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BRAIN-INSPIRED COMPUTING: NEUROMORPHIC SYSTEM DESIGNS AND

APPLICATIONS

Chenchen Liu, PhD

University of Pittsburgh, 2017

In nowadays big data environment, the conventional computing platform based on von Neumann

architecture encounters the bottleneck of the increasing requirement of computation capability and

efficiency. The “brain-inspired computing” Neuromorphic Computing has demonstrated great

potential to revolutionize the technology world. It is considered as one of the most promising solu-

tions by achieving tremendous computing and power efficiency on a single chip. The neuromorphic

computing systems represent great promise for many scientific and intelligent applications. Many

designs have been proposed and realized with traditional CMOS technology, however, the progress

is slow. Recently, the rebirth of neuromorphic computing is inspired by the development of novel

nano-technology.

In this thesis, I propose neuromorphic computing systems with the ReRAM (Memristor) cross-

bar array. It includes the work in three major parts: 1) Memristor devices modeling and related

circuits design in resistive memory (ReRAM) technology by investigating their physical mech-

anism, statistical analysis, and intrinsic challenges. A weighted sensing scheme which assigns

different weights to the cells on different bit lines was proposed. The the area/power overhead of

peripheral circuitry was effectively reduced while minimizing the amplitude of sneak paths. 2)

Neuromorphic computing system designs by leveraging memristor devices and algorithm scaling

in neural network and machine learning algorithms based on the similarity between memristive

effect and biological synaptic behavior. First, a spiking neural network (SNN) with a rate coding

model was developed in algorithm level and then mapped to hardware design for supervised learn-

ing. In addition, to further speed and accuracy improvement, another neuromorphic system adopt-

iv



ing analog input signals with different voltage amplitude and a current sensing scheme was built.

Moreover, the use of a single memristor crossbar for each neural network layer was explored. 3)

The application-specific optimization for further reliability improvement of the developed neuro-

morphic systems. In this thesis, the impact of device failure on the memristor-based neuromorphic

computing systems for cognitive applications was evaluated. Then, a retraining and a remapping

design in algorithm level and hardware level were developed to rescue the large accuracy loss.
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1.0 INTRODUCTION

In deep learning networks, the matrix-vector (and matrix-matrix) multiplications are basic oper-

ations that determine the overall computation speed, accuracy, and power consumption [4]. Ac-

celerating the execution of matrix-vector multiplication emerges as an important task and exten-

sive studies have been carried out. Revolutionary paradigms on general-purpose platforms, e.g.,

GPU [5] and CPU [6], and domain-specific hardware like FPGA [7] have been developed. How-

ever, the computation efficiency improvement is hindered by the traditional von Neumann archi-

tecture, resulting in high hardware cost and energy consumption [8].

The recent rebirth of neuromorphic computing inspires a new solution of implementing neu-

ral networks in specialized VLSI designs to overcome the above difficulty. Firstly proposed in

the 1980s, neuromorphic computing refers to implementing the computation in neural systems

by utilizing a specific VLSI hardware system [9]. In traditional CMOS domain, many systems

in digital, analog and mixed-signal formats have been presented and demonstrated, aiming at

improving computing and data communication efficiency, i.e., high computation speed with low

cost [10]; [11]. The “brain chip” proposed by a group of MIT researchers [12] is a good example.

The design with 400 transistors tends to mimic analog signal transmission in human brain. Neu-

romorphic computation platform can also be realized on field-programmable gate array (FPGA)

or field-programmable analog array (FPAA) for low power signal processing and reconfigurabil-

ity [7]; [13]. Alternatively, IBM reported TrueNorth – a spike-timing-based biosynaptical chip,

in which synapses were built with SRAM cell in a crossbar structure. Extremely low power and

energy consumption in data transferring was achieved [14]; [15].

With the appearance of new technologies and devices such as spintronic device [16], phase

change device [17]; [18] and resistive device [19]; [20], new neuromorphic design and architecture

adopting these novel devices are widely investigated. For example, a neuromorphic hardware using

1



spin devices in crossbar structure was proposed in 2012 [21]. It obtained more than 15× lower

energy consumption, comparing to the state of art CMOS designs. Among of all the emerging

devices, resistive device (a.k.a.memristor) emerges as one of the most attractive candidates because

it naturally performs alike synapse and owns the features of good scalability, low energy, multiple-

state operation and CMOS compatibility [22].

The resistive switching effect as the basic principle in resistive memory (i.e. ReRAM) cell

operations has been studied and used in memory applications since 1960 [23]; [24]; [25]. In

the following years, various oxide materials with fast resistive switching characteristics including

NiO, SiOx, Al2O3, and Ta2O5 were investigated [19]. However, there was no practical prototype

reported until 2002 when a 64-bit ReRAM array based on perovskite oxide devices was fabricated

at 0.5µm CMOS process [26]. In 2004, a binary transition metal oxide (TMO) ReRAM was inte-

grated at 0.18µm CMOS technology [27]. Notably, in 2008 HP Labs [28] described the ReRAM

devices with analogue resistive states as memristors, approving the existence of the fourth basic

circuit element predicted by Professor Leon Chua in 1971 [29].

Since then, extensive efforts have been given to the ReRAM development and applications.

For instance, the ReRAM technology can not only be used as high density memory but also be

leveraged in realizing reconfigurable systems [30] and matrix-based computation [31]. Usually, the

resistive devices are organized in a cross-point array structure that offers ultra-dense data storage

with a unit area of only 4F 2, where F represents the technology feature size. Hence, the basic

computation in deep neural network, that is matrix-vector multiplication (a.k.a. sum-of-products)

can be implemented naturally and efficiently by the resistive crossbar, as is illustrated in Figure 1.

However, accessing such a passive resistive network inevitably induces current flows through

unselected paths, or, sneak paths [1]; [32]. The extra current on sneak paths can be regarded as

noise that degrades the effective programming voltage in write operation or contaminates the real

information of the target cell during a read. Great efforts at device level [33]; [34]; [35] as well as

circuits level [30]; [36]; [37] have been made to alleviate the impact of sneak paths. Importantly,

Qureshi et al. [37] utilized an operational amplifier (op-amp) to accurately retain the voltage of

unselected cells at a fixed level and hence suppress the sneak path leakage. Notably, the large area

of the op-amp design severely constraints the allowable number of op-amps and therefore the data

access bandwidth. In this work, we propose a weighted sensing scheme which assigns different
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Figure 1: Implementing sums-of-product computation in neural network to a memristor crossbar.

weights to the cells on different bitlines. Thus, these bitlines can share only one op-amp to read

out the associated data simultaneously, effectively reducing the area/power overhead of peripheral

circuitry while minimizing the amplitude of sneak paths. Our simulation shows that the proposed

scheme can successfully read out multi-bit data, even when RRAM device has a very low Roff/Ron

ratio of 5.

