral field spectroscopy (IFS) that yields spatially resolved spectra. Since similar data for

most host galaxies is not publicly or even privately available, we began a campaign to collect

this information.

We gathered 32 host galaxies in 4 telescope nights using the fiber bundle HexPak (Wood

et al., 2012) mounted on the WIYN 3.5-m telescope. These observations were taken in

2015B after all of our SNeIa had faded to below detection threshold so that their flux did

not contaminate our observations. Our goal was to measure Hα emission lines to determine

star formation rates in the local area around the supernova explosion site. We here present

our observations, data reductions, and Hα surface brightness maps. Future work will carry

out the calculations for SFRs within 1-2 kpc of the explosion site and analyze host galaxy

correlations.

This chapter is organized as follows: We briefly describe the telescope in Section 3.2

then outline the main SweetSpot survey in Section 3.3. All other sections will focus on

the observations and data reductions of HexPak spectra for host galaxies of 32 SNeIa in

the SweetSpot survey. The HexPak analysis is organized as follows: We outline the in-

strument and observational set up in Section 3.4. We detail the data reduction process in

Section 3.5. Section 3.6 presents methods for and results from measuring Hα. We briefly

conclude SweetSpot photometric and spectroscopic observations in Section 3.7.
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3.2 WIYN 3.5-M TELESCOPE

We used the WIYN 3.5-m Telescope for both our NIR photometric observations and opti-

cal spectroscopic observations. (Hα is at optical wavelengths, 6572–7022 Å, for all redshifts

that we observed.) Located at the Kitt Peak National Observatory (KPNO), this facility had

first light in 1994 and was funded through the joint partnership of University of Wisconsin-

Madison, Indiana University, Yale University, and the NOAO. It is a Ritchey-Chrétien design

with an altitude-azimuth mount. The Ritchey-Chrétien design allows it to be shorter than

traditional Newtonian telescopes and less affected by comas and spherical aberrations. The

altitude-azimuth mount moves the telescope along both the vertical and horizontal axes to

track objects as the Earth rotates. The primary mirror is 3.5-m, the secondary mirror is

1.2-m, and the tertiary mirror is 1.2-m by 0.8-m and is flat whereas the first two mirrors

are hyperbolic. The WIYN 3.5-m has several ports to hold multiple detectors at the same

time. The current list of all possible detectors includes two optical imagers: the One Degree

Imager with a partially-filled focal plane (pODI; Harbeck et al., 2014) and NASA Exoplanet

Star (and) Speckle Imager2 (NESSI); the NIR imager WHIRC; and the WIYN Bench Spec-

trograph (Bershady et al., 2008) with several IFUs: HexPak/GradPak (Wood et al., 2012),

SparsePak (Bershady et al., 2004, 2005), and Hydra (Barden et al., 1994).

3.3 SWEETSPOT SURVEY

3.3.1 WHIRC and WTTM

SweetSpot used the WHIRC (Meixner et al., 2010; Smee et al., 2011) NIR detector mounted

on the WIYN Tip/tilt Module (WTTM) port (Claver et al., 2003). It has three broad band

filters of J , H, and KS centered at 1.250 µm, 1.651 µm, and 2.168 µm, respectively. WHIRC

has several narrow band filters as well, but we did not make use of them. The instrument

has a 2048x2048 Raytheon Virgo HgCdTe detector with a 3.3 arc minute (’) field of view

2http://www.wiyn.org/Instruments/wiynnessi.html
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and a 0.1 arc second (”) pixel scale. The WTTM tip/tilt correction can provide image stabi-

lization that improved the seeing of our images by ∼ 0.1− 0.2”. However, the weather must

be mostly clear with native seeing at or below ∼ 1.5”, and it requires there to be a bright

star within the field of view that stays in the field of view during any dithers.

The WTTM mirror was recoated in the summer of 2013 between our 2013A and 2013B

semesters. This update significantly improved the signal levels and led to a noticeable differ-

ence in our measured zero points between 2011B–2013A data and 2013B data in SweetSpot’s

first data release (Weyant et al., 2017).

3.3.2 Survey Strategy

SweetSpot did not discover any of the supernovae used in its survey. We were reliant upon

the supernova community to find, spectroscopically classify, and publish young SNeIa. We

made use of Astronomer’s Telegrams3, IAU Central Bureau for Astronomical Telegrams

(CBETs)4, and the website Bright Supernova5 managed by David Bishop to find supernovae

that had been spectroscopically classified as Type Ia, within redshift of 0.03–0.08, and would

be within two weeks of maximum light for their first observation.

Our goal was to collect 3–6 lightcurve points in J and H for the majority of our objects

and 6–10 lightcurve points in J , H, and KS for objects z < 0.03. The background sky and

the detector plus telescope noise in the KS filter is too bright to observe higher redshift

objects. Figure 3.1 shows that we reached a median of 3 light curve points for H and J , but

less frequently observed KS.

In the NIR, not only is the night sky bright, but the detector and the telescope system

also provide significant noise. Because of the contamination from the observing set up itself,

we dithered our observations instead of exposing for longer times to drive down noise from

the night sky and the detector plus telescope system and to remove any detector defects. A

single integration was one minute, and we dithered in 3 patterns: 3x3 with 30” offsets, 4x4

with 20” offsets, and 5x5 with 15” offsets. These cover about 4’ by 4’ on the sky. Along with

3http://www.astronomerstelegram.org/
4http://www.cbat.eps.harvard.edu/
5http://www.rochesterastronomy.org/snimages/
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dithering on our main science images, we also observed and dithered on Persson standard

stars (Persson et al., 1998) to use for calibration.

For the latest data processing and more in-depth information about observing strategy,

see DR1 (Weyant et al., 2017).

3.3.3 Statistics from Survey

SweetSpot was awarded 88.5 nights and observed 114 SNeIa, with an additional 12.5 nights

to gather host galaxy templates, and in total used 1.8 megaseconds of open shutter time (see

Table 3.1 for break down of seconds integrated and number of science frames taken). We

also collected 1 type Ibn supernova on request from Isaac Shivvers whose resulting paper

has already been accepted for publication (Shivvers et al., 2017). Figure 3.2 shows the

location of our supernova projected on the sky in Right Ascension (RA) and Declination

(Dec). Our sample is uniform on the night sky that is observable from Kitt Peak except for

the overcrowded plane of the Milky Way. Figure 3.3 contains postage stamps for all 115 of

the SweetSpot supernovae in order of increasing redshift. Our lowest redshifted SNeIa is at

z = 0.00068 (SN 2014J) and our highest redshifted SNeIa is at z = 0.094. Our sample’s

median redshift is 0.035, and Figure 3.4 shows the full redshift distribution. The current

literature sample (excluding S15) has a median redshift of only 0.026, which is where peculiar

velocities are still the dominant source of error in distances.

Many of our supernovae exploded in locations that were heavily contaminated by their

host galaxy flux. To correct for this flux, we returned to a field roughly one year after the

explosion when the flux of the SNeIa was not visible. We took host galaxy templates with

exposure times 3 times as long as the longest exposure on the supernovae. For example, if we

had 9 minutes of total integration time on a target, we collected a host galaxy observation

that was 25 minutes, and if we took a 50-minute exposure, the host galaxy template had

to be at least 150 minutes. Due to the time-consuming collection of host galaxies, we did

not observe the planned 144 SNeIa. We were not able to collect all of our host galaxy only

exposures during the main part of the survey and were awarded an extra 12.5 night (not

included in the original 88.5 nights) to complete them.
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Figure 3.1 Histogram of the number of lightcurve points taken per filter per object. Median

number of lightcurve points in (J,H,KS) = (3.0, 3.0, 2.0).

Table 3.1. SweetSpot Survey Summary of Total On-Sky Time

Category Total J H KS

Total Number of Seconds integrated 1,858,790 909,611 788,068 107,479

Total Number of Science Frames 38,717 15,856 18,005 4,316

Total Number of Standard Star Science Frames 7,021 2,341 2,409 2,270

Total Science Frames in Preliminary 2,656 1,022 1,439 94

Total Science Frames in Main Survey 40,375 14,996 18,037 5,828

Total Science Frames in Template Follow-up 6,103 2,165 2,660 798
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Figure 3.2 Location of the 115 SweetSpot supernova projected on to the sky. The purple

line shows the path of the Milky Way.

Weyant et al. (2014), hereafter W14, presented the first results from the pilot semester

of the SweetSpot Survey from 2011B semester. W14 presented 13 out of 18 SNeIa that

were observed in Fall 2011. They showed that using SweetSpot SNeIa located in the nearby

smooth Hubble flow (0.03 < z < 0.1) resulted in a scatter of only 0.16 mag without any

lightcurve corrections. The lightcurves only had 1–4 points per band, which showed that

sparsely-sampled NIR lightcurves could do precision cosmology. Using a combined literature

dataset of 108 SNeIa, W14 constructed the most up-to-date Hubble diagram with the highest

redshift NIR SNeIa at that time (z = 0.094) and found the scatter in all of the literature

data set to be 0.22 mag.

Table 3.2 summarizes the number of nights awarded per semester, number of supernovae,

and number of host galaxy templates or spectra observed. The pilot semester and the single

night from 2012A are listed as “preliminary” as they are not part of the main survey that was

from 2012B–2015A. The nominal time for Data Release 1 (DR1) is SNeIa observed between

2011B–2013B and the time for DR2 is supernovae observed between 2014A–2015A, which

split our survey in half. 74 SNeIa and 33 lightcurves have been made public in DR1 (Weyant
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Figure 3.3 20” by 20” cutouts of all 115 supernovae ordered by increasing redshift.
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Figure 3.4 Redshifts of SweetSpot supernovae versus the literature data set (taken

from Weyant et al. (2014)). This literature data set does not include the 16 SNeIa from

S15. Median redshifts of the SweetSpot survey and literature data set are noted in the solid

and dashed black lines, respectively.
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et al., 2017), which was submitted to American Astronomical Journals in March 2017. Anja

Weyant carried out most of the observations from 2011B–2013B and K.A.P. did the majority

of the observing from 2014A–2017A. Michael Wood-Vasey also observed at least 10 nights

and Jessica Kroboth observed for 7 nights. Also recorded in this table are the 4 nights that

we gathered spectra from our host galaxies after the SNeIa had faded with HexPak.

3.3.4 Status of Data and Science Releases

DR1, presenting data from 2011B–2013B, was submitted for publication in March 2017, and

we are working on the referee’s comments. DR2 is planned for early 2018 and will contain

all, or most, host galaxy subtractions for DR1 and DR2 SNeIa. We are planning to take

more observations to quantify if all of our objects need host galaxy subtractions or if only

the most contaminated SNeIa need them. DR3 will be our final data release and will contain

improved host galaxy subtractions and calibration.

One driving factor of not completing the analysis of host galaxy correlations with local

properties is that DR1 only released 3 lightcurves and all others need host galaxy templates

or will be released in DR2. The cause of this delay is partially by the design of the HexPak

observations as we wanted to observe galaxies that hosted SNeIa with obvious host galaxy

flux near the location of the explosion site, but this has caused a delay in the release of the

scientific analysis.

3.4 HEXPAK DATA RELEASE OF 32 SWEETSPOT HOST GALAXIES:

OBSERVATIONS

3.4.1 Description of HexPak

HexPak (Wood et al., 2012) is a variable-pitch (containing multiple fiber sizes) integral field

unit (IFU) mounted on the WIYN 3.5-m telescope. HexPak and its companion GradPak

are the first variable-pitch IFUs ever built. They share a single cable and mount, but only

one unit may be used at one time. Both of these use the same slit to feed into the WIYN
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Table 3.2. SweetSpot Survey Summary of Nights Observed

Semester # of Nights # of SNe # of Hosts

Preliminary 2011Ba 7 18 –

2012Aa 1 4 4

DR1 2012Ba 8 19 5

2013Aa 11 16 –

2013Bb 10.5 15 6

DR2 2014A 20.5 16 12

2014B 16.5 14 13

2015A 14 12 7

HexPak 2015B 4 – 32

Template 2015B 6 – 11

Follow-up 2016A 5 – 7

2017A 1.5 – 2

Total 110 115 99c

aAnja Weyant carried out the majority of these observations.

bAnja Weyant carried out the majority these observations with

K.A.P. assisting on 3 nights and leading on 1.

cThese are not unique host galaxy observations. Some were

observed in multiple semesters if the template was not observed

with satisfactory seeing.
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Bench Spectrograph6. HexPak consists of “small” fibers with a diameter 0.94 arc second

(”) arranged in a circle surrounded by “large” fibers with diameters of 2.9” arranged in a

hexagonal pattern, see Figure 3.5. This configuration is optimal for face-on galaxies. The

large fibers span roughly 41” by 36”, and small fibers span about 6” in diameter. There are

7 large sky fibers and 2 small sky fibers which are located over 43” to the right and above

the configuration seen in Figure 3.5. The large fibers were recycled from DensePak (Barden

et al., 1998), and SparsePak (Bershady et al., 2004) and have varying levels of sensitivity as

a function of wavelength.

3.4.2 Configuration of the WIYN Bench Spectrograph

HexPak feeds into the WIYN Bench Spectrograph using the Hydra red cable. We used

the 600@10.1 grating, 600 lines/mm with a blaze angle of 10.1◦ at order 1, with a spectral

resolution of 3.35. Our setup centered at 6000 Å and ranged from 4600 Å to 7400 Å. The

Bench uses the STA1 Charge-Coupled Device (CCD) with 2600 by 4000 pixels, and we used

the medium gain of 0.4 electrons/ADU. For one night (2015 November 16), we did not bin

the CCD; however, on the other three nights, we used 2x2 binning. The observations with

1x1 binning are noisier resulting in approximately 2.4 times greater error in Hα surface

brightness for large fibers and 3.2 times higher in the smaller fibers.

3.4.3 Wifoe Camera

The Wifoe Camera7 is used to determine pointing. It consists of an Allied GigE GT3300

CCD with a default 5x5 binning giving a scale of 0.258” per pixel. To determine pointing,

we took a short exposure of the current field and looked for objects with which to align.

Then we turned on the back illuminator to project the locations of the fibers on to the CCD,

see Figure 3.6. From this, we determined if the pointing was sufficient or if we needed to put

in offsets. Unfortunately, when switching from the Wifoe camera to the main science setup,

the positions might change by a few arc seconds. We saved both the longer images of the

6ftp://ftp.noao.edu/kpno/hydra/hydrawiynmanual.pdf
7http://www.wiyn.org/Instruments/WifoeCameraInterface.pdf
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Figure 3.5 Bundle configuration and fiber locations. The small fibers in the middle are 0.94”

and the large fibers around them are 2.9”. The missing small fiber in the upper left side

was dead upon arrival. The numbers correspond to the ordering of the spectra on the CCD.

Small fibers are projected onto the middle of the CCD. Not included here are the 9 sky fibers

(2 small and 7 large) that are located to the right and above this configuration.
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field of view and the shorter images with the fibers on sky for all pointings.

3.4.4 Calibration Observations

Due to the variable-pitch nature of the bundle, we had to take calibration observations of

different lengths to accommodate the different collecting areas. Since on 2015-11-16 we used

1x1 binning and the other 3 nights we used 2x2 binning, we took different calibrations for

the first night versus the other three.

Calibration images taken each night:

• Bias: We collected 5-10 exposures during the free time in the night (long slewing time,

using a different detector, etc.).

• Darks: 11 exposures were taken at 1200 seconds each morning after observations.

• Domeflats: These were taken each afternoon before the run. We gathered 30-second

and 10-second exposures for 1x1 and 2x2 binning, respectively, to have a good signal in

the small fibers. Given the different collecting areas, these exposures saturated the large

fibers, so we took additional 5-second and 2-second exposures. For every exposure time,

we saved 6 frames.

• Comparison Lamps: We used the Copper Argon lamp and took these twice during each

night: once in the afternoon and once in the middle of the night. In both binning modes

we collected 3 frames at 10 and 60 seconds; however, sometimes the second comparison

lamp was only exposed for 60 seconds. On nights with 2x2 binning, we occasionally took

1- or 2-second comparison lamps, but the data reduction process did not use them.

• Twilight Flats: Taken at the beginning of the night, except for 2015-11-16 when we

took them in the morning. We observed these at varying exposure times depending on

the amount of light in the fibers. Longer exposures often gave a good signal in the small

fibers but saturated the large fibers.

• Standard Stars: We observed BD+284211, a blue star, and Hiltner 600, a red star,

once per night at different times. Most nights, they were observed on multiple fibers to

improve flux calibration.
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Figure 3.6 Wifoe images of field SN 2013fj / PGC 68419. Left: A 5 second exposure with

the pointing camera. The galaxy is in the lower left hand panel as a faint, poorly-resolved,

slightly darker smear and is circled in red. We also circled a star in blue that is within the

aperture of one of the sky fibers. Right: A 0.2 second exposure with the back illuminator

on to indicate where the fibers fall on the field of view. The location of the star in the Left

plot is again circled in blue and on top of it is an imprint from a small fiber. This is the

only object where a star fell into the field of view of a sky fiber. The location of the galaxy

is also circled in red.
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3.4.5 Descriptions of Observations and Host galaxy sample

Rigault et al. (2013) referred to as R13, showed a greater dependence on local star formation

rates (SFRs) than on global SFRs. Figure 5 in R13 illustrates the relationship between local

and global SFRs with globally star-forming galaxies hosting regions of passive and active

star formation while globally passive galaxies are locally passive. Our goal in this study is

to examine spiral galaxies that hosted supernovae in the SweetSpot sample, for this reason,

HexPak was the ideal instrument. However, this means that our sample is biased and all

conclusions from it will need to account for this. We observed 32 host galaxies with 27 spiral

and star-forming galaxies and 5 elliptical galaxies. All of the spirals are face-on or slightly

inclined, i.e. no edge on galaxies. One of the spiral galaxies is in a merging system, but the

location of the supernova explosion is well removed from the area of interaction. Most of our

fields contain supernovae that were heavily contaminated by host galaxy flux though several

are quite removed. We also preferentially chose galaxies that would span several fibers, so

our sample is biased towards massive, low-redshift galaxies. Table 3.3 gives a summary of

the fields observed, and Figure 3.7 shows the redshift distribution of our sample. Citations

for supernova and host galaxy properties can be found in Appendix A.1 in Table A1.

We took either three 10-minute exposures, two 10-minute and one 20-minute exposure, or

two 10-minute and two 20-minute exposures. The exposure time depended on the redshift of

the host galaxy, the size of the galaxy, and if Hα was visible in the raw spectrum. We did not

dither our observations; however, if the host galaxy is exceptionally big (SN 2011hb/NGC

7674) or interesting (SN 2014dm/NGC 1516A), we took additional exposures at new point-

ings that target the galaxy as a whole instead of the site of the supernova. If we took multiple

pointings of a galaxy, some pointings would only have two 10 minute exposures. We gathered

41 pointings of 32 different host galaxies. Table 3.4 details number of targets observed per

night. All nights were clear, but 2015-11-16 and 2015-11-17 had seeing of 1.5–2.5”, which is

important to note as the small fibers are only 1” and will affect absolute flux calibrations.

Note on 2015-11-30: During this night we switched detectors from HexPak to WHIRC to

observe a host galaxy template for the main SweetSpot survey.
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Figure 3.7 Redshift distribution of the supernovae observed in HexPak host galaxies versus

the distribution from the full SweetSpot survey with 114 SNeIa.
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Table 3.4. Nights Observed with HexPak

Datea # Observationsb Seeing

Galaxies Stars

2015-11-16 11 4 Bad

2015-11-17 10 8 Bad

2015-11-30 8 7 Good

2015-12-01 12 10 Good

aYYYY-MM-DD of local evening at

KPNO (MST).

bNumber of pointings, not number of

objects.

3.5 HEXPAK DATA RELEASE OF 32 SWEETSPOT HOST GALAXIES:

PROCESSING OF IFU DATA

Data processing is based on the Guide to Reducing IFU Data, 2015, with Specific

Application to “Pak” Family of IFUs Feeding the Bench Spectrograph at WIYN

shared privately by Eric Hooper. The reduction steps are done using PyRAF.

1. Data Transfer and Uncompression: We followed steps 1 and 2 from SweetSpot

Data Release 1 (Weyant et al., 2017) to transfer and uncompress images from the NOAO

Science Archive. We used ftp directly to transfer the Wifoe images from the computers

on Kitt Peak to University of Pittsburgh computers.