On the system-level front of the development of the neuromorphic systems based on resistive

crossbar, Hu et al. proposed a neuromorphic engine with memristor crossbar in an analog com-

puting approach – the input and output signals are represented by analog signals with high parallel

computation in 2012 [3]. However, it requires digital-to-analog converter (DAC) and analog-to-

digital converter (ADC) to transfer the input/output data, indicating large design cost.

In this work, we propose a novel and practical spiking neuromorphic design built on resistive

crossbar arrays. A rate coding scheme where pre- and post-neuron signals are represented by digi-

talized pulses are adopted. The computing result is transferred into digitalized output spikes via an

integrate-and-fire circuit (IFC) as the post-neuron. The computational robustness of the system was

analyzed after including design considerations and verified by circuit simulations. Moreover, we

applied the design for digital image recognition using two typical neural network configurations—

feedforward and Hopfield networks. Compared with the previous memristor crossbar-based analog

computing engine [3], our design can dramatically reduce more than 50% energy consumption.

Further more, a chip design with a single layer and a 2-layer feedforward neural networks are

implemented in IBM130 nm technology using the full custom design flow and then fabricated.

3



After that, a new memristor crossbar based computing engine which leverages a current-based

sensing scheme for higher computation speed and accuracy is proposed. The design supplies ana-

log voltage signals to wordlines in parallel. A current buffer amplifier directly senses out bitline

current so the tail voltage of bitline maintains at a constant level. Two approaches are developed to

transfer the current computing results into digital/analog voltage signals - one approach is connect-

ing the IFC developed above after an current sensing scheme, and the other approach is developing

a current-to-voltage converter basing on the current sensing scheme. Matrix-vector computing sys-

tem with the first approach is implemented and applied in a 3-layer feedforward neural network.

Compared to the spiking design, this design obtained 8.1% improvement in recognition accu-

racy. Similarly, the matrix-vector computing system is designed using the analog-mixed-signal

design flow in IBM130 nm technology and then fabricated. Moreover, single layer and 2-layer

feedforward neural network with approach with current-to-voltage converter are implemented and

simulated at GlobalFoundry 130nm technology node. This proposed computing system demon-

strates good classification accuracy: a maximum computation accuracy of 91.8% can be reached

in a single layer design while a 96.12% computation accuracy value is obtained in the two-layer

design.

In addition, as the development of memristor technology is still maturing, device defects and

fabrication yield may be a significant concern. Specifically, the single-bit failure (SBF) denotes a

device that freezes in a high conductance state (“stuck-on”) or a low conductance state (“stuck-

off”). Although neural networks usually can tolerate a certain number of imperfect synaptic

weights, high SBF rate degrades the computation accuracy significantly. For example, we tested a

feed-forward neural network for MNIST database: as the SBF rate increases to 20%, the average

recognition accuracy rapidly dropped from 92.64% to 39.4%, which is far below an acceptable

range. Redundancy schemes have been widely adopted in memory designss [38]. But it is not

efficient for the memristor-based analog computations with high precision requirement. In this

work, we propose a defect rescuing methodology that leverages the application-specific features

to improve the hardware efficiency. Our results on the two-layer network show that by remapping

only 5% defects of the most significant weights, the recovery rate further increases to 99.3%.
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The rest of our paper is organized as follows:

• We itemize the detailed work progress and expected contributions of our ReRAM technology

study and their application in storage memory and neuromorphic computing in Chapter 2.

• We then present the details and expects implementation of our weighted sensing approach for

solving sneak path leakage problem in memory design in Chapter 3.

• We show our spiking neuromorphic computing system implementation and fabrication details

in Chapter 4.

• We demonstrate our new neuromorphic computing system for higher speed and accuracy in

Chapter 5.

• Finally we introduce our work in rescue the memristor-based neuromorphic design with high

defects, as is shown in Chapter 6.
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2.0 RESEARCH SCOPE AND

EXPECTED CONTRIBUTIONS

The proposed work can be decoupled as following three main research scopes: 1) to investigate and

provide a more efficiency approach to solve the sneak path leakage issue in ReRAM technology;

2) with a better understanding of the ReRAM cell (Memristor) and its application in neuromor-

phic computing, to design a spiking neuromorphic computing system with memristor crossbar and

apply it in artificial neural network (ANN) for image classification. Then, finish the chip design

with two feedforward neural networks - single layer and two-layer in IBM130 nm technology for

fabrication; 3) to design a level-base neuromorphic computing systems for higher computing speed

and accuracy compared to the spiking neuromorphic system mainly for matrix-vector computation,

and evaluate its computation accuracy by applying it in neural network for image reconfiguration.

Then, finish the chip design with a matrix-vector computation system in IBM130 nm technol-

ogy for fabrication; 4) to improve the reliability of the memristor-based neuromorphic designs for

cognitive applications considering the current development status of memristor device.

For research Scope 1, we proposed a weighted sensing scheme in ReRAM technology to solve

the sneak path leakage issue in the ReRAM crossbar array. The major task of this approach is

that assigns different weights to the cells on different bitlines. Thus, these bitlines can share only

one op-amp to read out the associated data simultaneously, effectively reducing the area/power

overhead of peripheral circuitry while minimizing the amplitude of sneak paths. Our major expect

technical contributions of research Scope 1 are:

• We evaluate and analyze the significant of sneak path leakage in a passive resistive crossbar.

• We extend Qureshis work that connecting one operational amplifier (op-amp) after each bitline

of the crossbar to eliminate the sneak path leakage, and propose a weighted sensing scheme to

enable multiple bits sensing simultaneously.
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• We implement the weight assignment in the crossbar array to guarantee storage data can be

read out successfully at the same time.

• We evaluate the effectiveness of weighted sensing, the dependence of the op-amp gain param-

eter of our proposed design, the impact of device resistance ratio in the ReRAM design, and

the area we can save by our proposed weighted sensing.

For research Scope 2, we proposed a spiking neuromorphic design with resistive crossbar. Dif-

ferent with the traditional neuromorphic computing system with resistive crossbar that uses voltage

and current magnitudes to represent the data that participate in the computation, our design adopt-

ing spikes to represent signal, and thus our design provides the following features: 1) A digitalized

interface in spikes with good noise immunity and energy efficiency for signal transferring; 2)

Highly-efficient parallel analog operations of synaptic weighting function through resistive cross-

bar arrays; 3) A novel integrate-and-fire circuit converting the analog computation data to output

spikes at a rate of up to 568.2M spikes/sec and energy of 0.48pJ-per-spike.

Our major technical contributions of research Scope 2 are:

1) In Hardware Level:

• We proposed a new integrate-and-fire circuit(IFC) design featuring high speed and low power

consumption. The area of the IFC design at IBM 130nm technology is 175.3µm2, which

is compatible to that of traditional designs, while The energy consumption of our design is

0.48pJ-per-spike, which is about a quarter of the traditional designs.

• We designed the 1T1R (one-transistor-one-resistor) crossbar structure and a control scheme to

eliminate the sneak path leakage and guarantee computing accuracy.

2) In System and Application Level:

• We explored the computational accuracy of our proposed spiking design based on a 32 × 32

crossbar array.

• We evaluated the performance and robustness of the proposed spiking neuromorphic design

by using the application of digital image recognition. A feedforward network and a hopfield

network are implemented and evaluated.
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3) In Chip Level:

• We designed a chip with a single layer and a 2-layer feedforward neural networks for image

classification in IBM130 nm technology using the full custom design flow and then fabricated.

For research Scope 3, we proposed a level-based neuromorphic design with resistive crossbar.

Different with the spiking design, this design supplies analog voltage signals to wordlines in par-

allel and a current-based sensing scheme is developed for higher computation speed and accuracy.

A current buffer amplifier directly senses out bitline current so the tail voltage of bitline maintains

at a constant level. Two approaches are developed to transfer the current computing results into

digital/analog voltage signals: 1) One approach is connecting the IFC developed in the spiking

design after the current buffer amplifier. The current buffer amplifier is here to isolate the resis-

tive crossbar and the IFC and transfer the computation results from the crossbar to the IFC. 2)The

other approach is developing a current-to-voltage converter basing on the current sensing scheme,

by which the current computation result from the crossbar can be transferred to analog voltage.

Our major technical contributions of research Scope 3 are:

1) In Hardware Level:

• We proposed a new current sensing scheme to copy the current computation result from the

resistive crossbar or transfer the current result to analog voltage with high computation speed

and accuracy.

• We designed the 1R - resistive device only crossbar structure which offers the minimal cell

size of 4F 2 while assuring computation accuracy.

2) In System and Application Level:

• Feed-forward neural networks with different array size and layer number for MNIST handwrit-

ten digit recognition are implemented basing on the neuromophic system in the two proposed

approaches. The proposed designs are expected to have higher computing speed and accuracy.

3) In Chip Level:

• We designed a matrix-vector computation system using the analog-mixed-signal design flow

in IBM130 nm technology and then fabricated.
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For research Scope 4, we proposed a defect rescue neuromorphic design to restore the com-

puting accuracy loss caused by the bit failure within the crossbar. Fist, the impact of device failure

on the memristor-based neuromorphic computing systems for cognitive applications was analyzed

through feedforward neural networks implementation for MNIST database recognition. Then,

practical solutions to rescue the neuromorphic hardware with device defects was explored. The

significance of synaptic weights was evaluated theoretically and statistically initially, and then a

retraining and a remapping design in algorithm level and hardware level were developed.

Our major expect technical contributions of research Scope 4 are:

• Learning weight significance. We will classify the synaptic weights in a neural network into

significant and insignificant categories based on their impact on the network’s performance.
• A retraining algorithm is developed to compensate the SBF caused computation error by re-

tuning the trainable weights. Two major constrains in weight initialization and weight updating

are involved in accelerating the retraining process and mimicking the SBF defects in a mem-

ristor array.
• A remapping algorithm that utilizes a redundancy scheme can further improve the computa-

tion accuracy, especially when a large number of SBF defects fall in the significant weights

category. Only the defects corresponding to the most significant weights will be remapped to

the redundancy columns.
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3.0 A WEIGHTED SENSING SCHEME FOR RERAM-BASED CROSS-POINT

MEMORY ARRAY

In this chapter, we will present the details of the proposed “weighted sensing scheme” - an ap-

proach effectively reducing the area/power overhead of peripheral circuitry while minimizing the

amplitude of sneak paths. The structure of this chapter is organized as the follows: Section 3.1

gives the background introduction on ReRAM technology and cross-point array; Section 3.2 de-

scribes the proposed weighted sensing scheme and the related implementation details; Section

3.3 presents and analyzes the simulation results; At last, we summary the work in this chapter in

Section 3.4.

3.1 RERAM BASED CROSS-POINT ARRAY

3.1.1 ReRAM Cell Basics

Generally, ReRAM denotes to the random access memories that reply on resistance difference for

data storage. For example, the high resistance state (HRS) and low resistance state (LRS) of a

ReRAM device respectively represent logic ‘0’ and ‘1’, or versa vice. Among various conduct-

ing mechanisms to illustrate resistive switching phenomenons, the concept of conductive filaments

has been widely recognized—the LRS/HRS of a ReRAM device is enabled through the forma-

tion/rupture of conducting channels [19][20][39].

Figure 2 illustrates a simple ReRAM switching model [1]. A SET process with an external

voltage exceeding the set voltage (Vset) transfers a memory cell to HRS. Oppositely, a negative

reset voltage (Vreset) is applied to switch it back to LRS in RESET procedure. A small voltage

Vread < Vset is used in a read operation so as not to disturb the stored data. In this work, we use

Roff and Ron to represent the device resistance values at HRS and LRS, respectively.
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Figure 2: A ReRAM switching behavior model [1].

3.1.2 ReRAM Cross-point Structure Analysis

Cross-point array has been demonstrated as a telecommunication switching system since 1939.