2. Overscan Correction: The overscan correction is used to remove the bias level and the

read noise and is implemented with noao.imred.ccdred.ccdproc with oversca = yes

in PyRAF. This process creates a smooth function from averages of the overscan region

with interactive fitting to a 100th order Legendre polynomial. The program marked
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3σ outliers and removed by hand which resulted in the order of the polynomial to be

adjusted down based on the number of deleted points. The mean of the bias ranged from

15595 to 15678 counts. We removed pixels that biased the fits to the overscan region for

the comparison lamp exposures, which contained structured outliers, and the dome flat

exposures (usually only a few close to the edge). All other exposure types either needed

no outliers removed or very few.

3. Bias/Zero Correction: Bias frames are used to remove electronic background char-

acteristics of the CCD that are present in every frame. We median combine using

images.immatch.imcombine with the ccdclip algorithm, which utilizes CCD noise pa-

rameters from header keywords to create a Poisson noise model to remove outliers. Since

bias frames can vary over time, we scaled each frame by a small additive offset calculated

from their median values. Since there should not be cosmic rays due to the short expo-

sure time, only 5σ outliers were rejected. After combining the bias frames, we subtract

the master Bias from all remaining files (flats, comparison lamps, darks, objects) using

noao.imred.ccdred.ccdproc.

4. Dark Correction: Dark frames are long exposures that are used to remove thermally

generated electrons in the CCD. We median combine these frames using

images.immatch.imcombine with sigclip, which calculates outliers based on the stan-

dard deviation of the pixels. This method is sensitive to the number of frames combined

such that there must be at least 9 frames to remove 3σ outliers on a per-pixel basis.

Only the darks have enough frames (11 per night) to use this outlier rejection method.

Removing 3σ outliers should be sufficient to remove cosmic rays. We used a median

scaling but note that all the scales came out close to 1 (1–1.6). A dark correction is

only needed for exposures long enough to accrue electrons from thermal effects and any

exposure less than a minute will not be dark corrected. All darks were 1200 second expo-

sures, so to correct exposures that are 180–600 seconds, we multiplied the master Dark

by an appropriate factor, i.e. 0.5 for 600 seconds. The master Darks are subtracted from

object files (including standard star observations) with noao.imred.ccdred.ccdproc

using the equivalent exposure time. All dome flats, twilight flats, and comparison lamps

have exposure times that are too short to require dark corrections.
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5. Cosmic Ray Removal on All Other Exposures: We had too few images to use

images.immatch.imcombine sigclip on flats, comparison lamps, and object files, and

we found that ccdclip removed a large amount of real data. To remove cosmic rays

without removing real data, we used pycosmic (Husemann et al., 2012), which is for

integral field spectroscopy (IFS). Because the large and small fibers caused inconsistent

counts in different areas of the CCD, we treated the areas separately by splicing out the

middle of the fits file containing these fibers. Figure 3.8 shows a raw object frame to

illustrate why we spliced out the “middle” of the fits file. pycosmic is then run separately

on the large and small fibers, and the two fits files are then spliced back together for one

image containing all the full CCD range. For twilight flats and object frames, we also

masked several strong telluric lines, as the program consistently marked them as outliers,

and then unmasked them in the final output file.

6. Combine Comparison Lamps: These images are used to wavelength calibrate object

and twilight flat images. For comparison lamps, we did not stack all of the frames from

all exposure times together due to the varying levels of saturation of the large fibers.

We median combined all images with the same exposure time (typically 3 frames). We

primarily used the 10-second or 60-second exposures to identify lines.

7. Combine Dome Flats: The Dome Flat is used to trace the fiber locations along the

CCD. To combine the dome flats we median combine after running pycosmic. The flats

are taken at two different exposure times to try to characterize the small and large fibers.

We checked the individual dome flats to see if any images exceeded the linearity limit,

which was the case for all long exposure (10/30 second) frames. To account for this, we

cut out the small fibers in the 10 (30)-second flats and separately the large fibers in the 2

(5)-second flat for 2x2 (1x1) binning. Both dome flats are then divided by the exposure

time so that the counts are per second. We median combined these frames in python

without the use of PyRAF as it would not preserve the dimensions of our data as a result

of separating the large and small fibers. We then merged the two combinations together

to yield one master Domeflat.

8. Combine Twilight Flats: The Twilight flat is used to account for relative fiber-to-

fiber throughput. We initially took two sets of twilight flats per night: those aimed at
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-20 8 35 63 91 119 147 174 202 230 258

Figure 3.8 Raw object frame before 1D extraction of spectra for SN 2012et / CGCG 476-117.

The thicker lines at the top and bottom correspond to the large fibers, while the thinner

lines in the middle correspond to the small fibers. Wavelength increases to the right. Most

of the structure that can be seen with the eye is from telluric lines; however, Hα plus the

two [N II] lines are also obvious in some of the fibers including the small fibers in the middle.
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getting sufficient flux in the large fibers (small fibers have low flux) and those aimed at

getting sufficient flux in small fibers (large fibers are saturated). We tried to follow the

same procedure to combine these as was done for the Domeflat; however, we found that

this lead to unusual offsets between the large and small fibers. After much investigation,

we determined that the large and small exposures were observed in different conditions

because the night sky is changing so rapidly at twilight such that they contained two

distinct sources. The Twilight flat could not correctly account for fiber to fiber variations.

Instead, we median combined (in python) only the frames where the linearity limit was

not exceeded for the large fibers. The result is a master Twilight flat with the small

fibers have roughly 1/9th the flux of the large fibers which corresponds to the different

physical sizes of the fibers.

9. Extract Spectra: In this step, we extract a 1-dimensional spectrum from 2-dimensional

data. PyRAF has a built in function to extract IFS data called

noao.imred.hydra.dohydra. This command was originally implemented for fiber spec-

tra from Hydra and Nessie, which are mounted on the WIYN 3.5-m telescope. This

function performs multiple steps: assigns fibers, traces apertures, flat field corrects, and

wavelength calibration.

The first step uses the hexpak.iraf8 file to assign each spectrum a number and denote

if it is a sky or object fiber. We use the master Domeflat to trace the apertures since it

has a high signal to noise. The size of the aperture extends to the location where the

counts have fallen to 5% of the peak value which allows for the large and small fibers to

have different aperture sizes.

The next step traces the fiber with a 50th (100th) order cubic spline for 2x2 (1x1) bin-

ning. The root mean square (RMS) of this fit is < 0.002 except for the one night with

1x1 binning that has 0.004 for large fibers and 0.002 for small fibers. After dohydra

traces all 111 spectra, it combines all traces and fits the combination with a ∼35th order

cubic spline. It then performs the flat field correction with this combined trace.

Finally, we identified and marked emission lines from the comparison lamps using the

8http://www.astro.wisc.edu/~mab/research/hexpak_gradpak/hexpak.iraf
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Copper Argon templates from the NOAO Spectral Atlas Central9. We marked a single

fiber located in the small bundle, and the code assigned wavelengths to all other spectra

according to this fiber. The header was modified to include the dispersion solution:

CRVAL1 contains the first wavelength value (intercept), and CDELT1 is the step/slope.

We extract the 1-dimensional spectra for all object frames and master Twilight flat.

10. Fiber-to-Fiber Throughput: This step determines the throughput of all the fibers

relative to one fiber, typically the fiber that will be used for flux calibration with a

standard star. The Twilight flat is used for this correction because it characterizes blue

flux better than the Domeflat. Also, the light is coming in at the same angle (infinity)

as the science observations.

Using onedspec.sarith, we divide all the fibers by the fiber in which we observed the

standard star. Since we are interested in the area around the location of the supernova,

we tried to place the standard star on the same fibers that we used for the supernova

locations. This step was done several times corresponding to the number of different

fibers in which we observed a standard star. If we did not expose a standard star on the

same fiber as the supernova, we used the fiber that was spatially closest. We did not use

any of the small fibers for fiber-to-fiber throughput or calibration.

The ratios will be noisy, so we then fit a 25th order spline function to the ratios to get

smooth functions with onedspec.sfit, see Figure 3.9. Here we fit a smooth function

because we are interested in the overall shape of the ratio and do not want to introduce

large errors from edge effects. We only use wavelengths between 4618 Å and 7380 Å to

reduce the number of outliers included. onedspec.sarith is used again to divide all of

the fibers in the object files by the smoothed functions.

See Section 3.5.1 for further discussion of caveats and consequences of using the Twilight

flat for fiber-to-fiber throughput.

11. Removing Sky Background: Due to the variable responses from the different fibers

to blue flux, we subtract the background sky from each object spectrum before flux

calibration. We median combined the small and large sky fibers separately, and then

subtracted them from the small and large object fibers, respectively. This is implemented

9http://iraf.noao.edu/specatlas/
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Figure 3.9 Example of the fiber to fiber throughput functions from Twilight flat relative to

Fiber 100. When divided by a large fiber, the small fibers group around 0.1 and the large

fibers group around 1. This is expected because the collecting area of small fibers is ∼1/9

that of the large fibers. In this example, the grouping is slightly less than 0.1 which is a

product of their relationship to Fiber 100. If this plot was instead shown relative to Fiber

20, then the grouping would be centered around 0.1.
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using our own Python code.

A few interesting things to note here: (a) The pointing for the host galaxy of SN 2013fj

had a star in one of the small sky fibers, see Figure 3.6. For this object, only one small

sky spectrum is subtracted from the small fibers instead of an averaged spectrum. (b)

The Moon is a significant contributor of flux, especially in the blue, for the second half of

2015-11-30 and 2015-12-01 when the Moon is at 69% and 59% illumination, respectively.

The sky fibers show contamination from the Moon before subtraction, but subtracting

the sky spectra removed the effect. (c) Most spectra show residuals from telluric lines,

see Section 3.5.2 for more in depth discussion.

12. Flux Calibration Standard star observations were used for flux calibration. Every night

we observed two standard stars (BD+284211 and Hiltner 600) on at minimum two fibers:

one large and one small. Though we observed each standard on the small center fiber, we

did not use them for calibration. See Section 3.5.3 for more detail. Every night except

the first night, we observed the standard stars on multiple large fibers corresponding to

where we attempted to place the supernova explosion site, see Table 3.5 for a full list of

fibers in which the standard stars were observed.

To start calibration, we compare our observations of a standard star to its absolute

star template using onedspec.standard. This function also corrects for the average

atmospheric extinction at Kitt Peak and removes the instrumental response function.

The output flux file is input to onedspec.sensfunc which will fit a sensitivity function

using a 10th order cubic spline. Figure 3.10 shows resulting sensitivity functions for

different fibers on one night using Hiltner 600 and a single fiber on the same night for

BD+284211. The small fiber’s sensitivity function is almost the same magnitude as the

large fibers (within 10%).

We repeat this process for all different fibers used to observe the standard stars. We

then use onedspec.calibrate to calibrate science objects and standard star with the

sensitivity function from the appropriate fiber. Tables 3.6 and 3.7 outlines which fiber

we tried to place the location of the faded supernova on and which standard star and

fiber were used for flux calibration. The final units are erg/cm2/s/Å.
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Table 3.5. HexPak Standard Star Observations

Date Standard Star Fiber

2015-11-16 BD+284211 20, 62

2015-11-16 Hiltner 600 20, 62

2015-11-17 BD+284211 62, 100

2015-11-17 Hiltner 600 20, 35, 62, 70, 85, 100

2015-11-30 BD+284211 35, 62

2015-11-30 Hiltner 600 12, 35, 38, 62, 72

2015-12-01 BD+284211 35, 62, 70, 77, 102

2015-12-01 Hiltner 600 35, 62, 70, 77, 102

13. Combining Objects: The sky subtracted, flux calibrated spectra are then median

combined per pointing.

3.5.1 Caveats of Fiber to Fiber Throughput

The top panel of Figure 3.11 shows the spectrum from the Twilight flat for a large fiber that

we commonly use for calibration purposes and so is used for fiber to fiber throughput. At

the lowest and highest wavelengths, the counts cut off causing sharp turnovers. It is because

of this that we do not fit the edges in Step 10 above.

The bottom panel shows a close up of the reddest part of the spectrum from 6800 to

7400 Å. We have marked the O2 and H2O bands that are prominent in this section. Around

7390 Å there is a water line which confuses the continuum flux because its location causes

it to be unbounded on one side. Figure 3.9 shows the relative throughput functions are are

fit from Step 10 above and they show a steep incline in that last 50 Å. The flux calibration

sensitivity functions show this effect since sharp peaks continue to be prevalent as shown in

Figure 3.10. Though the spectra continue until around 7407 Å, we suggest that everything

beyond 7200–7300 Å should not be used. Removing these wavelengths do not interfere with
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Figure 3.10 Several sensitivity functions from large and small fibers from Hiltner 600 observed

on 2015-12-01. After ∼ 7200 Å, the sensitivity functions experience a downward or upward

turn that causes a sharp feature in the calibrated spectra. We believe this is caused by a

deep telluric line at the edge of our Twilight flats that is causing confusion in the shape of

the sky continuum at those wavelengths, see Section 3.5.1.
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Table 3.6. HexPak Targets: Fiber Observed versus Fiber Calibrated I

Date SN Name Star Fiber
Observed Calibrated

2015-11-30 ASASSN-15hg Hiltner 600 62 35
Host Hiltner 600 35 35

2015-11-30 ASASSN-15ho Hiltner 600 62 35
2015-11-17 LSQ12gef BD+284211 85 100
2015-12-01 LSQ14aeg Hiltner 600 20 35
2015-11-16 PS1-12bwh Hiltner 600 62 20
2015-11-17 PS15mb Hiltner 600 100 100
2015-11-16 PSN J07250042+2347030 Hiltner 600 62 20

Host Hiltner 600 28 20
2015-11-16 PSN J08593491+4555343 Hiltner 600 62 20
2015-12-01 PSN J10292799+2200468 Hiltner 600 5 102
2015-12-01 PTF12iiq Hiltner 600 35 35
2015-11-17 PTF12ikt BD+284211 70 100
2015-11-17 iPTF13ebh Hiltner 600 20 20
2015-11-17 iPTF13dge Hiltner 600 35 35

Host Hiltner 600 – 35
2015-12-01 iPTF13dkj BD+284211 102 102
2015-11-17 iPTF14gdr BD+284211 35 100
2015-11-17 SN 2011gy Hiltner 600 85 85
2015-12-01 SN 2011hb BD+284211 62 35

Host BD+284211 35 35
Host-offset BD+284211 – 35
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Table 3.7. HexPak Targets: Fiber Observed versus Fiber Calibrated II

Date SN Name Star Fiber
Observed Calibrated

2015-11-16 SN 2011hk BD+284211 62 20
2015-11-16 SN 2011hr Hiltner 600 62 20
2015-12-01 SN 2011iu Hiltner 600 35 35
2015-12-01 SN 2012cg Hiltner 600 62 35
2015-11-16 SN 2012et BD+284211 62 20
2015-11-17 SN 2012et BD+284211 100 100
2015-11-30 SN 2012fm Hiltner 600 12 12
2015-12-01 SN 2012gm BD+284211 102 102
2015-11-30 SN 2013be Hiltner 600 62 35
2015-12-01 SN 2013fj BD+284211 70 70
2015-11-30 SN 2013fn BD+284211 35 35
2015-11-30 SN 2013fw BD+284211 62 35

Host BD+284211 35 35
2015-11-16 SN 2014aa Hiltner 600 62 20
2015-11-16 SN 2014dm BD+284211 62 20

Host 1 BD+284211 20 20
Host 2 BD+284211 – 20

2015-11-17 SNhunt206 Hiltner 600 Unknowna 85
2015-12-01 SNhunt263 Hiltner 600 77 77

aOriginal pointing had the supernova location on Fiber 85, but
the telescope jumped when switching from pointing to object expo-
sures.
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our primary science goals as none of our galaxies have their H α lines redshifted to that area

of the spectra. The galaxy with the highest redshift has the Hα line at 7022 Å.

3.5.2 Notes on Sky Subtraction

Currently, there are residuals in the spectra left over from poor sky subtraction as seen in

Figure 3.12. Because the multi-fiber data fed into a single slit, the optical transfer func-

tion (essentially the point spread function (PSF)) varies over the different angles that each

spectrum was dispersed through (Bershady et al., 2005). The size and shape of unresolved

lines are different for each spectrum in the same frame. The left-hand panel in Figure 3.12

illustrates the different shapes and peaks of the [OI] line in the sky fibers and the resulting

median-combined skyline that is subtracted from the rest of the fibers. The median com-

bined line is also slightly broader than it should be to account for the changing shapes. The

middle and rightmost panels show the residual effect from sky subtraction on sky and object

fibers.

We examined the effect from the brightest sky line [OI]5577 and measured the number

of counts in a sky fiber versus the counts in the object fiber. The residual counts from

object fibers minus sky fibers are on the same order of the error in the counts defined as

sqrt[
∑

(Nsky/Gain + Nobj/Gain)]. Therefore, the error from sky subtraction is reasonably

within our expected error bars. Since this line causes the largest residual, we can assume all

of the residuals are within the error bars and acceptable for this analysis.

To evaluate the error in wavelength calibration from this effect, we fit a Gaussian function

using astropy.modeling.fitting.LevMarLSQFitter (Astropy Collaboration et al., 2013a)

to the [OI]5577 line. We fit this function for every spectrum in every frame after fiber to

fiber throughput correction. We varied the starting position around 5577 Å and took the

median of the results. We then took the standard deviation per object of the peak of this

line which results in an error in wavelength. The range in errors for all of the targets is

0.09–0.19 Å with an average of 0.12 Å which corresponds to an error in velocity measures of

5–10 km/s with an average of 7 km/s.

For our purposes of measuring Hα, we do not need to implement more sophisticated
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Figure 3.11 Master Twilight Flat of Fiber 35 from 2015-11-17. Top: Full spectrum in counts.

The grey area is the zoomed in region in the plot below. Bottom: Zoom in on O2 and H2O

bands that are difficult to subtract. The grey dashed line marks the water line that causes

issues when fitting for fiber to fiber throughput.
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Figure 3.12 A zoom in of the [OI]5577 line. Left: The thick black line is the median of the

large sky fibers which are the colored lines above it (plotted with some offset for clarity).

Middle: The sky lines minus the median fit corresponding to the fibers shown in the left

plot. Right: Object lines minus the median fit. In all three plots the color gets redder with

increased fiber number. The dashed lines in the Middle and Right plots correspond to zero.

algorithms for sky subtraction as outlined in Bershady et al. (2005) but note that this is

something that could be done in the future to improve the spectra.

Another error we see from sky subtraction is its inability to sufficiently remove the deep

O2 lines around 6870 Å. Figure 3.13 plots several spectra from two objects with different

redshifts that show this poor subtraction. No Hα line falls into this wavelength range, so it is

not pertinent to fix for our analysis, but the two sulfur lines (S II) at 6718 Å and 6733 Å are

occasionally affected.

3.5.3 Notes on using Small or Large Fibers to Flux Calibrate

Both standard stars have a full width at half maximum greater than 1” on sky for all

four nights of observation. The first two nights were notably affected since seeing hovering

between 1.5” and 2.5” (possibly over 3”) for the first two nights. Due to the poor seeing

conditions, the small fibers gathered only 5−18% of the counts that the large fibers collected.

82



6600 6650 6700 6750 6800 6850 6900 6950
Wavelength [Angstroms]

0

5

10

15

20

25

Fl
ux

No
rm

 +
 O

ffs
et

iPTF13dge / NGC 1762
SN 2011hr / NGC 2691

O2

Figure 3.13 A zoom in of the O2 B band region with the largest absorption line around

6870 Å marked in grey. The red lines are the fibers around the host galaxy of iPTF13dge

(NGC 1762) and the purple lines are the fibers around the hosts galaxy of SN 2011hk (NGC

881). The flux is normalized and a constant offset is applied for clarity.
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We chose to calibrate only with the large fibers. Though the large fibers are older than the

small fibers, they have been more tested and have known properties. The large fibers should

be fine to calibrate the small fibers since we are looking mostly at diffuse gas and not at

stars, so the amount of light scattered into the fibers is roughly equal to the amount of light

scattered out.

3.5.4 Error Estimation

To estimate the error in the flux calibration, we examined the results of calibrating a standard

star observation with the same standard star observed on a different fiber. This method could

not be performed for every standard star on every night since we did not always collect them

on multiple large fibers. Figures 3.14 and 3.15 shows the results for the stars and nights

where this analysis can be done. On the first night of the run, 2015-11-16, we observed the

standard star on only one large fiber such that we cannot make an estimate of the flux error

through this method. For 2015-11-17 and 2015-11-30, we observed BD+284211 on one fiber

during the first half of the night, so we only calculate the calibration error for the second

half of those two nights. The flux is calibrated to 10% for the second half of 2015-11-17,

∼ 8% for the second half of 2015-11-30, and ∼ 9% and ∼ 6% for the first and second half of

2015-12-01, respectively. The flux is most likely calibrated to within ∼ 10% for all objects,

which is acceptable for our purposes.