The nanometer ReRAM design exploits the similar structure in which two layers of metal wires

are connected by memory devices at cross points as illustrated in Figure 3. Such a structure can

achieve the minimal unit storage area of 4F 2, where F represents technology feature size. For

comparison, the area of an SRAM cell is 30× larger (> 120F 2).

However, accessing such a passive resistive network inevitably induces current flows through

unselected paths, or, sneak paths [1][32]. The extra current on sneak paths can be regarded as

noise that degrades the effective programing voltage in write operation or contaminates the real

information of the target cell during a read. The performance of a cross-point array is thereby

dependent on the amount of sneak path leakage current, which is determined by the number of

memory devices as well as the resistance value of these cells (that is, data pattern). The maximum

array dimension is restricted by the worst-case condition to guarantee correct functionality.

WL 

Resistive Cell (Metal Oxide)     

(Metal) 

BL (Metal) 

4F2 

A ReRAM Cell Area 

Figure 3: The ReRAM based cross-point array.
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Great efforts at device level have been made to alleviate the impact of sneak paths. A popular

solution is stacking a ReRAM device with a diode, which is regarded as a selected device [33].

Such a design can be applied to unipolar devices (e.g., PCM) using short/long pulses or high/low

voltages at the same polarity to execute programming/erasing. A latest research effort tends to inte-

grate a ReRAM device with a bipolar nonlinear selector [34]. Accordingly, high voltage is required

in memory accesses, resulting in large power consumption. Complementary resistive switch is an-

other interesting approach, which connects two bipolar ReRAM device anti-serially [35]. During

operation, all the unselected cells stay at high resistance states so as to minimize the sneak path

leakage. However, reading data from this structure is always associated with memory writes, in-

creasing the read latency and degrading device reliability.

Improvements in crosspoint array and peripheral circuit designs have also been widely ex-

plored. Y.-C. Chen et al. proposed to insert a column of dummy cells as reference to partially

compensate the impact of sneak path leakage [30]. The design leaves all the unselected cells float-

ing, potentially inducing stability issue. AC sensing as a new design concept sets all the rows and

columns to the same voltage potential and uses an AC signal to detect the stored information [36].

The complexity of such a small-signal design usually is high, especially after considering the

process variations and signal fluctuations. Recently, Qureshi et al. [37] utilized an operational

amplifier (op-amp) to accurately retain the voltage of unselected cells at a fixed level and hence

suppress the sneak path leakage. Notably, the large area of the op-amp design severely constraints

the allowable number of op-amps and therefore the data access bandwidth.

3.2 WEIGHTED SENSING SCHEME

3.2.1 Significance of Sneak Path Leakage

A cross-point array with bipolar ReRAM devices suffers from sneak path through neighbor cells.

As shown in Figure 4, sneak paths leakage is referred to the current leakage flows through unse-

lected cells when accessing the resistive network. In a read operation, the current leakage can be

regarded as noise which contaminates the real information of the selected cells. We first evalu-

ate the impact of sneak path leakage on the sensing margin of a cross-point array. All the circuit

simulations were conducted under TSMC 180nm technology under Cadence Spetre environment.
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Figure 4: Sneak path leakage in a cross-point array.
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Figure 5: ∆V is determined by the cross-point array size and data pattern.

The sensing margin is represented by the output voltage swing (∆V ) which is the difference

of sensing voltages when reading ‘1’ and ‘0’. By referring to [32], we set Ron and Roff to 5KΩ

and 1MΩ respectively. Rsense is the load resistor along bitline (see Figure 4) that behaves as the

input resistance of sense amplifier. It is set to 100Ω. The evaluation also include the impact of

wires assuming the resistance between two adjacent junctions is 2.5Ω [32]. We apply 0.5V to the

selected wordline and 0V to the remaining wordlines.

Figure 5 shows the output voltage swing ∆V of the cell at the rightest top corner in Figure 4.

Due to the interconnect resistance and sneak path leakage, it encounters the largest degradation

and hence is considered as the worst-case situation [32]. Because the sensing margin is severely

affected by the data patterns, we select two data patterns to represent the two extreme situations:

all the unselected cells are at logic “1” (ALL ONEs) or at logic “0” (ALL ZEROs). Under ALL
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ZEROs, ∆V drops slightly because the HRS of the unselected cells suppress the sneak path leak-

age. In contrast, when ALL ONEs is applied, all the unselected cells are at LRS and sink a signifi-

cant amount of sneak path current. Moreover, as the cross-point array size increases, the impact of

sneak path leakage grows and consequently the output voltage swing ∆V degrades dramatically.

As such, cross-point memory design is constrained in a small size.

3.2.2 Design Principle of Weighted Sensing

Notably, sneak path leakage doesn’t exist if the voltage drop across unselected cells perfectly

remains at zero. Based on this concept, Qureshi et al. [37] proposed a new sensing scheme which

connects each bitline with an operational amplifier (op-amp) for data sensing. Bringing in op-amps

helps maintain close-to-zero voltage drop across unselected cells, which effectively suppresses the

sneak path leakage current. However, the complex op-amp design induces significant overhead in

design area, making it difficult to adopt such a solution in real implementation. In this work, we

extended Qureshi’s work and propose a weighted sensing scheme to enable multiple bits sensing

simultaneously. The proposed design uses only one sensing circuit component to enhance the read

efficiency and reduce the overhead of peripheral circuitry.

Figure 6 illustrates the principle of the proposed weighted sensing. The design assigns the

data information to different cells with different weights. For example, the three cells in Figure 6

have weights of 1, 2, and 4, respectively. Consequently, their resistances fall into different ranges

corresponding the ratio of the weight. Although an identical wordline voltage is supplied to the

three cells on the same row in a read operation, currents through these cells are different due to

their different weights. These currents are summed and collected at the end of bitlines and used

to detect the data stored in these cells. For instance, the largest possible sensing current indicates

all the three cells are at LRS, or logic ‘1’. The design requires to differentiate the sensing currents

(voltages) of the eight possible combinations of three-bit data for the given example.

For ReRAM based cross-point memory array, the current summation of multiple bitlines can

be integrated with the op-amp design. Thus, one op-amp is sufficient for multi-bit data detection

while suppress the sneak path leakage. Note that our proposed read scheme is orthogonal to the

conventional ReRAM design, in which a sensing component is shared by multiple columns belong-

ing to different access blocks [40]. The weighted sensing utilizes one sensing circuit for multiple

to-be-readout bits to further reduces the number of read circuit components.
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Figure 6: Weighted memory storage and the corresponding readout scheme.

3.2.3 Weighted Sensing Implementation Details

The weight assignment is the major difficulty in implementing the weighted sensing scheme. A

straightforward solution in cross-point memory array is connecting ReRAM cells in parallel. As

such, the whole memory array is divided into certain number of groups, each of which consists of

different columns of memory cells. For instance, the example in Figure 7 has two groups: every

two equivalent unit cells in the first group are connected in parallel while the second group has

only one unit cell. Therefore, the two equivalent unit cells in the first group demonstrate an overall

resistance of either Ron/2 or Roff/2 while the resistance of a cell in the second group shall be

either Ron or Roff . In this way, we assign the weights 1 and 2 to the two groups, respectively.

The four logic combinations of the two group therefore corresponds to four different resistance

levels: (‘00’↔ 1.5Roff), (‘01’↔ 0.5Roff + Ron), (‘10’↔ Roff + 0.5Ron), and (‘11’↔ 1.5Ron).

The data pattern in different groups can be successfully read out by identifying the output signal

corresponding to the different states. Notably, the write operation of the proposed weighted sensing

scheme remains the same as that of the conventional ReRAM cross-point array.
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Figure 7: An example schematic of weighted sensing in cross-point array.

Compared to the conventional ReRAM cross-point array and peripheral circuitry design, more

ReRAM columns are used in weighted sensing scheme and hence its array size increases along the

wordline direction. Moreover, the expansion of memory array is also determined by the weighting

granularity. Theoretically, n-bit data with weights of 1, 2, 4, 8, · · · , 2n can be accessed simultane-

ously. However, the design shall guarantee that each bit of data can be differentiated successfully.

In other words, design trade-off exists among the array size, the sensing circuitry complexity and

area, and the data access bandwidth. More detailed discussion shall be found in Section IV.

The adoption of op-amp holds the voltages of bitlines (i.e., ports A and B in Figure 7) close

to zero, that is, the voltage drop across unselected cells keeps approximate zero and the sneak path

leakage is under well control. Summation of the two weighted cells can be naturally integrated

with the op-amp design as illustrated in Figure 7. In the proposed design, we attach only one

op-amp to a cross-point array to reduce the overhead of area and power consumption. The array

is then divided into several sets of weighting groups and only one set can be read out during each

read access.
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3.3 RESULTS AND DISCUSSION

3.3.1 Effectiveness of Weighted Sensing

We first investigate the impact of data pattern and array size on the cross-point array design with

the weighted sensing scheme. The weight assignment illustrated in Figure 7 is adopted in the sim-

ulation. Here, we utilize the same array configuration and ReRAM device parameters in Section

III.A. Again, the farthest group from the wordline driver with the most significant voltage degrada-

tion is selected. During a read operation, the wordline voltage to the selected row is set to 0.5V and

the wordlines of the unselected rows are tied to ground. The selection of the op-amp parameters

Rf and Gain (see Figure 7) determines the amplification factor and affects the output voltage. To

match better with Ron, Rf is set as 5KΩ and Gain is set to be 106.

Figure 8 shows the output signal of the cross-point array after applying the weighted sensing

circuit. Four different resistance states correspond to four different output signal levels that can be

easily differentiated. It means that all data information can be read out correctly in the weighted

sensing scheme. Moreover, the output signals do not degrade with the increase of memory array

size.

Figure 9 shows the output voltage swing ∆V after applying the weighted sensing circuit. In

contrast to the large ∆V degradation occurred in traditional cross-point array shown in Figure 5,

∆V in the proposed design doesn’t decrease much as array size increases. The difference between

∆V ’s obtained from the ALL ONEs and ALL ZEROs data patterns is negligible. The result

approves that the adoption of op-amp can efficiently reduce the sneak path leakage and minimize

the impact of array size and data patterns.

3.3.2 Dependence of Op-Amp Gain Parameter

Considering that the sensing accuracy is greatly affected by op-amp Gain parameter, we inves-

tigate the impact of Gain parameter under different array sizes. In the evaluation, we use the

weight groups of 1 and 2 illustrated in Figure 6. And the farthest group from the wordline driver

representing the worst-case scenario is selected.
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Figure 9: Output voltage swing ∆V of the cross-point array with the weighted sensing.

Figure 10 shows the output signal Vout when decreasing the Gain parameter from 106 to 103.

Comparing to the results in Figure 8, an obvious drop at Vout with the increase of array size can be

observed in Figure 10. Particularly, the output voltage degrades greatly when the data pair is ‘11’.

The major reason is that the virtual ground at bitline (i.e., ports A and B in Figure 7) cannot be

well maintained when the Gain parameter is not large enough. The non-zero voltage drop across

unselected cells and the sneak path leakage through these cells cannot be ignored.

Moreover, we summarize the relation of the sensing accuracy and the op-amp Gain parameter

in Figure 11. Here, the sensing accuracy is defined as the ratio of a real Vout over its ideal value

that is obtained by assuming an ideal op-amp and an ideal cross-point array without sneak path

leakage. The simulation results demonstrate significant degradation of the sensing accuracy as
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Figure 11: The relation of the sensing accuracy and the op-amp Gain.

Gain parameter reduces from 106 to 102. More specific, op-amp with< 103 Gain is not acceptable

in cross-point array design for the poor performance. On the one hand, op-amps with higher Gain

helps reduce sneak path leakage and therefore increase crossbar array size. On the other hand, both

the induced area cost and the required sensing time increase dramatically.

3.3.3 Impact of Device Resistance Ratio

The resistance ratio of ReRAM device (i.e., Roff/Ron) also affects the output signal of cross-point

array. In general, a smaller Roff/Ron indicates smaller difference between HRS and LRS states,

making data differentiation more difficult. We examine the trend of the output voltage swing ∆V

of cross-point arrays as Roff/Ron changes from 100 to 5. Here, Roff is fixed at 1MΩ while Ron

varies from 10KΩ to 200KΩ.
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Figure 13: The estimated areas of 512 × 512 ReRAM cross-point arrays together with periphery

circuit, under different weight assignments.