Figure 3.16 shows how the error in calibration changes with wavelength. The errors

increase with increasing wavelengths and can vary between short to long wavelengths by as

much as 10% or as little as 3%

One way to improve the flux calibration would be to implement aperture corrections.

Due to the finite size of the fibers on the sky, the amount of flux enclosed by each one is

dependent on the point spread function (PSF) during a given exposure. A standard star

observation can be used to estimate the PSF and determine how much energy the fiber

enclosed. Unfortunately, to make these corrections on our science images, we would either

need a standard star within the field of view or we would have needed to observed a nearby

standard star before or after each scientific observation. We did not collect the necessary
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Figure 3.14 Comparison of standard stars observed on multiple fibers but calibrated with

the same fiber. The top panel on all plots shows the resulting spectra. The black line always

corresponds to the correctly calibrated spectrum. The bottom panel shows each spectrum

dividing by the correctly calibrated spectrum or “fiducial” spectrum. All of the observations

were calibrated with the sensitivity function derived from the observation of the star on

Fiber 35. Left: On 2015-11-17, only Hiltner 600 was observed on multiple fibers and it

was observed in the second half of the night. Right: On 2015-11-30, only Hiltner 600 was

observed on multiple fibers and it was observed in the second half of the night.
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Figure 3.15 Comparison of standard stars observed on multiple fibers but calibrated with

the same fiber. The top panel on all plots shows the resulting spectra. The black line always

corresponds to the correctly calibrated spectrum. The bottom panel shows each spectrum

dividing by the correctly calibrated spectrum or “fiducial” spectrum. All of the observations

were calibrated with the sensitivity function derived from the observation of the star on

Fiber 35. Left: 2015-12-01, BD+284211 was observed in the first half of the night. Right:

2015-12-01, Hiltner 600 was observed in the second half of the night.
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Figure 3.16 The average error in calibration from the bottom panels of Figures 3.14 and 3.15

for 4 standard stars observed over 3 nights.
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data to make these corrections.

3.5.5 Comparison of Night to Night Calibration

The only object observed on multiple nights is SN 2012et / CGCG 476-117. We collected

this target on the first night using 1x1 binning and again the next night using 2x2 binning.

Figure 3.17 shows the comparison of the core of the galaxy for these two nights. The center

of the galaxy was on a large fiber the first night but in the small fiber the second night. The

lower panel is a zoom in of the Hα region. The 1” fibers exhibit a larger error because the

individual collecting area is smaller causing a lower signal to noise. The spectra agree very

well with each.

3.5.6 Comparison with SDSS

We compared the spectrum of the fiber on the bulge of NGC 2691, host galaxy of SN 2011hr,

to the spectrum of the bulge taken with the Sloan Digital Sky Survey (SDSS) in Figure 3.18.

The SDSS spectrum10 was taken as a part of the SDSS Legacy Survey (Abazajian et al.,

2009a) which surveyed the North Galactic Cap and three strips in the South Galactic Cap

and used a 3” fiber. The spectrum from HexPak is uniformly more luminous than the one

from SDSS, except in bluer wavelengths where the HexPak fibers are less reliable. They

share the same basic shape, and the extra flux from HexPak could be from observing a

slightly different area of the galaxy or from the lack of aperture corrections in absolute flux

calibration. The difference in flux is 5% for ∼ 5800 Å to 7300 Å and 15% different at bluer

wavelengths (4600–5800 Å).

3.5.7 Note on Spatial Resolution

The large and small fibers probe different spatial scales, and the physical sizes change with

redshift. Seeing was 1.5-2.5”, possibly up to 3”, on 2015-11-16 and 2015-11-17, so the actual

physical size probed on these two nights in the 1” small fibers is unknown as the light from

10Downloaded from the SDSS Object Explorer http://skyserver.sdss.org/DR12/en/tools/explore/

summary.aspx
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Figure 3.17 Galaxy: CGCG 476-117, Supernova: SN 2012et. Only object observed on two

nights. The first night had 1x1 binning and the second night had 2x2 binning. On 2015-11-

16, the core of the galaxy is on a large fiber, while 2015-11-17 was observed on a small fiber.

Top: Full spectrum of the core of SN 2012et. Marked in purple are emission lines from the

galaxy and marked in red are telluric lines that left residuals after subtraction. Telluric lines

identified from Osterbrock et al. (1996). We did not mark the O2 band that was discussed

in Figure 3.13 because it is next to the S II lines on the left and cluttered the plot. Bottom:

A zoom-in of the Hα region that is greyed out in the top plot.
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Figure 3.18 SN 2011hr: HexPak versus SDSS spectrum. We used the HexPak fiber closest

to the center of the galaxy (Fiber 8). The poor telluric line removal is clear in the HexPak

spectrum.
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these regions was smeared out. On 2015-11-30 and 2015-12-01, since the seeing was closer

to 1”, the spatial scale of the small fibers is more accurate.

3.6 HEXPAK DATA RELEASE OF 32 SWEETSPOT HOST GALAXIES:

RESULTS

3.6.1 r-band flux

We calculated the SDSS r-band flux using onedspec.sbands. The HexPak configuration

that we used did not fully cover any other SDSS bands. We use the SDSS r-band flux maps

to determine the actual pointing of our observations. Unfortunately, the Wifoe observations

give us an idea of where to look for the host galaxy, but it is possible that when switching the

mirrors for the pointing camera to HexPak that the locations shift a little. To determine the

location of the host galaxy, we calculate weights of the x and y position of the fibers based

on their r-band flux, and then we take the flux-weighted average of their x and y locations.

We calculated the separation and the position angle of the supernova location relative to the

host galaxy to determine the location of the faded supernova. If there was a bright star in

the field, we masked associated fibers to not bias the fits.

3.6.2 Hα Measurements

Before measuring Hα, we account for extinction due to the Milky Way. We used the

NASA/IPAC Infrared Science Archive11 to get E(B-V) values from Schlafly & Finkbeiner

(2011) assuming RV = 3.1. We then use PyAstronomy12 to deredden our spectra. We used

the function PyAstronomy.pyasl.unred, which was converted from the IDL Astronomy

User’s Library13 and uses the Fitzpatrick (1999) parameterization to correct for wavelength

dependent Galactic extinction. In the current analysis, we do not correct for the dust ex-

tinction in the galaxies we are observing.

11http://irsa.ipac.caltech.edu/applications/DUST/
12https://github.com/sczesla/PyAstronomy
13https://idlastro.gsfc.nasa.gov/
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We used onedspec.continuum to calculate the continuum flux with a first order Legen-

dre polynomial (a line). We only used the area around Hα (without restframe corrections)

which corresponds to the range of 6400 Å to 7100 Å with a gap of ∼ 70 Å. The location

of Hα was based on previously recorded host galaxy redshifts; however, we estimated the

redshifts for three host galaxies do not have redshifts previously recorded. One of these

galaxies, 2MASXi J0909234-044327 the host galaxy of ASASSN-15ho, is significantly offset

in redshift space by roughly 0.05 from its supernova, but the other two host galaxies exhibit

redshifts close to the measured supernova redshift, see Appendix A.2 for more information.

This wavelength range misses many of the sky lines that we could not subtract well including

[OI], Na I, OH forests, and water bands. However, it includes the O2 band at ∼6870 Å, but

we adjusted the wavelength ranges to mask this line as well.

After normalizing the spectra, we fit for the Hα emission line by utilizing its location in

reference to the nitrogen lines [N II]a and [N II]b. We used our own code written in python

which utilizes astropy.modeling.fitting.LevMarLSQFitter. Assuming the emission lines

are Gaussian, we create a three Gaussian model and constrain the relative locations of the

peaks to match the relative positions between [N II]a, [N II]b, and Hα. We run the fitter at

5 initial guesses within 2 Å of the redshifted location of Hα and take the median results as

our fits to the three emission lines. We then find all the wavelengths that are within 3 σ of

the means for [N II] and within 2 σ for Hα to avoid getting [N II] flux and use the flux found

in between them to measure equivalent width (EW) and Hα flux following the equations

below:

EW =

i=λ[+2σ]∑
i=λ[−2σ]

(Fλ,norm[i]− 1) ∗ dλ, (3.1)

Total Flux =

i=λ[+2σ]∑
i=λ[−2σ]

(Fcontinuum[i]) ∗ (Fλ,norm[i]− 1). (3.2)

Both of these values are affected by the expansion of the Universe, so in order to calculate

the restframe values, the EW must be divided by 1 + z while the flux is multiplied by 1 + z.

Figure 3.19 shows the Hα line with the EW resulting from these fits. The restframe Hα

EW maps are in Appendix A.3. Strong Hα lines blend with the surrounding [N II] lines

which can cause the mixture model to overestimate the standard deviation which will cause
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Figure 3.19 Example of the Hα emission line with the restframe EW shown in the blue

shaded region. This is Fiber 103 for the first pointing of iPTF14dge / NGC 1762.

a significant overestimate in the EW and flux. However, these lines will not be plotted in

our Hα EW maps as they do not meet the quality cut requiring the standard deviation to

be below a reasonable threshold. We determine error on Hα by calculating the RMS or

dispersion of the sky subtracted continuum in a range around the H-alpha line.

Using the observed position of Hα, the flux in Hα, plus redshift information, we calculate

Hα velocity, luminosity, and surface brightness. All plots can be found in Figures 3.22 - 3.33.

The colored, optical images in the left-most column come from Sloan Digital Sky Survey

finder chart tool14 or, if not in the SDSS foot print, from the Panoramic Survey Telescope

and Rapid Response System (Pan-STARRS) image cutout service15. The host galaxies with

Pan-STARRS cutouts are ASASSN-15ho, iPTF13dge, iPTF13ebh, SN 2011iu, SN 2013fn,

SN 2013fw, and SN 2014dm. The maps that show r-band flux but no Hα surface brightness

or velocity measurements are elliptical galaxies. If the galaxy had a low inclination, then

14http://skyserver.sdss.org/DR12/en/tools/chart/image.aspx
15http://ps1images.stsci.edu/cgi-bin/ps1cutouts
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there are surface brightness measurements, but a blank velocity map. Following Rigault

et al. (2013), the limit for a star forming region is log10 (Hα Surface Brightness) > 38.35

(which corresponds to ∼ 1.22 x 10−3M� yr−1 kpc−2). On these color maps, locally star

forming regions correspond to the green and blue areas while yellow corresponds to locally

passive regions.

3.6.3 Absorption at Hα

Hα flux is the result of bright stars ionizing the interstellar medium (ISM); however, there is

an underlying absorption of Hα from the stellar population. Using a linear continuum around

the Hα line will underestimate the ionized emission. A stellar population synthesis code that

fits the continuum flux to different simple stellar population (SSP) models can account for the

Hα absorption line so that it can be added back to the emitted flux. We use STARLIGHT (Cid

Fernandes et al., 2005) to fit galaxy continuums. Figure 3.20 shows an example spectrum and

fit continuum which illustrates the slight absorption line at Hα. Once the galaxy spectrum

is fit, and the spectra are normalized, we can remeasure Hα. STARLIGHT will also return

galaxy mass, age, and star formation rates where mass is dependent on absolute calibration

of the spectra and the age and metallicity indicators rely on the shape of the continuum.

Figure 3.21 compares the EW per fiber from the two methods. The fiber that contains

the core of the galaxy shows no Hα EW using the linear continuum method because the

Gaussian mixture model fit failed to meet a quality cut. The Hα emission line is so strong

that it blends with the surrounding [N II] lines causing the fitter to assign a standard

deviation that encompasses the nitrogen lines. Using STARLIGHT to fit the continuum results

in a larger EW measurements by on average 16 Å (median 10 Å) for this particular target.

On average for all fibers, STARLIGHT returns an EW 2.2 time larger; however, if we look at

the median, it is only 1.5 times larger.
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Figure 3.20 Comparing HexPak spectrum with the continuum fit from STARLIGHT. The Hα

region is zoomed-in to get a closer look at the absorption. The spectrum is from SN 2011hb

/ NGC 7674 from the host only observation at fiber 28, which is next to the core of the

galaxy.
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Figure 3.21 Maps of Hα EW for SN 2011hb / NGC 7674. Left: Hα EW from normalizing

with a linear fit to the continuum around the Hα line. Right: Hα EW from normalizing by

fitting for the underlying galaxy spectrum and accounting for absorption.
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Figure 3.22 The orange cross indicates the location of the host galaxy and the purple cross is

the location of the supernova. The purple circle occasionally visible in these plots indicates

the 1 kpc radius circle around the SN location. The first panel is a colored image from

SDSS/Pan-STARRS, the second panel is a recreated SDSS r-band flux map, the third panel

is an Hα surface brightness map, and the fourth panel is an Hα velocity map. First: CGCG

063-098, host galaxy of ASASSN-15hg. This is the first of two pointings with the supernova

explosion location around Fiber 35. Second: CGCG 063-098, host galaxy of ASASSN-15hg.

This is the second of two pointings with the supernova explosion location around Fiber 62.

Third: 2MASXi J0909234-044327, host galaxy of ASASSN-15ho.
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Figure 3.23 First: 2MASX J01403375+1830406, host galaxy of LSQ12gef. Second: 2MASX

J10193682+1933131, host galaxy of LSQ14aeg. Third: CGCG 476-117, host galaxy of PS1-

12bwh. Forth: SDSS J085940.13+151113.5, host galaxy of PS15mb.
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Figure 3.24 First: NGC 2370, host galaxy of PSN J07250042+2347030. This is the first

of two pointings with the supernova explosion location around Fiber 28. Second: NGC

2370, host galaxy of PSN J07250042+2347030. This is the second of two pointings with

the supernova explosion location around Fiber 62. Third: UGC 4709, host galaxy of PSN

J08593491+4555343. Forth: UGC 5691, host galaxy of PSN J10292799+2200468.
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Figure 3.25 First: 2MASX J02500784-0016014, elliptical host galaxy for PTF12iiq. Second:

2MASX J01144386+0017100, host galaxy of PTF12ikt. Third: NGC 1762, host galaxy of

iPTF13dge. This is the first of two pointings with the supernova explosion location around

Fiber 35. Fourth: NGC 1762, host galaxy of iPTF13dge. This is the second of two pointings

with the supernova explosion location off the fiber bundle.
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Figure 3.26 First: CGCG 454-00, host galaxy of iPTF13dkj. Second: NGC 890, host galaxy

of iPTF13ebh. Third: 2MASX J00275880-0513014, host galaxy for iPTF14gdr. Forth: MCG

+07-08-15, host galaxy of SN 2011gy.
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Figure 3.27 This shows all three pointings of NGC 7674, host galaxy of SN 2011hb. First:

Supernova explosion location at Fiber 62. Second: Supernova explosion location at Fiber

35. Third: Supernova explosion location off the fiber bundle.
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Figure 3.28 First: NGC 881, host galaxy of SN 2011hk. Second: NGC 2691, host galaxy of

SN 2011hr. Third: UGC 12809, host galaxy of SN 2011iu. Forth: NGC 4424, host galaxy of

SN 2012cg. In all other plots, the 1 kpc radius circle cannot be seen because it is too small.

For this object, the circle is too large. Every fiber is within 1 kpc of the supernova and the

edge of the circle can be seen in the top right hand corner.

102



Figure 3.29 First: CGCG 476-117, host galaxy of SN 2012et, observed on 2015-11-16.

Second: CGCG 476-117, host galaxy of SN 2012et, observed on 2015-11-17. Third: UGC

3528, host galaxy of SN 2012fm. Forth: NGC 7580, host galaxy of SN 2012gm.
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Figure 3.30 First: IC 3573, host galaxy of SN 2013be. Second: PGC 68419, host galaxy of

SN 2013fj. Third: IC 1342, host galaxy of SN 2013fn.
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Figure 3.31 First: NGC 7042, host galaxy of SN 2013fw. This is the first of two pointings

with the supernova explosion location around Fiber 35. Second: NGC 7042, host galaxy

of SN 2013fw. This is the second of two pointings with the supernova explosion location

around Fiber 62. Third: NGC 3861, host galaxy of SN 2014aa.
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Figure 3.32 This shows all three pointings of NGC 1516A, host galaxy of SN 2014dm. First:

Supernova explosion location at Fiber 62. Second: Supernova explosion location at Fiber

20. Third: Supernova explosion location off the fiber bundle.
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Figure 3.33 First: NGC 766, host galaxy of SNhunt206. Second: UGC 4798, host galaxy of

SNhunt263.

3.7 CONCLUSION

The SweetSpot survey will provide a∼ 50% increase in the NIR lightcurve sample. SweetSpot

will extend the H-band Hubble diagram out to z ∼ 0.08, it will provide an interesting data

set to study color evolution, and it will be a well-calibrated restframe data set that will be

used to anchor high redshift surveys. The pilot data and DR1 are already public with DR2

and DR3 expected within the next two years.

Sections 3.4-3.6 will make up the basis for a paper on “HexPak Data Release of 32

SweetSpot Host Galaxies”. We outlined the telescope configuration and target selection.

We presented detailed steps of data reductions to go from raw data to sky subtracted and

flux calibrated spectra. These spectra were then compared to standard star templates and

SDSS spectra to test calibration. We then measured the Hα flux to determine surface bright-

ness/star formation maps.

There are some caveats to this data and improvements that could be made: many spec-

tra show increased flux in the blue that could cause confusion when fitting galaxy tem-
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plates/stellar populations, but this could be improved with aperture corrections. The sky

subtraction leaves residuals around strong and unresolved telluric lines which could be im-

proved with a more sophisticated sky subtraction algorithm as presented in Bershady et al.

(2004). However, our science is based on measuring Hα and is not affected by the problems

affecting the telluric line subtraction.

Once SweetSpot DR2 becomes available, we will be able to use these spectra to probe

correlations between the luminosity of NIR SNeIa and local galaxy properties.
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4.0 ARE TYPE IA SUPERNOVAE IN RESTFRAME H BRIGHTER IN

MORE MASSIVE GALAXIES?

This chapter is a draft that will be submitted to the American Astronomical Society Journals.

It is authored by Kara A. Ponder, W. Michael Wood-Vasey, Anja Weyant, Llúıs Galbany,

and Nathan Barton.

We analyze 147 Type Ia supernovae (SNeIa) from the literature that were observed in

the H-band and find inconclusive evidence for a correlation between host galaxy mass. We

confirm a host galaxy mass correlation with the distance modulus calculated from optical

lightcurves fit with SNooPy. The host galaxy mass was estimated using photometry gathered

from the Sloan Digital Sky Survey, Panoramic Survey Telescope and Rapid Response System,

Galaxy Evolution Explorer, and Two Micron All Sky Survey. By comparing SN Ia residual

brightnesses, we find that SNeIa in galaxies more massive than > 1010.44M� are brighter

than SNeIa in less massive galaxies by 0.16±0.04 mag in the H band and 0.12±0.03 mag at

optical wavelengths. Our sample also shows a distinct outlier population with bright H-band

residuals (≤ −0.5 mag) in massive, red galaxies in the smooth Hubble flow. Upon removing

this outlier population, we find no correlation between H-band brightnesses and host galaxy

mass.

4.1 INTRODUCTION

Since the late 1990s, Type Ia supernovae (SNeIa) have been used as standard candles to

measure the expansion of the Universe (Riess et al., 1998; Perlmutter et al., 1999). Much
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work has gone into further standardizing optical SNeIa through lightcurve stretch (Phillips,

1993) and color (Riess et al., 1996; Tripp, 1998) as well as adding a correction from host

galaxy correlations after lightcurve fitting (Betoule et al., 2014). However, there is evidence

that lightcurves observed at near infrared (NIR) wavelengths (1 µm < λ < 2.5 µm) are more

standard and require no or smaller corrections to their lightcurves to yield the same precision

as optical lightcurves (Kasen, 2006; Folatelli et al., 2010; Kattner et al., 2012; Wood-Vasey

et al., 2008; Barone-Nugent et al., 2012). We here compile one of the largest publicly avail-

able NIR data set to further test the standard nature of SNeIa by exploring different possible

correlations between global host galaxy properties and NIR, specifically H-band, luminosity.