The simulation results are shown in Figure 12. The curve labeled with ‘2 and 1 group’ corre-

sponds to the results of the memory array design with the divided group data pattern of 2 and 1, the

same as the example in Figure 7. Similarly, the curve labeled with ‘4, 2, and 1 group’ represents the

results after partitioning an array into three group patterns with weights of 4, 2, and 1, respectively.

Simulation results show that ∆V remains sufficiently large for correct function as far as the ratio

is larger than 5. When Roff/Ron > 10, ∆V changes slightly with Roff/Ron ratio. Whereas, a large

degradation on ∆V can be observed as Roff/Ron becomes less than 10. The results also show that

the cross-point array design with three divided group data patterns (4, 2, and 1) has smaller output

voltage swings. This is because the design has eight different output signal levels corresponding

to eight resistance states while its sensing amplification of the op-amp remains the same as the

one utilized in the arrays with group data patterns. Selecting a large Rf to produce a larger output

voltage swing can alleviate the situation and enlarge ∆V .
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3.3.4 Area Reduction of Peripheral Circuitry

A motivation of this work is to decrease the number of op-amps and reduce its area overhead.

The proposed weighted sensing scheme indeed tends to balance the areas of the cross-point array

and its peripheral circuitry and obtain the best tradeoff. Figure 13 shows the estimated areas of

512 × 512 ReRAM cross-point arrays under different weight assignments, at 40nm technology

node. Here, we assume an op-amp area of 50µm2 [41]. All the results are normalized to the area

of the ReRAM cross-point design by Qureshi et al. [37].

Four types of group data patterns in the weighted memory were studied. The results shows

nearly half of area can be saved by the weighted sensing scheme. As the group size in the weighted

memory array increases, the area ratio decreases first and then increases again. This is because that

the weighted memory grows in an exponential rate. When a large group size (i.e., ‘16, 8, 4, 2,

and 1 group’) is applied, the overhead of the weighted memory will overcome the saving of less

op-amps used in peripheral circuit. In summary, ‘8, 4, 2, and 1 group’ demonstrates the lowest

overall area including both array and peripheral circuity.

3.4 SUMMARY

The ReRAM based cross-point array has become one of the most promising candidate of non-

volatile memory technology below 20nm technology node. However, the sneak path leakage issue

remains unsolved and significantly limits its application. In this work, we propose a weighed sens-

ing scheme. The design utilizes op-amp in read circuitry to well control the bitline voltage and

suppress the impact of sneak paths. Furthermore, by assigning different weights to different data

bits, these bits can share one op-amp for data detection. The area consumption is saved nearly a

half in the weighted cross-point memory array. We thoroughly analyzed the effectiveness of the

proposed weighted sensing scheme.
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4.0 A SPIKING NEUROMORPHIC DESIGN WITH RESISTIVE CROSSBAR

In this chapter, we will present the details of the proposed spiking neuromorphic design with re-

sistive crossbar. The structure of this chapter is organized as the follows: Section 4.1 gives the

background of present neuromorphic system studies; Section 4.2 presents the computation method

of the proposed spiking neuromorphic design; Section 4.3 presents the details of the hardware

implementation and the computation accuracy analysis; Section 5.3.2 evaluates the performance

and robustness of the proposed spiking neuromorphic design by using the application of digi-

tal image recognition, and compares the proposed design with previous approaches; Section 5.4

demonstrates the chip design of feedforward neural networks implementation basing on the spiking

design; At last, we summary the work in this chapter in Section 4.6.

4.1 NEUROMORHIC COMPUTING BACKGROUND AND RELATED WORKS

4.1.1 Neuromorhic Computing Systems in Traditional CMOS Domain

In spite of the scaling of device size and the rising of clock frequency,“memory wall” phenomenon [8],

i.e., the increasing gap between microprocessor performance and memory bandwidth, severely

hinders the performance improvement of computing systems. The traditional von Neumann archi-

tecture that computes and stores data in separated locations becomes inefficient to many cognitive

applications involving a large amount of data processing [42]. Neuromorphic computing systems

inspired by the working mechanism of human brains are normally very efficient in their computa-

tion and data communication. For example, TrueNorth—the latest spike-timing-based neuromor-

phic hardware prototyped by IBM, achieved only 70mW whole-chip power consumption as well

as 45pJ-per-spike on-chip data transferring [14]; [15]. SRAMs, capacitors, and full custom analog

and digital circuit modules have been developed to mimic biological synapses [9]; [10]; [11].
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4.1.2 Neuromorhic Computing Systems with Resistive Crossbar

The high implementation cost of these designs is the major obstacle for their applications and

continuous upscaling. More importantly, the two-terminal structure of a ReRAM device enables

the construction of an ultra-dense crossbar array, in which a ReRAM cell is allocated at each

crosspoint of horizontal and vertical metal wires. As illustrated in Figure 14, a crossbar array

is particularly attractive for implementation of synaptic connections because of its similarity to

the connection matrix in neural network models. By adjusting the amplitude and pulse width of

programming voltage/current, a ReRAM device can be programmed to multiple discrete resistance

levels or continuous resistance states [43]; [44] to represent a synaptic weight in neural network

models.

Post-neuronsPost-neuronsPre-neurons

Pr
e-n

eu
ron

sxN (GN×M) yM
T

Figure 14: An abstract neural network model and a ReRAM crossbar array.

The applications of resistive crossbar arrays in acceleration of scientific and neuromorphic

computing have been studied [45]; [46]. For example, memristor crossbar was used to imple-

ment matrix-vector computation [3]. The design uses voltage and current magnitudes to represent

the data that participate in the computation, so it is generally susceptible to the signal noises and

distortions. Moreover, the AD/DA conversions induce high design complexity as well as signifi-

cant area and energy overheads. Recently, a spiking-based neuromorphic computing system was

demonstrated for pattern recognition [47] and believed to have better tolerance to the signal noise.

However, it requires complicated neuron circuits and can run only at an extremely low speed (e.g.,

ten operations per second).

4.2 DESIGN METHODOLOGY

Figure 15 depicts an overview of our proposed spiking computing architecture that leverages the

compact resistive crossbar structure. The design adopts the rate coding model and represents data

using the frequency of spikes (pulses) [48]. Through different bitlines (BLs) in a resistive crossbar
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array, the synaptic weighting functions of different entries are executed in parallel. The integrate

and fire circuits (IFC) as post-neurons generate output spikes based on the strength of the weighted

pre-neuron signals from the crossbar.