There is an extensive history of looking for correlations between the standardized optical

luminosity of SNeIa and the properties of their host galaxies. Many papers have studied

relationships with global host galaxy properties such as mass, metallicity, star formation

rates, and age using galaxy photometry and galaxy photometry fit with stellar population

synthesis codes (Sullivan et al., 2006; Gallagher et al., 2008; Kelly et al., 2010; Sullivan

et al., 2010; Lampeitl et al., 2010; Gupta et al., 2011; D’Andrea et al., 2011; Hayden et al.,

2013; Johansson et al., 2013; Childress et al., 2013a,b; Moreno-Raya et al., 2016; Campbell

et al., 2016; Roman et al., 2017). These papers have found several correlations with host

galaxy properties with the most significant one being host galaxy mass, though some inter-

pret this as a result of the galaxy mass correlation with progenitor metallicity, progenitor

age, or dust (Kelly et al., 2010; Hayden et al., 2013; Childress et al., 2013b). These analyses

show that the standard brightness of SNeIa hosted in higher mass galaxies is brighter by

∼0.08 mag (Childress et al., 2013b) than the brightness of SNeIa hosted in galaxies with

mass less than 1010M�. The mass “step” was also implemented in one of the recent studies to

produce cosmological constraints: the Joint Lightcurve Analysis (JLA; Betoule et al., 2014),

where they independently measured a correlation with host galaxy mass and implemented a

step function to account for it. Others have focused on local properties of host galaxies such

as recent star formation rates within 1-5 kpc of the supernova position using spectroscopy or

ultraviolet (UV) photometry (Rigault et al., 2013, 2015; Kelly et al., 2015). They find that

the standard brightness of SNeIa in locally passive regions is ∼0.094 mag (Rigault et al.,

2015) brighter than those in locally star forming regions. Furthermore, Kelly et al. (2015)
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showed that SNeIa in locally star forming regions were more standard than those in non-star

forming regions.

However, not every analysis suggests that there is a correlation with host galaxy proper-

ties. Kim et al. (2014) used an updated lightcurve analysis that is more flexible to intrinsic

variations in SNeIa (introduced in Kim et al., 2013) and finds correlations with host galaxy

mass, specific star formation rates, and metallicity to be consistent with zero. Jones et al.

(2015) finds no host galaxy correlation with local star formation rates derived from UV

photometry by using a larger sample size than previous studies and using different selection

criteria. Scolnic et al. (2014) describes the systematics utilized in the Pan-STARRS Hubble

diagram (Rest et al., 2014) and finds a correlation with host galaxy mass with a step size of

0.037±0.032 mag, which is not a statistically significant trend. Instead of including the step

function directly in the analysis, they add systematic uncertainty to allow the possibility that

it might exist. We see much evidence to warrant continued exploration of this parameter

space to understand whether we are searching for a real correlation or if we need to improve

the analysis of SNeIa lightcurves.

All of the previous host galaxy analyses have examined correlations using only optical

lightcurves. We here, for the first time, present similar studies using restframe NIR. Doing

a similar analysis using NIR lightcurves will help shed light on physical mechanisms and

color-dependent intrinsic dispersions.

SNeIa in the H-band have been shown to be standard to 0.15−0.2 mag without lightcurve

corrections (Folatelli et al., 2010; Kattner et al., 2012; Wood-Vasey et al., 2008; Barone-

Nugent et al., 2012; Weyant et al., 2014) whereas optical lightcurves before brightness stan-

dardization have a scatter of ∼ 0.8 mag (Hamuy et al., 1995). However, there are only

∼ 279 NIR lightcurves publicly available compared to the over > 900 available for optically

observed SNeIa.

The improved ability to determine standard distances, together with the reduced sen-

sitivity to dust extinction, have motivated several recent projects to pursue larger sam-

ples of SNeIa observed in the restframe NIR: CSP-I, II (Contreras et al., 2010; Stritzinger

et al., 2011; Kattner et al., 2012); CfA (Wood-Vasey et al., 2008; Friedman et al., 2015);

RAISINS (Kirshner, 2012); and SweetSpot (Weyant et al., 2014, 2017).
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To gather host galaxy properties, we utilized publicly available galaxy catalogs from

Sloan Digital Sky Survey (SDSS), Panoramic Survey Telescope and Rapid Response System

(Pan-STARRS), Galaxy Evolution Explorer (GALEX), and Two Micron All-Sky Survey

(2MASS). From this, we can measure restframe colors and absolute magnitudes and esti-

mate host galaxy mass.

We use SNooPy (Burns et al., 2011, 2014) for lightcurve fits as it is the most available

fitter with NIR templates. We combine optical and NIR lightcurves to improve fits with

the sBV parameter from Burns et al. (2014). Using optical lightcurves only, we also test for

a mass step with fits excluding NIR information. All previous analyses have explored host

galaxy correlations with standardized brightnesses calculated from SALT2 (Guy et al., 2007)

and/or MLCS2k2 (Jha et al., 2007) fitters (e.g., Kelly et al., 2010).

This chapter is organized as follows: Section 4.2 explains what supernovae we use and

how we collected optical, UV, and NIR photometry of their host galaxies. Section 4.3details

how we fit lightcurves and created the restframe H and optical Hubble diagrams. Section 4.4

goes through several host galaxy correlations and shows that less massive, blue spiral galaxies

produce SNeIa that are dimmer than SNeIa found in more massive, red elliptical galaxies.

Section 4.5 explores the statistical significance of these correlations with restframe H and

optical distance moduli Hubble residuals. We find inconclusive evidence for correlations be-

tween H residuals and host galaxy properties, but we do confirm the host galaxy mass step

with optical lightcurves. We conclude in Section 4.6.

4.2 SN IA LIGHTCURVES AND HOST GALAXY SAMPLE

4.2.1 SN Ia

We started with the compilation of literature SNeIa gathered in Weyant et al. (2014) and

kept the naming scheme for different samples. SweetSpot had a first data release (Weyant

et al., 2017) with 34 SNeIa that we are adding to this sample. Friedman et al. (2015)

also presented 74 additional CfA SNeIa from their final data release and this will be the
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first analysis including these NIR lightcurves. We added 27 more SNeIa from miscellaneous

sources to the full set that are nominally a part of the K+ sample (as defined in Weyant et al.,

2014), but none are in the final lightcurve sample. We gathered host galaxy information for

this full set of 279 SNeIa observed in the NIR, but only 147 lightcurves make it into the

Hubble diagram and the correlations test (for more information see Section 4.3.1). Of these

279 SNeIa, 87 have optical photometry of their host galaxies to measure restframe g−r color

and 137 have sufficient host galaxy photometry to derive masses.

We used the Open Supernova Catalog1 (OSC; Guillochon et al., 2017) to retrieve all

lightcurve data. Several pull requests were made to the OSC in this process to correct and

add information for several dozen SNeIa. 105 of the 147 SNeIa with NIR lightcurves used

for the Hubble residual analysis also have optical lightcurves that we used for lightcurve fits

and host galaxy correlations.

4.2.2 Host Galaxies

The host galaxy for all 279 SNeIa was identified from the IAU list of supernovae2 and the

NASA Extragalactic Database (NED)3. We used the heliocentric redshift for each galaxy

recorded in NED. If NED did not have a spectroscopic redshift, we recorded the redshift

from the respective supernova.

We are interested in exploring host magnitudes and colors relative to supernova bright-

ness residuals. We obtained optical photometry from both the SDSS Data Release 13 (SDSS

Collaboration et al., 2016) and the Pan-STARRS Data Release 1 (PS1; Chambers et al.,

2016; Flewelling et al., 2016; Magnier et al., 2016) using their respective CasJobs4 websites.

From SDSS, we obtained the ugriz “modelMag” magnitudes, which are based on the best fit

“de Vaucouleurs” or “Exponential” profile in the r-band. Though “cmodelMag” magnitudes

give a more accurate description of the total flux in each filter, “modelMag” magnitudes are

better for color studies because the flux is measured consistently across all filters (Stoughton

et al., 2002). To replicate the “modelMag” procedure with PS1 data, we downloaded the de

1https://sne.space/
2http://www.cbat.eps.harvard.edu/lists/Supernovae.html
3http://ned.ipac.caltech.edu/
4http://skyserver.sdss.org/CasJobs/, http://mastweb.stsci.edu/ps1casjobs/
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Vaucouleurs and Exponential profile fits with their associated reduced χ2 values and used

the best fit profile in the r-band for all grizy magnitudes. SDSS always reported all five

ugriz magnitudes while PS1 does not always have all five grizy magnitudes for all of our

objects. If gri magnitudes were not available in PS1, we did not keep the host galaxy pho-

tometry as we could not calculate extinction coefficients (Tonry et al., 2012) or g − r color.

See Section 4.2.2.1 for a comparison of SDSS and PS1 photometry. Several host galaxies

had photometry that we did not include because they did not meet quality cuts: for SDSS

we require clean photometry (only objects from the Primary table, removed objects with

deblending issues, cosmic rays, and other interpolation problems) and for PS1 we require

several detections5 in g and r as well as more than 95% of the pixels to be unmasked to

consider the object real and (PSF mag - Kron mag) > 0.5 mag to ensure that the photometry

was from a galaxy-like object and not a star.

We obtained GALEX GR6/GR76 (Bianchi et al., 2014) far ultraviolet (FUV/F ) and near

ultraviolet (NUV/N) information where available from the MAST data archive7. The mag-

nitudes returned are the result of the elliptical aperture method “MAG AUTO” in Source

Extractor (Bertin & Arnouts, 1996). We also gathered JHKs magnitudes from the 2MASS

All-Sky Extended Source Catalog (XSC; Skrutskie et al., 2006) using the NASA/IPAC In-

frared Science Archive (IRSA)8. We used the total magnitude calculated from the extrap-

olated radial surface brightness profile. 2MASS always reports JHKs; however, GALEX

often returns only FUV or NUV.

Figure 4.1 illustrates the wavelength coverage from these surveys by plotting the trans-

mission functions per filter. 137 SNeIa of the subset of 147 lightcurves have host galaxy

photometry available in at least one of these catalogs. Table 4.1 lists how many SNeIa host

galaxies have photometry from the various surveys that are in our analysis. Figure 4.2 shows

a histogram of how many SNeIa have photometry in each band (griz in SDSS and PS1 are

slightly different, but here we are treating them as approximately the same). Figures 4.3

and 4.4 show color postage stamps for galaxies used from SDSS and PS1, respectively.

5PS1 observed the same area of the sky on the same night with short intervals in between them to discover
Near Earth Objects (NEOs) and once every 6 months in order to make parallax estimations.

6http://galex.stsci.edu/GR6/
7https://galex.stsci.edu/casjobs/
8http://irsa.ipac.caltech.edu/frontpage/
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Figure 4.1 Detector, optics, filter, and atmospheric transmission functions for GALEX, SDSS,

PS1, and 2MASS.

We use kcorrect from Blanton et al. (2003a); Blanton & Roweis (2007) to transform

the photometry to the restframe and measure other physical parameters9. kcorrect fits

galaxy spectral energy distributions from the UV to NIR and relies on Bruzual & Charlot

(2003) stellar evolution synthesis code, so it can also return physical parameters such as

stellar mass. Using the results from kcorrect, we then calculated restframe colors, absolute

magnitudes, and host galaxy mass. The added UV plus NIR photometry help constrain

the different models as many diverse galactic spectra overlap at optical wavelengths, but

separate more cleanly at UV and NIR wavelengths. We combine optical photometry (either

SDSS ugriz or PS1 grizy) plus GALEX and 2MASS for each host galaxy and only require

that two filters in the set of FNugrizyJHKS be observed to derive K-corrections, restframe

colors, and host galaxy mass. All magnitudes are converted to the AB magnitude system

and extinction corrected before being input into kcorrect.

In our final sample, if a host galaxy was observed with both SDSS and PS1, we kept the

SDSS observations since this survey contained u-band photometry that provides a better

constraint on young stars and recent star formation. The redshift distribution of our final

9kcorrect does not return errors on the physical parameters.
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Figure 4.2 Histogram of number of SNe observed in each filter for the final sample of 147

SNeIa used in the Hubble residual analysis.
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Figure 4.3 SDSS color postage stamps. The field of view is ∼2’ by 2’. North is up and East

is left.
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Figure 4.4 PS1 color postage stamps. The field of view is ∼2’ by 2’. North is up and East is

left. Host galaxies for (In order): SN1998bu, SN 2011B, SN 2005am, SN 2013cs, SN 2005al,

SN 2009kk, SN 2009kq, SN 2005bo, SN 2006hb, SN 2009le, SN 2010cr, SN 2009D, SN 2013fn,

SN 2006gj, SN 2006ev, SN 2006os, LSQ12fhs, SN 2008gp, SN 2005iq, SN 2007ba, SN 2010dw,

SN 2010ho, SN 2006hx, LSQ13cmt, LSQ13cwp, SN 2005ag, PTF10ndc.
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sample per survey is presented in Figure 4.5. We present the photometric data for all 279

SNeIa in Appendices B.1 and B.2.

4.2.2.1 Comparing SDSS and PS1 Photometry

67 host galaxies are found in both SDSS and PS1 surveys and are used here to examine

differences between the two catalogs’ photometry. Since we gathered host galaxy photometry

for all 279 host galaxies, this sample of 67 contains SNeIa whose lightcurves are not used in

the SNeIa brightness analysis below.

Both SDSS and PS1 fit de Vaucouleurs and Exponential surface brightness profiles to

estimate flux. Figure 4.6 illustrates the differences in the galaxy profile fits between SDSS

and PS1 for three host galaxies. The top row of Figure 4.6 shows NGC 5584, a low-redshift

(z = 0.005464), well-resolved, face-on, spiral galaxy. The left hand side of the top row shows

the r-band cutout from PS1 and the lines indicate the major axis that SDSS and PS1 derived

from the profile fits. In this case, PS1 only returned an Exponential fit and listed the de

Vaucouleurs fit as null. The right-hand side illustrates surface brightness profiles from SDSS

and PS1 examining both de Vaucouleurs and Exponential fits to the galaxy on the right. The

vertical lines correspond to the calculated effective radii, which is the radius that includes

half of the total light. SDSS records this galaxy to be 2 magnitudes brighter than PS1, which

is unsurprising since the effective radius from SDSS is over 4 times larger than effective radius

from PS1. The effective radius from PS1 only includes the bulge while SDSS extends out

amongst the spiral arms. The middle row of Figure 4.6 shows an edge-on spiral galaxy at

z = 0.049824. In this case, SDSS and PS1 have nearly identical profiles and only differ in

r-band magnitude by 0.08 mag. The bottom row of Figure 4.6 is an elliptical galaxy at z

= 0.027612. Here the profiles are much different with PS1 again having a smaller effective

radius than SDSS for both de Vaucouleurs and Exponential fits, which only encompass the

core. Though these profiles are relatively different, SDSS is only 0.3 magnitudes brighter in

the r-band.

SDSS systematically returns redder colors than PS1 by 0.05 mag (see the right panel

in Figure 4.7). If we added the 0.05 mag offset to the uncertainty in the PS1 measurement,

it would only increase the uncertainty by < 1%. Because this error is so small, we do not
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Figure 4.5 Distribution of redshifts for GALEX, SDSS, PS1, and 2MASS Surveys for the

final sample of 147 SNeIa used in the Hubble residual analysis. The distribution of the full

sample of SNeIa used in the Hubble residual analysis is in grey. Many of the host galaxies

have photometry from more than one of these surveys such that the histogram with of all

of the host galaxies is not a stack of the 4 other histograms, but a histogram of all unique

galaxies between the 4 surveys.
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Table 4.1. Number of Host Galaxies Observed per Survey.

Survey GALEX SDSS PS1 2MASS GALEX + Optical + 2MASS

GALEX 84

SDSS 41 60 33

PS1 14 – 27 13

2MASS 75 42 24 115

Note. — We have host galaxy photometry for 137 SNeIa out of 147 SNeIa with

NIR lightcurves. Along the diagonals is the total number of galaxies with photometry

from their respective survey. The off–diagonals are how many SNeIa host galaxies

have photometry in both of the corresponding surveys.

factor it in.

The left plot of Figure 4.7 shows a comparison between the apparent magnitudes for the

g and r bands from SDSS and PS1. Only four host galaxies show a discrepancy greater

than 10%. Of these four, two are large spiral galaxies, one is a crowded field with two

contaminating satellite galaxies, and one is a large elliptical for which PS1 underestimated

the effective radius. In general, PS1 and SDSS photometry are in agreement; however, we are

cautious with PS1 photometry for large, well-resolved galaxies and crowded fields. We can

estimate the systematic errors on the PS1 photometry from this plot as well. The standard

deviation of the distribution of the difference between the SDSS and PS1 photometry is

∼ 0.4 mag. This additional uncertainty was not included in the kcorrect fits here, but will

be included in future works.

There are 60 and 27 host galaxies that use SDSS and PS1 photometry, respectively.

Examining Figure 4.4 we can see there are a few galaxies that may not be fit well by the PS1

algorithm. We reviewed the surface brightness profiles for the resolved spiral host galaxies of

SN 2009le, SN 2009D, SN 2013fn, and SN 2010ho, but the effective radii seemed appropriate
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Figure 4.6 Left: r-band image from PS1. The lines indicate the derived major axis. Right:

Surface Brightness Profiles calculated from either a de Vaucouleurs (deV) or Exponential

(Exp) profile per survey. The vertical lines represent the effective radius calculated from

each profile fit. The solid lines are fits from SDSS and the dashed lines are fits from PS1.

The red lines are de Vaucouleurs fits and the blue lines are Exponential fits. Top: NGC

5584 / SN 2007af. PS1 did not return any de Vaucouleurs fits for this galaxy. Middle: SDSS

J12837.60+011348.6 / SN 2006eq. Bottom: NGC 6343 / SN2013bs.
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Figure 4.7 Left: Comparison of the catalog “modelMag” for g and r band observations.

Errors assume no correlation between SDSS and PS1 photometry. The x-axis denotes the

index in an array of matched host galaxies. The y-axis is the SDSS modelMag divided

by the PS1 modelMag. The shaded region corresponds to differences within 10% between

the two surveys. There are 4 outlier galaxies, but examining their fit profiles explains the

differences: Index 17: Large, resolved, face-on spiral galaxy. The effective radius from is

SDSS is around 20” but PS1 calculates it to be at 1”, which causes the profiles in PS1 drop

off much quicker than in SDSS excluding much of the flux. Index 28: Large elliptical galaxy

where PS1 calculates the effective radius 10” closer to the core of the galaxy than SDSS.

Index 34: This is the large spiral galaxy from Figure 4.6 Index 63: A crowded field with

2 satellite galaxies within the effective radius calculated from SDSS. Right: Histogram of

restframe (g − r)SDSS − (g − r)PS1 showing that SDSS is redder than PS1 by 0.05 mag.
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for each galaxy. However, the spiral host galaxies of SN 2009kq and SN 2005bo have very

small effective radii and are probably underreporting their flux, and the host galaxy of

SN 2008gp is a resolved spiral galaxy in a crowded field where the effective radius is too

large. These three galaxies do not cause obvious outliers in the host galaxy properties shown

below.

4.2.2.2 Live SNeIa in Host Galaxy Observations

If SDSS or PS1 observed a host galaxy when the respective SN Ia was live, the SN Ia could

contaminate the measured flux. SDSS collected our host galaxies between 1999 and 2009

and PS1 started observations in 2010, so we only searched through the images of galaxies

observed during the same time as these surveys. We only looked for SN Ia flux contamination

from the SNeIa used in the Hubble residual analysis.

No SDSS observations occurred while the respective SN Ia was live with one possible

exception: SN 2008gl was discovered on 2008-10-20 (Pignata et al., 2008) and SDSS observed

its host galaxy UGC 881 on 2008-10-03. Friedman et al. (2015) reports a TBmax at 2008-10-

29, so the SDSS observation was taken a few days before the SN Ia exploded. We confirmed

this by examining the galaxy in all ugriz filters and found no additional flux at the SN Ia

location.

We found two host galaxies in the PS1 sample with some contamination from an SN Ia

as shown in Table 4.2. Re is the effective radius reported by PS1, RSN is the radial location

of the supernova, and “SN/Host” is the ratio of the supernova to host galaxy flux. Both of

these SNeIa have flux that is less than 1% of the host flux and are not a major contaminate.

No other SNeIa were present in their host galaxy observation.

4.2.2.3 Comparing Optical Data Only to UV+Optical+NIR Data

The added UV plus NIR photometry help constrain the different models as many diverse

galactic spectra overlap at optical wavelengths but show a clear difference at UV and NIR

wavelengths.

The left panel of Figure 4.8 compares kcorrect–derived properties from optical only

photometry versus optical plus UV, optical plus NIR, or optical plus both UV and NIR
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Table 4.2. PS1 Galaxies with Host Contamination

SN Galaxy Galaxy Type Re (”) RSN (”) Filter(s) SN/Hosta

SN 2013cs ESO 576-17 Spiral 12.8 28.0 grizy < 0.1%
LSQ13cmt ESO 541- G 013 Elliptical 14.9 30.0 g < 1.0%

aIf more than one filter was contaminated, r-band was used to determine the amount of
flux of the SN and Host.

photometry for 47 galaxies that had GALEX, optical (SDSS or PS1), and 2MASS photom-

etry. Most high mass galaxies agree with the optical only measurements and even where

they differ, all additional photometry agree on the mass. At masses < 1010M�, there are

differences between the optical only and optical plus results with additional discrepancies

between optical plus UV versus optical plus NIR in the derived mass. Adding UV and NIR

wavelength coverage improves estimates of low mass galaxies.