IFC
WL

BL

Cm
Vth

Vout

WL0

WL1

WLi

WL N-1

Iy, j
Vy, j

Vx, 0

Vx, 1

Vx, i

Vx, N-1

g i, j

BL0 BLj BLM-1

Iy, jIy, 1 Iy, M-1Iy, 0

BL1

tm
T

Figure 15: An overview of the spiking neuromorphic design with a resistive crossbar array.

A single-layer neural network with N pre-neurons and M post-neurons (Figure 14) can be

implemented using a N ×M resistive crossbar array in the following approach: First, the activity

pattern of pre-neurons xN×1 is transferred into a set of pulses to wordlines (WLs). Here we assume

the duration of an input pulse is tm. The number of spikes on WLi within a computation period

T (that is, nx,i) is determined by xi ∈ x. The synaptic weight between the jth pre-neuron and the

ith post-neuron is mapped to conductance gij at the crosspoint of WLi and BLj . Thus, GN×M
T is

constructed as the connection matrix of the network. The total weighted signal to post-neuron j is

transferred to the current flowing through BLj and accumulated on a capacitor Cm in IFC. Once

the voltage on Cm reaches to a predefined threshold Vth, the IFC fires an output spike and resets

Cm. The activity function of post-neurons yM×1 is represented by a set of spike numbers such as

[ny,0, ny,1, · · · , ny,M−1]T .

We use Vx,i(t) and Vy,j(t) to denote the voltages on WLi and BLj at time t, respectively. The

current flows through all the connected resistive devices contributes to the total current on BLj ,

such as
Iy,j(t) =

N−1∑
i=0

gij [Vx,i(t)− Vy,j(t)] . (4.1)

On the other hand, the voltage across Cm and the current flowing through it also follows

Iy,j(t) = Cm
dVy,j(t)

dt
. (4.2)
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By combining Eqs. (4.1) and (4.2), the increase of Vy,j within a small epoch at time t can be derived

as
dVy,j(t)

dt
=

[1− e−
1

Cm

∑N−1
i=0 gij ]

∑N−1
i=0 gijVx,i(t)∑N−1

i=0 gij
. (4.3)

When
∑N−1

i=0 gij → 0, Eq. (4.3) can be approximated as

dVy,j(t)

dt
≈

1

Cm

N−1∑
i=0

gijVx,i(t). (4.4)

indicating that the change of Vy,j(t) is approximately proportional to the weighted pre-neuron

signals
∑N−1

i=0 gij · Vx,i(t). Moreover, the IFC fires a spike whenever Vy,j reaches Vth. Thus, the

spike number produced at post-neuronj is

ny,j(t) ∝
∫ t

τ=0

N−1∑
i=0

gijVx,i(τ)dτ. (4.5)

Eq. (4.5) implies that the computation of connection matrix in neural network can be performed

by resistive crossbar array using spike signals.

4.3 HARDWARE IMPLEMENTATION

Note that the analysis in Section 4.2 does not take into account the realistic factors in circuit

implementations. First, the approximation of Eq. (4.4) is based on the assumption of
∑N−1

i=0 gij →

0, which is satisfied only when all the resistive devices are at (or close to) the high resistance

state. This cannot be generalized as a common condition in applications. Moreover, the delay

overhead of IFC to generate pulses and reset Cm cannot be ignored. We implemented the spiking

neuromorphic design with a 32 × 32 crossbar at IBM 130nm technology. The detailed design

considerations of two key components—crossbar array and IFC—are presented. The computation

accuracy of the design is also analyzed and verified through circuit simulations in the Cadence

Virtuoso environment.
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4.3.1 1T1R Crossbar Array

Sneak path is one of the major concerns in resistive crossbar array design [49, 50]. It refers to

the intrinsic leakage flowing through unselected cells, which degrades the programming efficiency

and the data detection accuracy. In fact, Eq. (4.3) demonstrates the impact of sneak paths: the

accumulated weighted pre-neuron signals represented by term
∑N−1

i=0 gijVx,i(t) is shared by all the

connected devices, i.e.,
∑N−1

i=0 gij . In the case of only a few pre-neuron spikes to WLs, a large

portion of the accumulated weighted pre-neuron signals could be consumed on unselected devices,

deteriorating the computing accuracy.

Similar to many prior arts [51, 52], our analysis also indicates that a better access control

mechanism, e.g., introducing a transistor or a selector to control the access of resistive devices, is

necessary. For instance, when adopting the one-transistor-one-resistive device (1T1R) design as

illustrated in Figure 15, cellij contributes a current to BLj only when an input pulse is supplied to

WLi. The effective conductance of the cellij becomes g̃ij = gij//gon where gon is the conductance

of the access transistor at ON state. When WLi is grounded, the transistor is turned off and its

extremely small conductance goff causes g̃ij → 0. For ease of explanation, we introduce a new

parameter δi to indicate if a spike occurs at WLi (δi = 1) or not (δi = 0). Eq. (4.3) becomes

∆Vy,j(∆t)|t =
VI [1− e−

∆t
Cm

∑N−1
i=0 g̃ijδi ]

∑N−1
i=0 g̃ijδi∑N−1

i=0 g̃ijδi

= VI

[
1− e−

∆t
Cm

∑N−1
i=0 g̃ijδi

] . (4.6)

Here, VI is the voltage amplitude of the pulses on WLi. Eq. (4.6) shows that the 1T1R struc-

ture helps minimize the impact of sneak paths. dVy,j(t)/dt, however, no longer follows a strict

linear relation with the sum of the weighted pre-neuron signals, i.e.,
∑N−1

i=0 g̃ijδi. This can be

easily explained by Eqs. (4.1) and (4.2): as Vy,j increases, Iy,j gradually reduces, resulting in the

degradation in dVy,j(t)/dt.

In the work, we set the resistance range of ReRAM devices from 50KΩ to 1MΩ [43, 53]. The

according conductance g ∈ (1µS, 20µS). To suppress the impact of sneak paths, we chose NMOS

transistor to control cell access and used the 1T1R cell structure to replace the resistive device, as

shown in Figure 15.
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Figure 16: (a) g̃ij vs. gij at ON and OFF states. (b) The change of g̃ij and gon as Vj varies.