Though we only use the inferred physical property of host galaxy mass from kcorrect

for the residual analysis, we can examine a star formation rate indicator to illustrate how

the fits change in different galaxy photometry. There are more variations in the calculated

global recent Star Formation Rates (SFRs) from the Scalo b-parameter. In the right panel of

Figure 4.8, we show the star formation rate within 300 million years divided by the average

SFR. In the lower SFR areas, some galaxies have their rates drastically increased, and some

have their rates drastically decreased.

There is no change to the K-correction values and so no change in restframe optical

absolute magnitudes or colors by adding UV/NIR data.

4.2.2.4 Bias in Calculated Host Galaxy Mass

11 of our SNeIa overlapped with those used in the Kelly et al. (2010) analysis. We found that

our host galaxy masses are consistently lower than those reported in Kelly et al. (2010). The

difference in mass is within 1 − 3 σ in mass (median difference of 0.36 dex), but kcorrect

does not return any errors on the estimate so the values may be consistent within the error

bars. One major outlier is the host galaxy of SN 2006ac, NGC 4619. We calculated the host

galaxy mass at 108.41M� while Kelly et al. (2010) derived a value at 1011.11+0.23/−0.25M�. We
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Figure 4.8 Comparison of derived quantities from kcorrect of 47 galaxies for when only

optical data is used versus optical plus UV, optical plus NIR, or optical plus both UV

and NIR photometry. In both plots, each color represents one galaxy and the three shapes

represent how much photometry was included in kcorrect: squares for full GALEX, Optical,

and 2MASS, circles for GALEX and Optical only, and diamonds for Optical plus 2MASS

only. Left: Plot of the derived host galaxy masses. A blue to red color map was applied to

give each host galaxy a different color, but the colors do not represent any quantity. Most

high mass galaxies are in agreement with the optical only measurements; however, low mass

galaxies have more variation and vary more depending on which photometry is used. Right:

Comparison of derived host galaxy SFR within 300 million years compared to average SFR

(Scalo b parameter). We have used the same color map as in the mass plot to the left in

this plot. There is no correlation at lower recent star formation and a relative agreement at

larger recent star formation with a preference to decrease the SFR.
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Figure 4.9 Comparison of kcorrect-derived host galaxy masses and the masses from the

MPA-JHU sample originally presented in Kauffmann et al. (2003) with DR4 data and up-

dated for DR7.

used photometry from FNugrizJHKS to fit the mass whereas Kelly et al. (2010) only used

SDSS ugriz. If we use only SDSS magnitudes in kcorrect, we get an even more discrepant

mass of 107.3M�. Following Kelly et al. (2010), we do not fit galaxies with a mass < 109.5M�

so this object does not affect our results in Section 4.5.4; however, it is included in the high

mass sample of Kelly et al. (2010).

We compared our kcorrect-derived masses to the photometric mass estimates from

the MPA/JHU10 originally presented in Kauffmann et al. (2003) for SDSS DR4 (Adelman-

McCarthy et al., 2006a) and updated for SDSS DR7 (Abazajian et al., 2009b). Figure 4.9

plots the MPA/JHU DR7 masses versus our kcorrect masses and it is clear kcorrect

systematically underestimates masses. This offset is linear, and the effect increases as mass

increases. If smaller masses followed this trend, then smaller masses would be overestimated

by kcorrect. Both Bernardi et al. (2010) and Moustakas et al. (2013) have previously seen

this trend in which kcorrect produces lower masses for high mass galaxies and larger masses

10http://home.strw.leidenuniv.nl/~jarle/SDSS/
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for low mass galaxies. We use the scatter seen in Figure 4.9 to estimate the error in kcorrect

masses to be ∼ 0.18 dex.

Kelly et al. (2010) compared their derived masses with Kauffmann et al. (2003) as well

and found a mean bias of 0.033 dex with a dispersion of 0.15 dex, which is consistent with

the Kauffmann et al. (2003) data. Therefore, our derived masses are systematically lower

than those in Kelly et al. (2010).

4.3 HUBBLE DIAGRAM

We here present the NIR and optical Hubble diagram from the current global collection of

literature data on SNeIa observed in restframe H.

4.3.1 Lightcurves

We used the SNooPy11 fitter of Burns et al. (2011) to estimate maximum magnitudes in J ,

H, and Ks for the collected sample of supernovae. We also fit the optical lightcurves with

the “EBV model2”. For both models, we use the parameterization based on the updated

sBV width parameter introduced in Burns et al. (2014).

We adopted the same approach as in Weyant et al. (2014) of fitting separately in each

band using the “max model” SNooPy model. Unlike in Weyant et al. (2014), where we

held ∆m15 = 1.1 fixed, we here fit for the width parameter, sBV . We first fit with the re-

ported time of maximum B-band light, TBmax , from the original spectroscopic confirmation

announcement (generally ATel or CBET). Where we had constraining lightcurve information

in the optical or NIR that started before peak brightness, we generated an updated TBmax

from a fit. We then recorded these updated TBmax values along with the original estimates

for those not updated and ran the final fits with TBmax fixed.

We used the default SNooPy K-corrections using the Hsiao et al. (2007) spectral tem-

plates, but we did not warp the spectral templates to match the observed color (“man-

11Version 2.0, https://github.com/obscode/snpy.git
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gle=False”). We do not apply any color-luminosity correction as we do not assume a rela-

tionship between the different filters in our “max model” fitting.

We did not use lightcurves that were observed before 1990, had no known optical TBmax ,

or were known to be SN 1991bg-like or other peculiar types (although we include 91T-like

events). We excluded from the Hubble residual analysis any SNeIa that had fewer than three

lightcurve points in the H-band. After these quality cuts, we have a sample of 147 SNeIa.

4.3.2 Hubble Diagram

We compare our measured SN Ia apparent brightness to that predicted by a flat LCDM

model (H0 = 72 km/s/Mpc; ΩM = 0.28). For each set of SNooPy apparent magnitudes or

distance moduli, we calculated the weighted best fit value of the absolute magnitude, after

adding both an intrinsic dispersion of 0.08 mag and the equivalent magnitude uncertainty

from a peculiar velocity of 300 km/s in quadrature to the reported uncertainty from SNooPy.

These additions to the uncertainty were used in computing the weighted average, but are not

included in the errors plotted on the residual plots or reported in Table B.3. While SNooPy

“max model” reports apparent brightness and “EBV model2” returns distance modulus,

the actual calculation of residuals follows the same process. The absolute magnitude is

entirely degenerate with the chosen value for H0. As we are here looking at residual relative

brightness, the absolute brightness and value of H0 are not directly relevant. This model

was then subtracted from the data points to yield the residuals that were used to compare

against properties of the host galaxies.

The results from these fits are tabulated in Table B22 and the resulting Hubble diagram is

shown in Figure 4.10 with residuals shown in Figure 4.11. Figure 4.12 presents the histogram

of Hubble residuals (i.e., the projection of the residual plot).

4.3.3 A Caveat on K-corrections

We note that the state of K-corrections in NIR SNeIa photometry remains in its beginning

stages and we express concern that the K-corrections used here are not the final word. The

two significant previously explicitly published K-corrections are those of Krisciunas et al.
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Figure 4.10 SN Ia H-band Hubble diagram for the sample considered in this paper. The

grey line corresponds to ΛCDM cosmology. The points are coded in different shapes to

indicate the source of the SNIa light-curve data (note that two SNeIa are in both “CSP”

and “WV08”).
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Figure 4.11 Hubble residuals from previous figure.
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Figure 4.12 Histogram of Hubble residuals from previous 2 figures. The red line marks a

residual of zero where the data completely agree with ΛCDM. This sample is slightly dimmer

than expected for an unbiased sample.

133



(2004b) and Hsiao et al. (2007). The community has continued to gather NIR spectra, but

these have not yet been compiled into a new set of spectral templates. Stanishev et al. (2015)

presented their own K-correction methodology, but do not provide an updated set of spectral

templates. If SNeIa were all the same in the NIR, then the excellent NIR spectral series on

SN 2011fe (Hsiao et al., 2013) or SN 2014J (Marion et al., 2015) would provide sufficient

data for good K-corrections. But while SNeIa NIR exhibit less scatter in the H-band than

the optical, there is still clear evidence for some variation: single- vs. double-hump (e.g., the

dromedarian SN 2005hk detailed in Phillips et al., 2007), bridge objects such as iPTF13ebh

(Hsiao et al., 2015). We remain of the opinion that a new effort in K-corrections for SNeIa

in the NIR would be a worthwhile endeavor with a clear benefit to the community.

One test that should be relatively insensitive to K-corrections would be to compare SNeIa

brightness vs. host galaxy properties in small bins of redshift. I.e., to present the histograms

in Figure 4.12 binned in redshift. To do so effectively, we estimate that one would require

500 SNeIa spread out between 0.01 < z < 0.1. This estimate is based on resolving a 0.1 mag

shift (that size seen in the optical) in each of 10 redshift bins from 0 < z < 0.1. We currently

see a standard deviation of ∼ 0.2 mag. If this were the standard deviation in a given bin, 50

SNeIa in that bin would yield sensitivity of 0.2/
√

50 ∼ 0.03 mag to resolve a 0.1 mag shift

per bin.

4.4 ANALYSIS

We first explore correlations of restframe K-corrected g − r color and other tracers of host

galaxy morphology with the SN Ia Hubble diagram residuals. The largest trend seen with

optical lightcurves is with host galaxy mass and using the mass estimates from kcorrect,

we study host galaxy mass correlations. We then look at possible biases caused by the

heterogeneous data set and briefly overview other correlations explored. Finally, we repeat

the NIR correlations that were statistically significant with the sample of distance moduli

derived from optical lightcurves. All correlations presented here are for the H-band unless

otherwise noted.
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4.4.1 g − r Color

Figure 4.13 shows the g − r restframe colors for our host galaxy sample, which exhibits the

classic “green valley” in restframe g − r color. Thus, we divide our host galaxy sample into

two categories based on galaxy g−r color: blue hosts, with (g−r) < 0.6 mag; and red hosts,

with (g − r) ≥ 0.6 mag. Figure 4.14 shows the Hubble residuals as a function of redshift

with blue and red galaxies highlighted. Those with no indicator do not have optical host

galaxy information. We see no clear trend in g − r color versus redshift, though there is a

population of bright SNeIa hosted in red galaxies at z > 0.03.

The subsample of host galaxies with optical photometry consists of 87 SNeIa with 40

SNeIa in blue galaxies and 47 SNeIa in red galaxies. The top plot in Figure 4.15 shows the

Hubble residual versus g− r and the bottom plot shows a histogram of the Hubble residuals

grouped by color with the full sample included in grey for comparison. The red outliers in

the smooth Hubble flow are in a small color range of 0.6 < g−r < 0.8 mag and are consistent

with the full sample.

We find that the measured un-weighted standard deviation of the whole sample is

0.2335 mag and the interquartile range (IQR) equivalent to 1 σ is 0.2120 mag. The IQR

is more suited to this data set as it does not need to be symmetric and can reject outliers.

The standard deviation (IQR) of SNeIa residuals in blue hosts is 0.1877 (0.1759) mag, while

the standard deviation (IQR) of SNeIa residuals in red hosts is 0.2666 (0.2161) mag. The

SNeIa in blues hosts produce a tighter scatter in their distribution. Table 4.3 shows the

full details of the fits for the different populations including their peak residual magnitude,

weighted peak residual magnitude, χ2, χ2/DoF, standard deviation, IQR, the standard error

on the mean (SEM), and the intrinsic standard deviation that would result in a reduced

χ2 = 1. SNeIa hosted in blue galaxies have lower standard deviation than SNeIa hosted in

red galaxies, but the scatter in the red is dominated by the bright (∆Hmax ≤ −0.5 mag)

SNeIa in red galaxies at redshifts of 0.03 < z < 0.09. Kelly et al. (2015) finds that SNeIa

hosted in regions that are locally (within 5 kpc) NUV bright and star forming have a smaller

intrinsic dispersion, which our results are consistent with as a blue color is a tracer for recent

star formation.
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Figure 4.13 The restframe g−r color distribution of the SNIa host galaxies. We have chosen

g − r = 0.6 mag as the division between “blue” and “red” galaxies.
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Figure 4.14 The residuals from the apparent H magnitude at maximum light (data−model)

for the best-fit ΛCDM cosmology. The points are coded in different shapes to indicate the

source of the SNIa light-curve data. Overlaid on the points are the classification of their

host galaxy: blue circles are galaxies with g− r < 0.6 mag and red squares are galaxies with

g − r > 0.6 mag.
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Figure 4.15 Top: SN Ia Hubble residuals vs. K-corrected host galaxy restframe g − r.

Bottom: Histogram of Hubble residuals (data−model) for the 147 SNeIa of the full sample

(grey dotted), the 40 SNeIa with host galaxies with restframe g−r < 0.6 mag (blue dotted),

and the 47 SNeIa with host galaxies with restframe g − r > 0.6 mag (red dotted). Under

the histograms, we show the actual distribution of the data points for the full, red, and blue

samples.
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The weighted average of the blue population is 0.0618 ± 0.0297 mag and the weighted

average of the red population is -0.0826 ± 0.0389 mag. The difference between the peaks of

these two distributions is 0.1458 ± 0.0489 mag, which is a ∼ 3σ detection of a separation

between the populations. This shift is the same magnitude as the steps measured in optical

distance modulii with respect to mass and star formation rates (Childress et al., 2013b;

Rigault et al., 2013). The direction of the step also indicates that redder host galaxies host

brighter SNeIa. This result is in agreement with the literature that says SNeIa exploding

in massive, and presumably red, galaxies are brighter (Childress et al., 2013b). Figure 5

of Rigault et al. (2013) shows that in general a galaxy that is globally star forming can

be locally star forming or passive, but a globally passive galaxy is usually locally passive.

Rigault et al. (2013) shows that a subset of SNeIa that explode at locally passive regions

are brighter than a SNeIa that explode in locally star forming environments. Assuming red

galaxies are globally passive, our results agree.

If we remove the outlier population at ∆Hmax ≤ −0.5 mag, the difference in the weighted

means of the populations decreases to 0.0363 ± 0.0397 mag, see Table 4.4. The correlations

seen in the full sample is completely driven by the outlier population.

4.4.2 Morphology

We use two methods to separate galaxies based on their morphology: the inverse concentra-

tion index (Strateva et al., 2001; Shimasaku et al., 2001) and the ratio of the likelihoods for

a de Vaucouleurs versus Exponential profile fit to the surface brightness. We chose to use

the concentration index and likelihood functions instead of the Sérsic index (Sersic, 1968)

because the Sérsic indices are not readily available from the SDSS catalogs. They have been

calculated in some value added catalogs (VACs), but using the data from the regular survey

allows us to measure morphology for all galaxies with optical data. Blanton et al. (2003b)

shows that the concentration index traces the Sérsic index, and Lackner & Gunn (2012)

illustrates that it is an even better indicator of the bulge-to-mass ratio than the Sérsic index.
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4.4.2.1 Inverse Concentration Index

The inverse concentration index is the radius that encompasses 50% of the total Petrosian flux

divided by the radius that contains 90% of the total Petrosian flux. Small values indicate

elliptical galaxies because ellipticals concentrate flux in the bulge but have a long tail of

diffuse light such that R50 is small to encompass the bulge and R90 is higher to include the

diffuse gas. On the other hand, spirals are not as bulge-dominated forcing the radius that

encompasses 50% of the total flux to increase. We set the inverse concentration index cut

off to be 0.4 (as is done in Galbany et al., 2012), and only compare measurements in r-band

since the r-band is used to determine the surface brightness profile in all other filters for

both SDSS and PS1.

4.4.2.2 Likelihood Ratio

The other indicator we use is the ratio of the likelihoods of the de Vaucouleurs versus

Exponential profile fits. SDSS returns the log likelihood values of the de Vaucouleurs and

Exponential fits in all 5 bands. PS1 returns the reduced χ2 of de Vaucouleurs and Exponential

fits in all bands reported. In both cases, a smaller ratio corresponds to de Vaucouleurs being

the better fit profile to the data. We set this threshold at

likelihood(deVaucouleurs)

likelihood(Exponential)
< 1.0 (4.1)

for an elliptical galaxy and > 1.0 for a spiral galaxy.

4.4.2.3 Spirals versus Ellipticals

Figure 4.16 plots the log likelihood ratio versus inverse concentration index with a line

denoting their respective thresholds and blue/red galaxies from the g − r threshold are

identified. Galaxies in PS1 that did not return a χ2 measurement for both profiles are

not included in this plot even though they are included in the inverse concentration index

analysis below. The top right quadrant corresponds to spiral galaxies, and the bottom left

quadrant contains ellipticals. The other two quadrants are not distinctly spirals or ellipticals

but could be edge on spirals, lenticulars, or merging systems. Some of the hosts that are red

in g − r color are classified as spirals, while some blue hosts are classified as ellipticals.

142



Figure 4.17 shows the results from using the various cuts to find spiral versus elliptical

galaxies. Starting with the sample of 87 host galaxies with optical photometry, we made cuts

by inverse concentration index and the ratio of likelihoods. he standard deviation of spiral

and elliptical galaxies is 0.1782 mag and 0.2634 mag, respectively. The two populations have

a difference of 0.1203 ± 0.0561 mag such that ellipticals host brighter SNeIa than spirals.

This analysis only includes 66 galaxies for two reasons: 1) PS1 did not always return a

χ2 for the de Vaucouleurs profile if it was a large, spiral galaxy; and 2) the cuts removed

galaxies located in the top left and bottom right quadrants on Figure 4.16. We then cut

by inverse concentration index and color, which yielded 55 host galaxies, and returned a

difference of 0.2237 ± 0.0609 mag between the two populations again showing red ellipticals

host SNeIa that are brighter in the H-band. Making an even more restrictive cut by inverse

concentration index, the ratio of likelihoods, and color found difference of 0.2179 ± 0.0640

mag between the two populations and used only 50 host galaxies. These cuts correspond

to 2.1, 3.7, and 3.4 σ detections, respectively, of differences in the weighted means of the

populations. See Table 4.5 for full details of weighted mean residuals, standard deviations,

IQRs, SEMs, and implied intrinsic dispersions.

We note that the outlier population of bright SNeIa is associated with elliptical galaxies

though only 3/4 out of 5 have host galaxy information that could be used in these analyses.

If we remove the outlier population from the distributions, the significance of the separation

in the means decreases to < 2 σ for all morphological indicators (Table 4.4).

Separating galaxies by morphology confirms that SNeIa that occur in blue, spiral galaxies

have a lower standard deviation and are dimmer than those that occur in red, elliptical

galaxies. Again, this result is driven by the outlier population.

4.4.3 Mass

Having collected UV, optical, or NIR data allows us to estimate stellar masses for 137 out

of 147 host galaxies. Figure 4.18 shows the Hubble residuals separated by mass where the

“light” population corresponds to galaxies with masses less than 1010 M� and the “heavy”

population corresponds to galaxies with masses greater than 1010 M�. The lighter galaxies
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Figure 4.16 Log of the Likelihood Ratio versus Inverse concentration index color coded by

restframe g−r color. The dashed, grey lines indicate the thresholds for spiral versus elliptical

galaxy for each indicator. The top right quadrant represents spiral galaxies and the bottom

left quadrant represents elliptical galaxies.
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Figure 4.17 Top: Histogram of cuts in morphology separating Spiral and Ellipticals with

Inverse concentration index and ratio of likelihoods. Middle: Histogram of cuts in morphol-

ogy separating Spiral and Ellipticals with Inverse concentration index and a color cut based

on g − r. Bottom: Histogram of cuts in morphology separating Spiral and Ellipticals with

Inverse concentration index, the ratio of likelihoods, and a color cut based on g − r.

145



T
ab

le
4.

5.
S
N

S
am

p
le

M
ea

n
an

d
S
ta

n
d
ar

d
D

ev
ia

ti
on

s
-

C
om

p
ar

in
g

C
ol

or
C

u
ts

S
a
m

p
le

S
N

eI
a

re
si

d
u

a
l

w
g
t

re
si

d
u

a
l

χ
2

χ
2
/
D

o
F

st
d

d
ev

IQ
R

(n
o
rm

a
l)

S
E

M
Im

p
li
ed

σ
in

t
H

N
o
te

s
m

a
g

m
a
g

m
a
g

m
a
g

m
a
g

A
ll

1
4
7

0
.0

3
2
3

0
.0

0
0
0

3
7
4
.8

2
.5

5
0
.2

3
3
5

0
.2

1
2
0

0
.0

1
9
2

0
.1

8
1
4

B
lu

e
4
0

0
.0

8
3
0

0
.0

6
1
8

7
4
.2

1
.8

6
0
.1

8
7
7

0
.1

7
5
9

0
.0

2
9
7

0
.1

4
9
8

g
−
r
<

0
.6

m
a
g

R
ed

4
7

-0
.0

4
3
1

-0
.0

8
2
6

2
0
4
.8

4
.3

6
0
.2

6
6
6

0
.2

1
6
1

0
.0

3
8
9

0
.2

3
7
2

g
−
r
>

0
.6

m
a
g

S
p

ir
a
l

C
I

E
x
p

3
5

0
.0

7
3
2

0
.0

6
8
4

5
4
.5

1
.5

6
0
.1

7
8
2

0
.2

0
8
5

0
.0

3
0
1

0
.1

2
8
8

C
I>

0
.4

,
R

a
ti

o
L

n
L
>

1
.0

E
ll
ip

ti
ca

l
C

I
D

eV
3
1

-0
.0

4
7
1

-0
.1

1
8
2

1
6
8
.1

5
.4

2
0
.2

6
3
4

0
.2

0
5
9

0
.0

4
7
3

0
.2

4
6
2

C
I<

0
.4

,
R

a
ti

o
L

n
L
<

1
.0

S
p

ir
a
l

C
I

B
lu

e
2
7

0
.0

9
9
9

0
.0

8
5
4

4
2
.2

1
.5

6
0
.1

5
9
9

0
.1

4
1
5

0
.0

3
0
8

0
.1

2
6
1

C
I>

0
.4

,
g
−
r
<

0
.6

m
a
g

E
ll
ip

ti
ca

l
C

I
R

ed
2
8

-0
.0

8
2
8

-0
.1

3
8
3

1
7
0
.2

6
.0

8
0
.2

7
8
1

0
.1

8
5
7

0
.0

5
2
5

0
.2

6
8
6

C
I>

0
.4

,
g
−
r
>

0
.6

m
a
g

S
p

ir
a
l

C
I

E
x
p

B
lu

e
2
5

0
.0

9
6
3

0
.0

7
9
7

3
9
.2

1
.5

7
0
.1

6
5
5

0
.1

7
2
4

0
.0

3
3
1

0
.1

2
7
2

C
I>

0
.4

,
R

a
ti

o
L

n
L
>

1
.0

,
g
−
r
<

0
.6

m
a
g

E
ll
ip

ti
ca

l
C

I
D

eV
R

ed
2
5

-0
.0

6
3
7

-0
.1

3
8
2

1
5
5
.9

6
.2

3
0
.2

7
4
2

0
.1

8
5
1

0
.0

5
4
8

0
.2

6
2
0

C
I>

0
.4

,
R

a
ti

o
L

n
L
<

1
.0

,
g
−
r
>

0
.6

m
a
g

146



mostly correspond to the bluer galaxies but not exclusively. They also have slightly smaller

standard deviations (Table 4.3). The difference in average weighted residuals is 0.1230 ±

0.0376 mag with more massive galaxies hosting brighter SNeIa, which is a 3.2 σ detection

and in agreement with the literature.

Here again, we see the same group of bright SNeIa clustered around a similar attribute

– all of them correspond to high mass, red galaxies. When these SNeIa are removed from

the sample, the separation between the peaks drops to 0.0521 ± 0.0327, a 1.59 σ significance

(Table 4.4).

4.4.4 Per Sample

Figure 4.19 shows the residuals colored by SN lightcurve source (Sample). The difference

in weighted mean residuals between the brightest (W17) and dimmest (BN12) samples is

0.24 mag (see Table 4.3). This difference is larger than any step size we see based on any

feature. However, the brightest population comes from W17 which features 3 of the bright

SNeIa in high mass and red galaxies with only 18 SNeIa in the sample. These 3 SNeIa also

factor into the larger standard deviation and intrinsic dispersion seen in W17. The dimmest

SN Ia sample BN12 also has the tightest standard deviation. We note that BN12 reported a

small range in B-band stretch for their lightcurves indicating a data set lacking in intrinsic

variation of SNeIa. 7 out of 9 BN12 SNeIa with host galaxy photometry are in blue galaxies,

so based on the histogram fits shown above, we would expect them to be a little bit dimmer

and have a smaller standard deviation.

The K+ “survey” is a collection of SNeIa from many different papers and is not a coherent

set of data, unlike the other samples.

We see the outlier population comes from several surveys: 3 from W17, 2 from F15, and

1 from CSP. Since the outlier SNeIa are not from one survey, we must conclude that they

may be consistent with a real second population of SNeIa.

Using SNeIa from different samples is not greatly biasing our results as they all appear

to follow the same underlying distribution. The one exception is BN12, which shows little

variation in host galaxy type and may contain an intrinsically different distribution of SNeIa.
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Figure 4.18 Top: SN Ia Hubble residuals vs host galaxy mass. Overlaid on the points

are the classification of their host galaxy: blue circles are galaxies with g − r < 0.6 mag

and red squares are galaxies with g − r > 0.6 mag. Bottom: Histogram of Hubble residuals

(data−model) for the SNeIa of the full sample (grey dotted), the 61 SNeIa with host galaxies

with M < 1010M� (green dotted), and the 75 SNeIa with host galaxies with M ≥ 1010M�

(purple dotted).
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Figure 4.19 The H-band residuals from the best-fit ΛCDM cosmology for all Hubble flow

SNeIa (grey dashed) and for each sample. Left: histogram with the offset for each sample

listed; Right: kernel density estimation with a Gaussian kernel of bandwidth 0.07 mag. The

individual points are shown below the y = 0 axis for ease of reference to the original data.
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4.4.5 Other Possible Correlations

Other correlations that we tested are:

• Absolute r-band Magnitude (Mr): The absolute r-band magnitude shows a similar

correlation as the g − r color and host galaxy mass – see the “bright” and “dim” pop-

ulations in Figure 4.20 and Table 4.3 with a threshold at −21.0 mag. This threshold

was chosen to correspond with the typical brightness of a galaxy with mass ∼ 1010M�

as seen in Figure 4.21. The outlier population is exclusively in bright galaxies. With

the outliers, we report a correlation at 3.31 σ significance, but without the outliers, the

correlation becomes 1.64 σ.

• Smooth Hubble Flow: We tested the effects of using SNe with z > 0.02 corresponding

to the smooth Hubble Flow. This cut reduced our sample size by half and produced the

same results as the full sample. Table 4.3 includes the results of using only Hubble flow

SNeIa for three different host galaxy properties, and they are all labeled starting with

“Hubble”. The distributions of residuals of SNeIa with z < 0.02 in color, mass, and Mr

are the same as the distributions of SNeIa residuals with z > 0.02. Therefore, we find

no evidence for evolution with redshift. The one exception is the outlier group of SNeIa

hosted in red, bright, high mass galaxies which only appear at z > 0.03, but there are so

few of them it is unclear if this is a real trend or a coincidence of small sample size.

• NUV colors: By using NUV − H, we are picking out young, blue stars versus old,

red stars, which should act as a tracer for recent star formation. Figure 4.22 shows the

trends in SN Ia Hubble residuals versus NUV − H color and the resulting histograms

which are mostly identical in scatter with a negligible offset. NUV −g exhibits the same

distribution.

• Distance from host galaxy: We found no discernible correlation in projected distances

of supernovae from their host galaxies, except for the outlier population which are all

very separated from their host galaxy, see Figure 4.23
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Figure 4.20 Top: SN Ia Hubble residuals vs restframe absolute r-band magnitude (Mr).

The points are coded in different shapes to indicate the source of the SNIa light-curve data.

Overlaid on the points are the classification of their host galaxy: blue circles are galaxies

with g−r < 0.6 mag and red squares are galaxies with g−r > 0.6 mag. Bottom: Histogram

of Hubble residuals (data−model) for the SNeIa of the full sample (grey dotted), the 51

SNeIa with host galaxies with restframe Mr > −21 mag (blue dotted), and the 36 SNeIa

with host galaxies with restframe Mr ≤ −21 mag (red dotted).
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Figure 4.21 Mr versus log mass of host galaxy. The relationship is approximately linear.

4.4.6 Correlations with Corresponding Optical Lightcurves

Host galaxy correlations have been well studied in the optical wavelengths. To compare our

results to these studies, we repeated the analysis with optical lightcurves of SNeIa observed

in the H-band. The optical data set is only 105 SNeIa in total, 58 with optical host galaxy

photometry, and 100 with host galaxy mass estimates. Figures 4.24, 4.25, and 4.26 show the

distributions from g − r restframe color, host galaxy mass, and Mr. Table 4.6 presents the

resulting weighted residuals and standard deviations. All of the correlations result in < 2 σ

detections of differences in the weighted means of the distributions.

In this histogram analysis, we found no statistically significant trends between restframe

H or optical SNeIa brightnesses and host galaxy properties, but we do detect a distinct

outlier population in the H-band.
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Figure 4.22 Top: SN Ia Hubble residuals vs NUV −H color. Bottom: Histogram of Hubble

residuals (data−model) for the SNeIa of the full sample (grey dotted), the 41 SNeIa with

host galaxies with restframe NUV − H < 4.5 mag (blue dotted), and the 30 SNeIa with

host galaxies with restframe NUV −H > 4.5 mag (red dotted).

153



0.00 0.02 0.04 0.06 0.08 0.10
Projected Galactocentric Distances [Mpc]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

H_
m

ax
 (d

at
a

m
od

el
) [

m
ag

]

Blue Hosts
Red Hosts
K+

CSP
BN12

F15
W17

Figure 4.23 SN Ia Hubble residuals vs projected galactocentric distances. The points are

coded in different shapes to indicate the source of the SNIa light-curve data. Overlaid on the

points are the classification of their host galaxy: blue circles are galaxies with g−r < 0.6 mag

and red squares are galaxies with g − r > 0.6 mag.

154



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
g-r (restframe) [mag]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

DM
 (d

at
a

m
od

el
) [

m
ag

]

Blue Hosts
Red Hosts

K+
CSP

F15
W17

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
DM residual (data model) [mag]

0

5

10

15

20

25

30

35

# 
/ 0

.1
 m

ag
 b

in

DM All -0.000 mag
DM Blue +0.036 mag
DM Red -0.035 mag

All
Blue
Red

Figure 4.24 Top: SN Ia distance modulus residuals versus host galaxy color. Overlaid on the

points are the classification of their host galaxy: blue circles are galaxies with g−r < 0.6 mag

and red squares are galaxies with g− r > 0.6 mag. Bottom: Histogram of distance modulus

residuals for the SNeIa of the full sample (grey dotted), the SNeIa with host galaxies with

restframe g − r < 0.6 mag (blue dotted) and the SNeIa with host galaxies with restframe

g − r > 0.6 mag (red dotted).
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Figure 4.25 Top: SN Ia distance modulus residuals versus host galaxy mass. Overlaid on

the points are the classification of their host galaxy: blue circles are galaxies with g − r <

0.6 mag and red squares are galaxies with g − r > 0.6 mag. Bottom: Histogram of distance

modulus residuals for the SNeIa of the full sample (grey dotted), the SNeIa with host galaxies

M < 1010M� (green dotted) and the SNeIa with host galaxies with M ≥ 1010M� (purple

dotted).
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Figure 4.26 Top: SN Ia distance modulus residuals versus absolute r-band magnitude, Mr.

Overlaid on the points are the classification of their host galaxy: blue circles are galaxies

with g−r < 0.6 mag and red squares are galaxies with g−r > 0.6 mag. Bottom: Histogram

of distance modulus residuals for the SNeIa of the full sample (grey dotted), the SNeIa

with host galaxies Mr > −21.0 mag (blue dotted) and the SNeIa with host galaxies with

Mr ≤ −21.0 mag (red dotted).

157



T
ab

le
4.

6.
S
N

S
am

p
le

M
ea

n
an

d
S
td

D
ev

ia
ti

on
s

-
O

p
ti

ca
l

S
N

eI
a

S
a
m

p
le

S
N

eI
a

re
si

d
u

a
l

w
g
t

re
si

d
u

al
χ

2
χ

2
/D

oF
st

d
d

ev
IQ

R
(n

or
m

al
)

S
E

M
Im

p
li

ed
σ
in
t

H
N

ot
es

m
ag

m
ag

m
ag

m
ag

m
ag

A
ll

1
0
5

0.
03

3
3

-0
.0

0
00

24
3.

0
2.

31
0.

20
84

0.
20

46
0.

0
20

3
0.

1
61

1

B
lu

e
2
1

0.
05

7
3

0
.0

36
0

64
.4

3.
07

0.
20

30
0.

20
56

0.
0
44

2
0.

1
77

9
g
−
r
<

0
.6

m
ag

R
ed

37
0.

00
7
5

-0
.0

3
51

12
2.

7
3.

32
0.

22
85

0.
15

75
0.

0
37

6
0.

1
95

7
g
−
r
>

0.
6

m
a
g

L
ig

h
t

3
9

0
.0

9
45

0
.0

44
7

98
.2

2.
52

0.
21

52
0.

21
09

0.
0
34

4
0.

1
79

2
M

<
1e

+
1
0

so
lM

as
s

H
ea

v
y

60
-0

.0
0
8
8

-0
.0

2
57

14
0.

9
2.

35
0.

19
43

0.
16

00
0
.0

2
51

0
.1

5
78

M
>

=
1e

+
1
0

so
lM

as
s

D
im

31
0
.0

62
9

0.
02

63
84

.1
2.

71
0.

22
03

0.
23

91
0
.0

3
96

0
.1

8
07

M
r
>

-2
1

m
ag

B
ri

g
h
t

2
7

-0
.0

17
3

-0
.0

4
00

10
2.

9
3.

81
0.

21
36

0.
16

60
0.

0
41

1
0.

1
97

5
M
r
<

=
-2

1
m

ag

158



4.5 DISCUSSION

In the previous section, we compared the weighted mean residuals of SNeIa separated by

different host galaxy properties. We found∼ 3 σ significant results supporting 0.12−0.15 mag

shifts between g − r color, mass, and Mr. Though these are in agreement with the results

in the literature from optical studies, we showed that they are a result of a bright SN Ia

population. However, by binning the data and analyzing a histogram, we are losing some

information about the distributions. To further test the significance of these correlations, we

follow the procedure done previously in the literature and fit different functions to the host

galaxy properties versus the SN Ia Hubble diagram residuals. We here focus on the Hmax

and optical distance modulus residuals and show no results for J- or KS-band.

4.5.1 Different Models to Fit

We fit 7 different models using scipy.optimize.curve fit outlined below.

1. Constant function corresponding to a single population and no correlation.

2. Linear function where we fit for the slope and y-intercept.

3. Step function with a break corresponding to the thresholds used in the previous section

(g − r = 0.6 mag, mass = 1010M�, Mr = −21.0 mag). We fit for the amplitude of the

step and the location of the y-intercept.

4. Step function that fits for the location of the break as well as the amplitude and y-

intercept.

5. “Modified” Logistic function: The Logistic function is constrained to be positive, so we

added a constant offset to allow us to fit the negative residuals:

Modified Logistic =
L

1 + e−k(x+x0)
+ A. (4.2)

We fit for L, the maximum asymptote; k, the slope of the curve at midpoint; x0 the

location of the midpoint; and A, the constant offset corresponding to the minimum

asymptote. We chose to fit sigmoid/Logistic functions to fit a smooth transition between

two populations.
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6. Modified Logistic function with x0 set to the previous threshold values and fitting for L,

k, and A.

7. Generalized Logistic function defined as:

Generalized Logistic =
K − A

(C +Qe−Bx)1/ν
+ A. (4.3)

Here again we fit for A, the minimum asymptote; K, the maximum asymptote; C, a

constant that is around 1; Q, similar to the y-intercept; B, the growth rate; and ν, which

controls the location of the onset of the growth.

The error on the fitted model parameters corresponds to the diagonal elements of the result-

ing covariance matrix.

4.5.2 Information Criteria

After fitting the different functions to our data, we compare which model describes the data

better using two different information criteria (ICs): the Akaike Information Criterion (AIC;

Akaike, 1974) and the Bayesian/Schwartz Information Criterion (BIC; Schwarz, 1978). We

use the updated AICc (Sugiura, 1978) which is more suitable for smaller samples. The AICC

and BIC are defined as

AICc = χ2 + 2k +
2k(k + 1)

N − k − 1
(4.4)

and

BIC = χ2 + k lnN (4.5)

where

χ2 =
N∑
i

(datai −model)2

σ2
i

. (4.6)

k is the number of parameters fit and N is the number of objects in the sample. For the fits

below, σ corresponds to the model error on the residual from the SNooPy fits.

The better fitting model returns a lower value of the information criterion such that

adding more parameters penalizes the results. However, AICc and BIC cannot be used to

determine the absolute best fit model; they can only establish which model the data favor

compared to another model. We calculate ∆AICc and ∆BIC relative to the constant model.

160



If the difference in IC is > 2, a constant model is preferred; > 5, a constant model is

strongly preferred; < −2, the compared model is preferred; and < −5 the compared model

is strongly preferred. When 0 < IC < 2, there is a preference for a constant model, but not

a statistically significant one. Likewise, an IC between −2 and 0 shows a preference for the

compared model, but it is not significant.

4.5.3 g − r color

Using 86 SNeIa that have optical host galaxy photometry and H-band SN Ia photometry, we

fit the seven different models to the restframe g−r color versus the Hmax residuals (∆Hmax).

Similarly, we used the 56 SNeIa with corresponding lightcurves at optical wavelengths to

fit the models to the restframe g − r color versus the optical distance modulus residual

(∆DM). We removed the bluest galaxy in the ∆Hmax sample with a color requirement of

g − r > 0 mag. For the residual in the distance modulus, we removed one SN Ia located at

g− r ∼ 1.3 with ∆DM > 0.4 mag that had a small residual error and greatly influenced our

fits.

We found that our data did not provide sufficient information to fit the location of the

break in the step function using the built in SciPy function. To estimate the best site of the

break, we fixed the position at a range of values between 0.0 < g − r < 1.5 mag and fit for

the step size and y-intercept. We then use the ICs to compare the model at each transition

location versus the model with the step located at the original threshold of g− r = 0.6 mag

and chose the break with the lowest IC. The top panels of Figure 4.27 show the results from

doing this procedure for ∆Hmax and ∆DM.

The top left panel is the result of fitting the Hmax residuals and has a local minimum

near our original threshold, but there is a global minimum at a much higher color of g− r =

0.91 mag. As seen in the bottom left panel of this figure, at g − r & 0.8 mag there are

very few data points which are driving this result. The top right panel finds the best fit

location for the optical lightcurves, which favors a threshold around 0.6 mag. There is a

large difference in y-axis for these two plots: ∆Hmax varies between −0.5 < IC < 1.0 while

∆DM varies between 0.0 < IC < 18.0. The ∆DM strongly prefers a particular location
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whereas ∆Hmax cannot constrain the break well.

The bottom panels of Figure 4.27 show the models from the best fits: constant, linear,

the best-fit step function, and the modified Logistic using the threshold value. Table 4.7

summarizes the best fit models using ICs and Table 4.8 outlines the significance in the slope

of the linear function, the step size of the best-fit step function, and the step size of the step

function with a break at the original threshold. The Hmax residuals prefer a constant model

with no correlations with host galaxy g − r color. The distance modulus residuals prefer

a constant model except for a step function at g − r ∼ 0.6 mag; however, the step size is

reported at 2.2 σ and is not a significant result.

For all host galaxy properties, the modified Logistic function with an unconstrained

midpoint always placed the midpoint at values on the left of the x-axis and fit a straight

line to the data. The generalized Logistic function responded similarly, but the ICs were so

strongly against this model for every case, we do not include the fit on the plots.

We conclude that there is currently no significant trend between H-band lightcurves and

host galaxy g − r color. There is some evidence of a correlation with optical brightnesses

because the ICs strongly preferred a step function over a constant model, but it is inconclusive

because the detection of the amplitude was < 3 σ.

4.5.4 Mass

Following Kelly et al. (2010), we chose to focus on the potential transition region by excluding

all host galaxy with a stellar mass < 109.5 M�, which yields 101 NIR lightcurves and 78

optical lightcurves. Figure 4.28 shows the best-fit location for the break in the step function

in the top two panels and different model fits in the bottom two panels. Both the Hmax and

DM residuals favor a mass step at 1010.44 M�, which is in between the typical number found

at 1010 M� (e.g., Sullivan et al., 2010; Lampeitl et al., 2010; Gupta et al., 2011; Childress

et al., 2013b) and 1010.8 M� found in Kelly et al. (2010). Again, the Hmax residuals do not

strongly prefer any break location over another, but the optical lightcurves do strongly favor

a particular position.

Tables 4.9 and 4.10 outline the significance from these fits. We see in the ICs that
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Figure 4.27 Correlations with Host galaxy g − r color. Top: Best fit location of the step

function threshold. Bottom: Various functions fit to the g− r versus Hubble residuals. Left:

Results form using the Hmax Hubble residuals. Right: Results form using the distance

modulus (DM)/optical lightcurve Hubble residuals.
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Table 4.7. Information Criteria Results for Different Models - g − r

Residual Fit ∆ AICc ∆ BIC

Hmax Constant 0.00 0.00

Linear 2.44 4.793

Step: 0.6 1.50 3.86

Step: 0.91 1.18 3.53

Modified Logistic 6.69 13.61

Modified Logistic: 0.6 4.54 9.20

Generalized Logistic 11.91 23.17

DM Constant 0.00 0.00

Linear 4.97 6.85

Step: 0.6 -8.96 -7.09

Step: 0.58 -8.96 -7.09

Modified Logistic 8.64 14.00

Modified Logistic: 0.6 7.33 11.00

Generalized Logistic 26.22 34.69
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Table 4.8. Significance of Linear and Step Function Fits - g − r

Residual Fit Constant σConstant Slope|Step σSlope|Step Units

Hmax Constant 0.04 0.02 mag

Linear 0.04 0.06 -0.01 0.09 mag/mag

Step: 0.6 0.07 0.03 -0.08 0.05 mag

Step: 0.91 0.02 0.03 +0.12 0.06 mag

DM Constant 0.04 0.02 mag

Linear 0.06 0.09 -0.03 0.09 mag/mag

Step: 0.6 0.12 0.04 -0.11 0.05 mag

Step: 0.58 0.12 0.04 -0.11 0.05 mag

Hmax residuals prefer a constant model, but the results are inconclusive for the best-fit step

function with the AIC very weakly preferring the step function and the BIC preferring the

constant model. The slope of the linear function and the best-fit step size are both found at

> 3σ and appear to be significant correlations. However, the DM residuals strongly prefer

a non-constant model with the most preferred model being the best-fit step function. The

linear function and best-fit step function are found at a > 3σ significance level and are

detections. We report a step size of 0.10± 0.04 mag at 1010 M� which matches the results

found previously in the literature. By using the updated best-fit location of 1010.44 M�, this

step size increases to 0.12± 0.04 mag, a more robust detection.

We confirm here, for the first time using the SNooPy fitter, a correlation between host

galaxy mass and optical lightcurves in which more massive galaxies host SNeIa that are

brighter by 0.12 mag. We found conflicting evidence for a correlation between host galaxy

mass and H-band brightnesses. The ICs prefer a constant model, but we report a 4 σ

detection of a 0.16 mag step at 1010.44 M�.
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Figure 4.28 Correlations with host galaxy mass. Top: Best fit location of the step function

threshold. Bottom: Various functions fit to the host galaxy mass versus Hubble residuals.

Left: Results form using the Hmax Hubble residuals. Right: Results form using the distance

modulus (DM)/optical lightcurve Hubble residuals.
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Table 4.9. Information Criteria Results for Different Models - Mass

Residual Fit ∆ AICc ∆ BIC

Hmax Constant 0.00 0.00

Linear 0.36 2.89

Step: 10 1.32 3.86

Step: 10.44 -0.80 1.73

Modified Logistic 7.18 14.65

Modified Logistic - 10 2.58 7.60

Generalized Logistic 10.48 22.70

DM Constant 0.00 0.00

Linear -15.23 -12.98

Step: 10 -7.89 -5.64

Step: 10.44 -17.12 -14.88

Modified Logistic 13.33 19.91

Modified Logistic - 10 -11.04 -6.60

Generalized Logistic 3.84 14.49
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Table 4.10. Significance of Linear and Step Function Fits - Mass

Residual Fit Constant σConstant Slope|Step σSlope|Step Units

Hmax Constant 0.02 0.02 mag

Linear 1.62 0.56 -0.16 0.05 mag/log M�

Step: 10.0 0.06 0.03 -0.08 0.04 mag

Step: 10.44 0.06 0.02 -0.16 0.04 mag

DM Constant 0.02 0.02 mag

Linear 1.46 0.46 -0.14 0.04 mag/log M�

Step: 10.0 0.09 0.03 -0.10 0.04 mag

Step: 10.44 0.07 0.02 -0.12 0.04 mag

4.5.4.1 Effect of Mass Errors on Correlations

kcorrect does not return any errors, so could the correlation with host galaxy mass be

an effect of unknown error bars? The photometry was chosen to return only high signal-

to-noise detections of the galaxy, so there is a small, non-dominant error per object from

the photometry. In Section 4.2.2.4, we showed kcorrect systematically underestimated the

host galaxy masses; however, this error is a linear offset, and as such, it should not affect the

significance of the correlations found in this section. We also reported a small scatter from

the model fits of 0.18 dex, but this is too small to greatly impact the significance of our fits.

4.5.5 Mr

We used 87 Hmax and 58 DM residuals to test correlations with the restframe, absolute r-

band magnitude, Mr. Figure 4.29 shows the resulting best-fit break in the step function and

the model fits to the data. Table 4.11 presents the ICs and shows inconclusive evidence for

the Hmax residuals. The model that most favors a correlation is the best-fit step function

with a break at −21.5 mag. ∆AICc prefers a non-constant model but not strongly, and
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∆BIC does not have a preference between the two models. The size of the best-fit step is

a ∼ 3.4σ detection as seen in Table 4.12. For the linear function, both ∆AICc and ∆BIC

do not favor either model, and the slope is significant to ∼ 2.5σ. No model is apparently

preferred; however, we report a strong detection of a step.

The distance modulus residuals show a large preference towards a break at −20.15 mag

(see Table 4.11). The ICs exhibit a strong preference towards a non-constant model. The

amplitude of the step with optical residuals is a 4σ detection (Table 4.12).

The results for the H-band again are inconclusive, but the optical SNeIa support a Mr

correlation with brighter host galaxies hosting more luminous SNeIa.

4.5.6 Removing NIR Outlier Population

As noted in Section 4.4, there is a persistent outlier population of bright SNeIa hosted in red,

high mass, bright galaxies. We excluded the outlier populations and repeated the ∆Hmax

fits versus host galaxy mass and Mr, but not g− r since the correlation is already weak. For

host galaxy mass, we find that the significance of the step size and slope drop to ∼ 2.5 σ

and the location of the step moved to 109.73M�. The data prefer the constant model in

Mr for all fits, and all of the correlations are degraded with only the best-fit step function

retaining a > 3 σ detection with a break at Mr = −19.2 mag. The location of the break is

also shifted dimmer by about 2 magnitudes indicating the 5 bright SNeIa had a large effect

on the Mr fits. We have inconclusive evidence for a shift at Mr = −19.2 mag. For any

cosmological-based analysis with this data set, we suggest removing this outlier population,

but it is unclear if this is a second population of SNeIa or a characteristic of this particular

data set.

2 out of 5 SNeIa with host galaxy data were also present in the optical data set, and

one of which is also an outlier in that sample with ∆DM ∼ −0.6 mag. We see a minimal

change in the results for g − r color: the ICs still strongly prefer a step function, but we

only see a 2.0 sigma detection of the amplitude and the best fit location for the break

stays the same. The correlation with mass for the linear model and step function at 1010 M�

remain at the same amplitude and significance. However, the best-fit step function increased
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Figure 4.29 Correlations with host galaxy Mr. Top: Best fit location of the step function

threshold. Bottom: Various functions fit to the Mr versus Hubble residuals. Left: Results

form using the Hmax Hubble residuals. Right: Results form using the distance modulus

(DM)/optical lightcurve Hubble residuals.
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Table 4.11. Information Criteria Results for Different Models - Mr

Residual Fit ∆ AICc ∆ BIC

Hmax Constant 0.00 0.00

Linear -0.55 1.82

Step: -21.0 -1.59 0.78

Step: -21.5 -3.11 -0.74

Modified Logistic 4.25 11.20

Modified Logistic: - 21.0 1.63 6.32

Generalized Logistic 9.86 21.19

DM Constant 0.00 0.00

Linear -37.37 -35.44

Step: -21.0 -4.53 -2.61

Step: -20.15 -44.53 -42.62

Modified Logistic -33.81 -28.30

Modified Logistic: -21.0 -32.66 -28.92

Generalized Logistic 30.55 39.28
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Table 4.12. Significance of Linear and Step Function Fits - Mr

Residual Fit Constant σConstant Slope|Step σSlope|Step Units

Hmax Constant 0.04 0.02 mag

Linear 1.06 0.32 -0.05 0.02 mag/mag

Step: -21.0 0.15 0.06 -0.23 0.06 mag

Step: -21.5 0.23 0.06 -0.31 0.07 mag

DM Constant 0.06 0.03 mag

Linear 1.37 0.33 -0.06 0.02 mag/mag

Step: -21.0 0.01 0.04 -0.09 0.05 mag

Step: -20.15 0.01 0.02 -0.20 0.05 mag

to 0.17 ± 0.05 mag, but the best-fit break is at the lower mass of 109.73 M�. Figure 4.28

illustrates that the original sample has this mass as a local minimum. The ICs were reduced

very little and still strongly favored a non-constant model. In Mr, the slope detection became

larger, and the two step function models remained the same, but the ICs still preferred a

non-constant model for all fits. Removing the H-band outliers in the optical lightcurve data

does not affect the results of the fits except for the best fit location of the mass cut and the

slope of the Mr correlation.

4.5.7 SNeIa with Both H-band and Optical Lightcurves

We here explore the results from limiting the data set to only the SNeIa that have both

H-band and optical lightcurves.

For restframe g− r color, 53 SNeIa had H-band and optical lightcurves as well as optical

galaxy photometry. The Hmax residual show no significant correlation, but the slope and

amplitude of the best-fit step function switch signs. The location of the best-fit step also

decreases to 0.42 mag. Both of the ICs prefer a constant model. ∆DM shows the same trend
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as before with a slope < 1 σ and the best-fit step function approximately being 0.6 mag.

Again the ICs only favor the color dependent step function, but the amplitude is a 2.2 σ

detection.

74 SNeIa with host galaxy masses measured have both sets of lightcurves. The H-band

brightness now favor a lower mass for the best-fit step function at 109.73M� with a step of

0.11±0.05 mag or 2.2 σ detection. The change in step location is a result of removing most of

the outlier population of SNeIa. At 1010M�, we calculate a < 1 σ detection with a step size

of 0.01 mag and the slope is < 1 σ detection. As before, all the ICs favor a constant model.

However, in the optical we get a 3 σ detection of the slope, a step size of 0.10 ± 0.04 mag

(2.5 σ) for the break at 1010M�, and 0.13± 0.04 mag (3.25 σ) for the best-fit at 1010.44 M�.

The ICs very strongly favor a mass-dependent model. The same SNeIa that that show a

mass dependence in optical wavelengths show no correlations in with the H-band brightness.

There are 55 SNeIa that have ∆Hmax and ∆DM with Mr measured. We see the same

inconclusive evidence as above with ∆Hmax with 3 σ detection of the slope and a 4 σ detection

of the best-fit step function of size 0.25±0.06 mag located at Mr = −19.5. For the linear and

the step function at the original threshold, the AIC and BIC disagree with neither model

being preferred. The ICs only slightly prefer the best-fit step function over a constant model.

∆DM results are the same for the slope, the step function, and the best-fit step function.

The break in the best-fit step function is the same as before at Mr = −20.15 mag. The ICs

prefer a Mr dependent model with a linear or step function. This exercise yielded the same

inconclusive evidence as before in the H-band and the same level of support for a correlation

with the distance modulus from optical lightcurves.

In summary, there is no change in the analysis for g − r color and Mr if we limit the

SNeIa to those with both H-band and optical lightcurves. The evidence of a correlation

between mass and the H-band decreases and now favors a constant model, but the optical

SNeIa continue to support a step function.
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4.5.8 Difference in Optical and NIR Error Bars

The error bars on the H-band residual are larger than those for the optical distance mod-

ulus for two main reasons. First, the model for NIR lightcurves is more uncertain than

optical lightcurves, and that uncertainty gets transmitted to the residual error. Second,

there are fewer lightcurve points that are used to fit the Hmax model. This model only

uses lightcurve points from the H-band, and typically NIR lightcurves are less sampled than

optical lightcurves. Also, the EBV model2 uses lightcurve points from all of the optical

lightcurves instead of just one band.

We added in quadrature an additional scatter of 0.08 mag to approximate the intrinsic

scatter and refit the models to the DM residuals. There is no detection in g − r or Mr of a

correlation since all ICs prefer a constant model and the slope/step detections drop below

. 2.2σ. We continue to see some evidence for a host galaxy mass correlation with a > 3 σ

detection for the best-fit step function that has a break at 109.90M� and an amplitude of

0.18 ± 0.05. However, all of the information criteria now prefer a constant model, but it is

not a strong preference (> 5) for the linear and step functions. The correlation with host

galaxy mass in the optical is an inconclusive result with the increased error bars.

4.6 CONCLUSION

We have collected a data sample of 147 SNeIa with observations in the restframe H-band.

87 of these SNeIa were hosted in galaxies with optical photometry data available publicly

from SDSS and PS1. 50 more hosts had observations in either GALEX or 2MASS or both

allowing us to estimate masses for 137 host galaxies.

We explored many possible correlations between Hmax residuals from the SNooPy fitter

and host galaxy properties. All correlations with H-band brightnesses appear to be driven

by an outlier population. However, the model fitting results for the host galaxy mass corre-

lation are inconclusive; they are consistent with both a constant model and a model with a

0.1 mag step around 1010 − 1010.5M�.
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Using the optical lightcurves corresponding to the sample of NIR lightcurves, we have

confirmed a host galaxy mass step of ∼ 0.1 mag around 1010M�. We have further shown that

the correlation between host galaxy mass and optical brightnesses persists after removing

the outlier population and after increasing the errors on the residuals. This work is the first

time the mass correlation has been shown using SNooPy as all previous studies have used

SALT2 and MLCS2k2. Showing this trend using a third lightcurve fitter provides further

evidence of either a physical phenomenon or that there is some intrinsic property that is not

well understood in optical wavelengths. There is also evidence for a correlation between the

Mr of the host galaxy and optical brightnesses, but that is unsurprising since our galaxies

show a linear relationship between the log of the galaxy mass and absolute brightness (Fig-

ure 4.21).

There is also an apparent outlier population of very bright SNeIa in the H-band located

within the smooth Hubble flow (0.03 < z < 0.09). They explode with residual brightness

≥ −0.5 mag and are hosted in massive (M > 1010M�), bright (Mr > −21.5 mag), and red

(0.6 < g − r < 0.8 mag), mostly elliptical galaxies. They are also very removed spatially

from their host galaxies. We examined the postage stamps for the outlier galaxies and found

that one was an irregular galaxy and a second one was an elliptical galaxy with a star close

to its core, but the other 3 were consistent with red, elliptical galaxies. These appear to be

a subpopulation that is driving up the standard deviation and derived intrinsic dispersion of

SNeIa in massive, red galaxies. Rigault et al. (2013) shows two populations of SNeIa in the

locally passive star forming regions which cluster around a ∆DM ∼ −0.2 mag. With more

NIR+optical lightcurves, we could determine the relationship between the NIR outliers at

−0.5 mag to the optical population at −0.2 mag.

Host galaxy masses calculated by kcorrect are systematically underestimated with re-

spect to Kauffmann et al. (2003) and Kelly et al. (2010). Our estimated masses thus suffer

from this same systematic offset. However, since this offset is a linear transformation in

mass, it does not affect the statistical significance of correlations with host galaxy mass.

If the cause of the host galaxy mass trend is dust, metallicity (Tremonti et al., 2004), or

stellar population age, then we would expect to see no correlation in the NIR since SNeIa in
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the NIR are less sensitive to dust, progenitor metallicity (Kasen, 2006), and progenitor age12.

As we find inconclusive evidence of a correlation, our results cannot distinguish between the

possible drivers of the host galaxy mass correlation. Though we have highlighted these three

properties, it is also possible that the step in host galaxy mass is due to differences in the

nature of progenitor systems in different environments.

This analysis has concluded that SNeIa in the H-band currently show no convincing

evidence of correlations with host galaxy properties except for a small outlier population.

With more data from ground based studies imminent (CSP III and SweetSpot), we will be

able to increase the sample size to test for the correlations again and to determine if there

is a correlation or if the outlier population is persistent. Now is the time to examine these

relationships in low redshift NIR lightcurve data to improve our NIR models in preparation

for the ∼ 2500 high redshift NIR SNeIa that will be observed by Wide-Field Infrared Survey

Telescope (WFIRST; Spergel et al., 2015).
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sidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder,

University of Oxford, University of Portsmouth, University of Utah, University of Virginia,

University of Washington, University of Wisconsin, Vanderbilt University, and Yale Univer-

sity.

The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made

possible through contributions by the Institute for Astronomy, the University of Hawaii,

the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes,

the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Ex-

traterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the

University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center

for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the

National Central University of Taiwan, the Space Telescope Science Institute, the National

Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the

Planetary Science Division of the NASA Science Mission Directorate, the National Science

Foundation Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University

(ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Founda-

tion.

This publication makes use of data products from the Two Micron All Sky Survey, which

is a joint project of the University of Massachusetts and the Infrared Processing and Analysis

Center/California Institute of Technology, funded by the National Aeronautics and Space

Administration and the National Science Foundation.

This research has made use of the NASA/ IPAC Infrared Science Archive, which is op-

177



erated by the Jet Propulsion Laboratory, California Institute of Technology, under contract

with the National Aeronautics and Space Administration.

Some of the data presented in this paper were obtained from the Mikulski Archive for

Space Telescopes (MAST). STScI is operated by the Association of Universities for Research

in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST

data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other

grants and contracts.

Software Python13, NumPy14, SciPy15, matplotlib (Hunter, 2007)16, AstroPy (Astropy

Collaboration et al., 2013b)17, IDL18.

13http://python.org
14http://www.numpy.org
15http://www.scipy.org
16http://matplotlib.org
17http://www.astropy.org
18http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/IDL.aspx

178

http://python.org
http://www.numpy.org
http://www.scipy.org
http://matplotlib.org
http://www.astropy.org
http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/IDL.aspx


5.0 DISSERTATION CONCLUSIONS

The path to understanding dark energy with SNeIa lies in a greater understanding of the

limiting systematics. This dissertation presented steps toward this path through improved

statistical techniques to account for complex formulations of systematics. I have spent over

80 calendar nights collecting data for SweetSpot, which will be crucial to understanding NIR

SNeIa and enabling future surveys. The spectroscopic data that I have reduced will pave the

way for future studies into local host galaxy correlations with any SNeIa observed in these

galaxies. For the first time with NIR lightcurves, we showed that there are no significant

global host galaxy correlations and NIR lightcurves may be less sensitive to the mechanism

causing the trend in the optical.

Chapter 2 explored generalizing the likelihood function to account for multiple popula-

tions that evolve with redshift. We showed that even if there is no clear statistical evidence

for multiple populations with smaller samples, cosmological parameters will still exhibit a

significant bias. However, by using a more flexible likelihood function, we can remove the

bias. If multiple populations do not exist, then we still return cosmological parameters with

a minimal precision loss from fitting more degrees of freedom. This framework has many

applications outside the example shown here. For instance, we already know there are sub-

populations of SNeIa: super-luminous SN 1991T-like (Filippenko et al., 1992a; Phillips et al.,

1992) and sub-luminous SN 1991bg-like (Filippenko et al., 1992b; Leibundgut et al., 1993).

Cosmological analyses remove the peculiar SNeIa to have a more uniform sample, but if we

instead approach it as multiple populations, the number of SNeIa used will increase and

thus reduce statistical noise. Framing the problem in this way could help to understand the

interplay between the different types of SNeIa. Any systematic that can be represented by a

distribution can be included in this analysis and many systematics can be incorporated into
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one likelihood. One could include not only multiple populations, but also effects from using

multiple surveys, a PDF representation of Malmquist bias, and the distributions from photo-

metric redshifts all together in one likelihood. Photometric redshifts are particularly useful

with the upcoming surveys as the sheer volume of SNeIa discoveries will make collecting

spectroscopic redshifts for every SNeIa unattainable. Having such a complicated likelihood

would need a Hierarchical Bayesian analysis, which marginalizes out different parameters

in successive steps as opposed to fitting everything at one time. We have begun with this

simple model, but the opportunities and applications are expansive. Large surveys such as

LSST and WFIRST will be able to provide the volume of data needed to return precision

dark energy constraints with these complex models.

The SweetSpot survey in Chapter 3 is vital for the advancement of NIR SNeIa cosmol-

ogy. Weyant et al. (2014) showed that SNeIa continue to be excellent standard candles in the

H-band. Our first data release with 74 SNeIa and 33 lightcurves is one of the largest con-

tributions from a single survey. Once DR2 is released with the majority of our lightcurves

including host galaxy subtractions, SweetSpot will be one of the largest surveys of NIR

SNeIa. SweetSpot will increase the H and J band Hubble diagram out to z ∼ 0.08, it will

provide a useful data set to study color evolution, and it will be a major contributor to

anchoring future high redshift surveys.

The spectra of 32 host galaxies is one of the first scientific studies with the HexPak IFU.

As such, we provided an extremely detailed overview of data reductions. Though the spectra

as presented here are adequate for our scientific goals, aperture corrections and more careful

modeling of telluric lines would provide improvements. The scientific analysis resulting from

these spectra must wait for the lightcurves from SweetSpot DR2 to become available. With

these lightcurves, we will be able to conduct the first study to test for correlations between

local host galaxy properties and NIR lightcurves.

In Chapter 4 we explored correlations with different global host galaxy properties. Us-

ing publicly available catalogs from SDSS, Pan-STARRS, 2MASS, and GALEX, we per-

formed K-corrections on all photometry to transform the observer-frame magnitudes into

the restframe magnitudes. With this data, we study a variety of properties such as color,

morphology, mass, and absolute r-band magnitude. We showed that redder, more massive,
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elliptical galaxies host SNeIa that are brighter in the optical and NIR than SNeIa hosted

in bluer, less massive, spiral galaxies. We have shown that this result in the NIR is driven

by a small outlier population that is ∼ 0.6 mag brighter than normal SNeIa. However, we

cannot completely rule out a mass step of 0.1 mag around a host galaxy mass of 1010M� in

the NIR. With or without this outlier population, optical SNeIa continue to show that they

are ∼ 0.1 mag brighter in massive galaxies, in good agreement with the previous literature.

This work is also the first time SNooPY was used to fit lightcurves when examining host

galaxy correlations. It is possible that every lightcurve fitter includes the same theoretical

deficiency that cannot handle this effect, but it is also likely to be an astrophysical effect.

The three currently proposed host galaxy properties that are correlated with mass and may

provide a more physical interpretation to this effect are dust, progenitor metallicity, and pro-

genitor age. NIR SNeIa are less sensitive to these three properties and are consistent with

one or more of them as the underlying cause. We note that this step function could also

be the result of different progenitor systems that occur in different environments. We have

helped identify host galaxy correlations as a persistent systematic that must be explored

further. In conjunction with the local galaxy properties, we plan to continue to search for

an astrophysically motivated model to describe this effect.

It is important to pursue these studies to avoid significant biases in dark energy that

would result from using improper models and likelihoods with the powerful data sets that

will be produced by LSST and WFIRST. The goal of this dissertation is to enable the cre-

ation of these astrophysically motivated models that are causing the host galaxy correlation

in SNeIa. These models can then be implemented into an entirely Hierarchical Bayesian

framework that can be utilized by these large surveys to create a more precise and unbiased

measurement of dark energy.
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APPENDIX A

APPENDICES FROM CHAPTER 3

A.1 CITATIONS FOR SUPERNOVA AND HOST GALAXY

INFORMATION USED FOR HEXPAK

Table A1 provides the references for the groups that discovered, classified, and determined the

redshift for the SNeIa that were previously hosted in the galaxies observed with HexPak. We

also include the references for host galaxy redshifts taken from NASA/IPAC Extragalactic

Database (NED)1.

1https://ned.ipac.caltech.edu/
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Table A1. Citations for Host Galaxies Observed With HexPak

Name Host Name Discoverera Classifiera zSN
a zHost

a

ASASSN-15hg CGCG 063-098 B15b F15a – H12
ASASSN-15ho 2MASXi J0909234-044327 K15 F15b F15b This work
LSQ12gef 2MASX J01403375+1830406 CL12 CL12 CL12 This work
LSQ14aeg 2MASX J10193682+1933131 W14 W14 W14 SDSS6
PS1-12bwh CGCG 205-021 Wr12 Wr12 Wr12 M96
PS15mb SDSS J085940.13+151113.5 S15, B15a No15 No15 Sa11
PSN J07250042+2347030 NGC 2370 BT12 BT12 – dV91
PSN J08593491+4555343 UGC 4709 Ci15 O15 O15 SDSS3
PSN J10292799+2200468 UGC 5691 Ma14b, Fe14 Z14, Fe14 Fe14 SDSS6
PTF12iiq 2MASX J02500784-0016014 GY12 GY12 GY12 SDSS1
PTF12ikt 2MASX J01144386+0017100 GY12 GY12 – D97
iPTF13dge NGC 1762 C13b C13b – T98
iPTF13dkj CGCG 454-001 C13a C13a C13a G93
iPTF13ebh NGC 890 C13c C13c – Wo06
iPTF14gdr 2MASX J00275880-0513014 Jo14 Jo14 Jo14 This work
SN 2011gy MCG +07-08-15 J11 Ta11; Z11a – UZC
SN 2011hb NGC 7674 Ho11 MB11a – Ni00
SN 2011hk NGC 881 N11 MB11b MB11b Bo93
SN 2011hr NGC 2691 Na11 Z11b – dV91
SN 2011iu UGC 12809 Cox11 MB11c MB11c Bo93
SN 2012cg NGC 4424 Ka12 Ce12; Mn12 – Kt08
SN 2012et CGCG 476-117 R12a De12 – SG08
SN 2012fm UGC 3528 Be12 Za12 – UZC
SN 2012gm NGC 7580 R12b O12 – Ga05
SN 2013be IC 3573 Zh13 Si13 – SDSS4
SN 2013fj PGC 68419 Cia13 ZT13 – H99
SN 2013fn IC 1342 Ho13 Mo13; MC13 – T05
SN 2013fw NGC 7042 J13 HL13 – dV91
SN 2014aa NGC 3861 A14 To14; BA14a – Co08
SN 2014dm NGC 1516A N14 Sh14; BA14b BA14b JS09
SNhunt206 NGC 766 Ke13 Ke13 Ke13 H99
SNhunt263 UGC 4798 Ma14a ER14 ER14 dV91

aReferences for SN discovery, SN classifier, SN redshift and host galaxy redshift are: A14 Arbour et al. (2014),
B15a Brimacombe et al. (2015b), B15b Brimacombe et al. (2015a), BA14a Blagorodnova et al. (2014a), BA14b
Blagorodnova et al. (2014b), BT12 Buton et al. (2012), Be12 Belligoli et al. (2012), Bo93 Bottinelli et al. (1993), C13a
Cao et al. (2013a), C13b Cao et al. (2013b), C13c Cao et al. (2013c), CL12 Cellier-Holzem et al. (2012), Ce12 Cenko
et al. (2012),
Ci15 http://www.cbat.eps.harvard.edu/unconf/followups/J08593491+4555343.html,
Cia13 Ciabattari et al. (2013), Co08 Cortese et al. (2008), Cox11 Cox et al. (2011), D97 Dale et al. (1997), dV91 de
Vaucouleurs et al. (1991), ER14 Elias-Rosa et al. (2014), F15a Falco et al. (2015a), F15b Falco et al. (2015b), Fe14
Ferretti et al. (2014), G93, Giovanelli & Haynes (1993), GY12 Gal-Yam et al. (2012), Ga05 Garland et al. (2005),
H12 Huchra et al. (2012), H99 Huchra et al. (1999) HL13 Howell et al. (2013), Ho11 Howerton et al. (2011), Ho13
Howerton et al. (2013), J11 Jin & Gao (2011), J13 Jin et al. (2013), JS09 Jones et al. (2009), Jo14 Johansson et al.
(2014), K15 Kiyota et al. (2015), Ka12 Kandrashoff et al. (2012), Ke13 Kankare et al. (2013), Kt08 Kent et al. (2008),
M96 Marzke et al. (1996), MB11a Marion & Berlind (2011a), MB11b Marion & Berlind (2011b), MB11c Marion &
Berlind (2011c), ML13 Milisavljevic (2013),
Ma14a http://www.cbat.eps.harvard.edu/unconf/followups/J09084248+4448132.html,
Ma14b http://www.cbat.eps.harvard.edu/unconf/followups/J10292799+2200468.html,
Mn12 Marion et al. (2012), Mo13 Mo et al. (2013), N11 Nakano (2011), N14 Nakano et al. (2014), Na11 Nayak et al.
(2011), Ni00 Nishiura et al. (2000), No15 Noebauer et al. (2015), O12 Ochner et al. (2012), O15 Ochner et al. (2015),
R12a Rich et al. (2012a), R12b Rich et al. (2012b), S15 Smith et al. (2015), SDSS1 Abazajian et al. (2003), SDSS3
Abazajian et al. (2005), SDSS4 Adelman-McCarthy et al. (2006b), SDSS6 Adelman-McCarthy et al. (2008), SG08
Saintonge et al. (2008), Sa11 Sánchez Almeida et al. (2011), Sh14 Shivvers & Filippenko (2014) Si13 Silverman et al.
(2013), T98 Theureau et al. (1998), T05 Theureau et al. (2005), Ta11 Taubenberger et al. (2011), To14 G. et al.
(2014), UZC Falco et al. (1999), W14 Walton et al. (2014), Wo06 Woods et al. (2006), Wr12 Wright et al. (2012),
Z11a Zhang et al. (2011a), Z11b Zhang et al. (2011b), ZT13 Zanutta et al. (2013), Za12 Zaggia et al. (2012), Zh13
Zhang et al. (2013),
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A.2 GALACTIC REDSHIFT ESTIMATIONS

We used the location of common emission lines (Hβ, [O III], Hα, [N II], S II) to estimate the

redshift of three host galaxies. No previously recorded redshift was available for 2MASXi

J0909234-044327, host galaxy of ASASSN-15ho. From our spectra we estimate the redshift

to be 0.041. Figure A1 shows a range of spectra from the galaxy with the redshifted emission

lines highlighted in grey. These lines correspond to a redshift of 0.041. This galaxy is a face

on spiral galaxy, so its emission lines are not very affected by peculiar velocities.

The next two galaxies are spiral galaxies with some inclination, so the measurements

are more affected by peculiar velocities, which makes it more difficult to estimate its redshift.

We used the peculiar velocity plots presented in Figures 3.23 and 3.26, respectively, to help

estimate the redshifts since the core should not be experiencing motion relative to its redshift.

No previously recorded redshift was available for 2MASX J01403375+1830406, host galaxy

of LSQ12gef. From our spectra we estimate the redshift to be 0.0648. Figure A2 shows

a range of spectra from the galaxy with the redshifted emission lines highlighted in grey.

These lines correspond to a redshift of ∼0.0648. The Hβ and [O III] lines are very faint in

the calibrated spectra.

No previously recorded redshift was available for 2MASX J00275880-0513014, host

galaxy of iPTF14gdr. From our spectra we estimate the redshift to be 0.0695. Figure A3

shows a range of spectra from the galaxy with the redshifted emission lines highlighted in

grey. These lines correspond to a redshift of 0.0695.
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Figure A1 Spectra of 2MASXi J0909234-044327, host galaxy of ASASSN-15ho, with several

emission lines denoted in grey. We have added a flux offset for each spectrum for clarity.

The redshift is ∼ 0.041.
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Figure A2 Spectra of 2MASX J01403375+1830406, host galaxy of LSQ12gef, with several

emission lines denoted in grey. We have added a flux offset for each spectrum for clarity.

The redshift is ∼ 0.0648.
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Figure A3 Spectra of MASX J00275880-0513014, host galaxy of iPTF14gdr, with several

emission lines denoted in grey. We have added a flux offset for each spectrum for clarity.

The redshift is ∼ 0.0695.
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A.3 Hα EQUIVALENT WIDTH MAPS

We here present the Hα Equivalent width maps for all 41 pointings of 32 host galaxies with

HexPak.
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Figure A4 The orange cross indicates the location of the host galaxy and the purple cross is

the location of the supernova. The purple circle occasionally visible in these plots indicates

the 1 kpc radius circle around the SN location. Hα EW for: CGCG 063-098, host galaxy of

ASASSN-15hg - Fiber 35; CGCG 063-098, host galaxy of ASASSN-15hg - Fiber 62; 2MASXi

J0909234-044327, host galaxy of ASASSN-15ho; 2MASX J01403375+1830406, host galaxy

of LSQ12gef.

189



0 5 10 15 20 25 30 35 40
x [arcseconds]

0

5

10

15

20

25

30

35

40

y 
[a

rc
se

co
nd

s]

N

E

[Angstroms]

Galaxy
SN

H  map of 20151201 LSQ14aeg

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40
x [arcseconds]

0

5

10

15

20

25

30

35

40

y 
[a

rc
se

co
nd

s]

N

E

[Angstroms]

Galaxy
SN

H  map of 20151116 PS1-12bwh

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40
x [arcseconds]

0

5

10

15

20

25

30

35

40

y 
[a

rc
se

co
nd

s]

N

E

[Angstroms]

Galaxy
SN

H  map of 20151117 PS15mb

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40
x [arcseconds]

0

5

10

15

20

25

30

35

40

y 
[a

rc
se

co
nd

s]

N

E

[Angstroms]

Galaxy
SN

H  map of 20151116 PSNJ07250042+2347030 F28

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40
x [arcseconds]

0

5

10

15

20

25

30

35

40

y 
[a

rc
se

co
nd

s]

N

E

[Angstroms]

Galaxy
SN

H  map of 20151116 PSNJ07250042+2347030 F62

0

10

20

30

40

50

Figure A5 Hα EW for: 2MASX J10193682+1933131, host galaxy of LSQ14aeg; CGCG

205-021, host galaxy of PS1-12bwh; SDSS J085940.13+151113.5, host galaxy of PS15mb;

NGC 2370, host galaxy of PSN J07250042+2347030 - Fiber 28; NGC 2370, host galaxy of

PSN J07250042+2347030 - Fiber 62.
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Figure A6 Hα EW for: UGC 4709, host galaxy of PSN J08593491+4555343; UGC 5691, host

galaxy of PSN J10292799+2200468; 2MASX J02500784-0016014, host galaxy of PTF12iiq;

2MASX J01144386+0017100, host galaxy of PTF12ikt.
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Figure A7 Hα EW for: NGC 1762, host galaxy of iPTF13dge - Fiber 35; NGC 1762, host

galaxy of iPTF13dge - host only; CGCG 454-001, host galaxy of iPTF13dkj; NGC 890, host

galaxy of iPTF13ebh.
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Figure A8 Hα EW for: 2MASX J00275880-0513014, host galaxy of iPTF14gdr; MCG +07-

08-15, host galaxy of SN 2011gy; NGC 7674, host galaxy of SN 2011hb - Fiber 35; NGC

7674, host galaxy of SN 2011hb - Fiber 62.
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Figure A9 Hα EW for: NGC 7674, host galaxy of SN 2011hb - host only; NGC 881, host

galaxy of SN 2011hk; NGC 2691, host galaxy of SN 2011hr; UGC 12809, host galaxy of

SN 2011iu.
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Figure A10 Hα EW for: NGC 4424, host galaxy of SN 2012cg; CGCG 476-117, host galaxy

of SN 2012et - 2015-11-16; CGCG 476-117, host galaxy of SN 2012et - 2015-11-17; UGC

3528, host galaxy of SN 2012fm.
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Figure A11 Hα EW for: NGC 7580, host galaxy of SN 2012gm; IC 3573, host galaxy of

SN 2013be; PGC 68419, host galaxy of SN 2013fj; IC 1342, host galaxy of SN 2013fn.
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Figure A12 Hα EW for: NGC 7042, host galaxy of SN 2013fw - Fiber 35; NGC 7042, host

galaxy of SN 2013fw - Fiber 62; NGC 3861, host galaxy of SN 2014aa; NGC 1516A, host

galaxy of SN 2014dm - Fiber 62.
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Figure A13 Hα EW for: NGC 1516A, host galaxy of SN 2014dm - Fiber 20; NGC 1516A,

host galaxy of SN 2014dm - host only; NGC 766, host galaxy of SNhunt206; UGC 4798, host

galaxy of SNhunt263.
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APPENDIX B

APPENDICES FROM CHAPTER 4

B.1 HOST GALAXY PHOTOMETRY IN UV, OPTICAL, AND NIR

We here present all SNeIa with H-band photometry that we collected. We have identified

the respective host galaxy and present the FNugrizyJHKS photometry downloaded from

SDSS, PS1, GALEX, and 2MASS. All photometry is reported in units of magnitude and has

been corrected for Milky Way extinction. The g − r is in the restframe as is Mr. Mass is in

units of Log (M∗/M�). The “LC” column denotes “Y” if the supernovae were used for the

H-band lightcurve fits and included in the Hubble residual analysis.

Due to format constraints, we produced an “overflow” table with SNeIa/host galaxies

whose names were too long to occupy a single line and fit on one page.
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B.2 ERROR IN HOST GALAXY PHOTOMETRY IN UV, OPTICAL,

AND NIR

These tables provide the given photometric errors for the photometry listed in the tables

above. All PS1 errors appear to be zero here, but they are reported as 103 − 10−5 mag in

the catalogs and do not show up when rounding to two significant digits. All units are in

magnitudes. The SNeIa are in the same order as the tables above.

Due to format constraints, we produced an “overflow” table with SNeIa/host galaxies

whose names were too long to occupy a single line and fit on one page.
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B.3 H-BAND AND OPTICAL LIGHTCURVE FITS

We here include all of the lightcurve fits fromH-band “max model” and optical “EBV model2”

distance modulus (DM) from SNooPy. Included is Name, time of B-band maximum, error

on time of B-band maximum, redshift, error in redshift, apparent magnitude in H-band at

maximum, error in apparent magnitude in H-band at maximum, number of H-band ob-

servations, H-band stretch parameter, error on H-band stretch parameter, optical DM at

maximum, error in optical DM at maximum, number of optical observations, optical DM

stretch parameter, error on optical DM stretch parameter, Reference code (paper it was

presented in), Sample (sample code given by W14 and updated here).

The sample names are used for the divisions in the analysis. Some SNe Ia were observed

by multiple projects, but we assign each SNe Ia to a single sample to quote dispersions and

distributions in the analysis. Due to format constraints, 2 SNeIa have the references codes

as a footnote and we produced an “overflow” table with SNeIa whose names were too long

to occupy a single line and fit on one page.

Reference codes: J99: Jha et al. (1999); H00: Hernandez et al. (2000); K00: Krisciu-

nas et al. (2000); K04a: Krisciunas et al. (2004a); K04b: Krisciunas et al. (2004b); Ph06:

Phillips et al. (2006); Pa07a: Pastorello et al. (2007b); Pa07b: Pastorello et al. (2007a); St07:

Stanishev et al. (2007); F15: Wood-Vasey et al. (2008); C10: Contreras et al. (2010); S11:

Stritzinger et al. (2011); BN12: Barone-Nugent et al. (2012); W14: Weyant et al. (2014);

F15: Friedman et al. (2015); W17: Weyant et al. (2017).
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ApJ, 735, 125

Scannapieco, E., & Bildsten, L. 2005, ApJ, 629, L85

Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103

Schwarz, G. 1978, Ann. Statist., 6, 461

Scolnic, D., Rest, A., Riess, A., et al. 2014, ApJ, 795, 45

SDSS Collaboration, Albareti, F. D., Allende Prieto, C., et al. 2016, ArXiv e-prints,
arXiv:1608.02013

Sersic, J. L. 1968, Atlas de galaxias australes

Shimasaku, K., Fukugita, M., Doi, M., et al. 2001, AJ, 122, 1238

Shivvers, I., & Filippenko, A. V. 2014, Central Bureau Electronic Telegrams, 3996

Shivvers, I., Zheng, W., Van Dyk, S. D., et al. 2017, ArXiv e-prints, arXiv:1704.04316

Silverman, J. M., Vinko, J., Quimby, R., et al. 2013, Central Bureau Electronic Telegrams,
3470, 1

Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163

Smee, S. A., Barkhouser, R. H., Scharfstein, G. A., et al. 2011, PASP, 123, 87

Smith, K. W., Wright, D., Smartt, S. J., et al. 2015, The Astronomer’s Telegram, 7212

Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv e-prints, arXiv:1503.03757

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. 2002, Journal of the
Royal Statistical Society, 64, 583

Stanishev, V., Goobar, A., Benetti, S., et al. 2007, A&A, 469, 645

233



Stanishev, V., Goobar, A., Amanullah, R., et al. 2015, ArXiv e-prints, arXiv:1505.07707

Stoughton, C., Lupton, R. H., Bernardi, M., et al. 2002, AJ, 123, 485
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