Figure 16(a) compares the effective cell conductance g̃ and the ReRAM device conductance

g. The result shows that they are very close when the select transistor is on. This is because the

transistor’s conductance gon (at the order of mS) is much higher than g. When the transistor is

turned off, the extremely small goff (∼ nS) dominates the cell conductance. So g̃ of an OFF cell

has negligible impact on the computation. Therefore, a BL current virtually comes only from those

ON cells enabled by WL pulses and the computing on every BL is nearly independent from others.

We also investigated the relationship between g̃ and the BL voltage Vy when the cell is on.

Figure 16(b) presents the result when g = 20µS. As Vy increases, both VGS and VDS of the select

transistor decrease, leading to the reduction of gon. Because the ReRAM device and the transistor

in a cell are connected in series and g is much smaller than gon, g̃ is primarily determined by g. The

reduction of gon causes only 4.0% in the change of g̃. As g decreases, the variance of g̃ induced by

the change of Vy becomes even less significant.

4.3.2 Integrate-and-fire Circuit (IFC)

We observed that the delay of IFC is a critical parameter determining the performance of the

spiking neuromorphic system. Let’s set k = Vth/VI . Then the time duration to switch Vy,j from

0V to Vth can be derived by:

∆τ =
−Cmln(1− k)∑N−1

i=0 g̃ijδi
. (4.7)
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The number of output pulses generated during an input pulse duration of tm can be calculated by

ny,j =
tm

∆τ + t0
=

tm
α∑N−1

i=0 g̃ijδi
+ t0

, (4.8)

where t0 is the delay overhead of the IFC. α = −Cm · ln(1 − k) represents the BL charging

efficiency, which is determined by the integration capacitor Cm and the threshold voltage Vth of

the IFC design.

We proposed a new IFC design featuring high speed and low power consumption. Figure 17(a)

depicts its schematic. During the operation, the BL voltage Vy continues increasing until it reaches

Vth. Then the differential pair (M1–M4) together with the following two cascaded inverters (M5–

M7 & M10–M12) generates a high voltage at Vs, which in turn enables the discharging transistor

M13. Consequently, Vy decreases quickly and eventually turns off M13. As such, the firing of one

output spike at Vout is completed and a new iteration of integrate-and-fire starts.

To improve the IFC throughput, we tended to reduce its intrinsic operation delay and make it

shorter than the integrating time ∆τ in Eq. (4.7). A positive feedback loop (M7–M9) was deployed

based on the traditional comparator for this purpose. Another approach was to minimize the dis-

charge time of Cm once a spike is fired out, i.e., using a large M13 to provide sufficient discharging

current.
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We implemented and simulated the IFC design with IBM 130nm technology. VI is set to 1.2V ,

and Vth is set to 0.5V in which the system shows best computation accuracy. A MIM capacitor

with a capacitance of 153fF (which is the minimum value offered by the PDK) is used as Cm.

The deign parameters were carefully selected so that the intrinsic delay of the integrate-and-fire is

shorter than even the minimum BL integrating time. Also, it will achieve fast output spikes if the

frequency of which is still within the range that can be reliably captured by the sensing circuit. The

waveforms of Vy, Vs, and Vout under the fastest firing frequency (568.2M spikes/sec) is shown in

Figure 17(b).

The area of the IFC design at IBM 130nm technology is 175.3µm2, which is compatible to

that of traditional designs, e.g., 120µm2 at 65nm technology in [54]. The energy consumption of

our design is 0.48pJ-per-spike, which is about a quarter of the one in [54] (2pJ-per-spike).

4.3.3 Computational Accuracy Analysis

The linearity between the obtained output spike number ny,j and actual computation on the cross-

bar
∑N−1

i=0 gijδi defines the computational accuracy of the neuromorphic system. We investigated

the computational accuracy of our design based on a 32 × 32 crossbar array. Assume that an in-

put spike has a 2ns period with 50% utilization rate (that is, tm = 1ns). The resistance values

and the input pulse numbers are randomly assigned to cover the entire range of
∑N−1

i=0 gijδi. To

examine the temporal scalability of the design, we conducted the simulations by varying T from

10ns to 80ns at a step of 10ns. For better illustration, we present only four groups of results in

Figure 18. All the eight sets of simulations well match the theoretical calculation from Eq. (4.8).

We observed that the rising rate of ny,j becomes smaller as
∑N−1

i=0 gijδi increases. This is be-

cause a larger
∑N−1

i=0 gijδi and therefore a bigger Iy,j results in a shorter ∆τ , making the impact of

the IFC delay overhead t0 more prominent (refer Eq. (4.8)). Nonetheless, a good computational

accuracy (i.e., output linearity) is obtained when
∑N−1

i=0 gijδi is small (i.e., < 0.15mS). In fact,

most of the operations of our neural network implementations in Section 5.3.2 fall into this small

range. We also note that for different combinations of inputs and resistive array patterns with

the same
∑N−1

i=0 gijδi, the generated pulse number may be slightly different (no more than ±1).

Such a fluctuation comes from the difference in Iy,j’s waveform and amplitude generated by these

combinations.
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Our proposed spiking neuromorphic system is designed mainly for learning and classification

applications whose algorithms naturally tolerate the low resolution and variability in the compu-

tations. Moreover, the imperfect output linearity shown in Figure 18 may be also compensated

during circuit implementation as long as the output spike and the weighted input spikes have a

monolithic mapping relation.

6%3% 9% 12%Standard Patterns

(a) (b)

Figure 19: (a) The standard training set of six patterns. (b) An example of noise pattern “5” under

different single bit error rate.
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4.4 EVALUATION IN APPLICATIONS

4.4.1 Experimental Setup

We evaluated the performance and robustness of the proposed spiking neuromorphic design by

using the application of digital image recognition. Since the simulation time increases dramatically

with the design scale, the crossbar with 32 rows was selected for training and recognition of images

with 32 pixels. Six images corresponding to number 0 ∼ 5 in Figure 45(a) were used as the

standard training set.

We implemented two typical neural network models: the feedforward network (“F”) that has

been widely utilized in approximate computing and the Hopfiled network (“H”) to represent the

popular recurrent systems. In both implementations, the back-propagation and delta rule [3] were

adopted to perform training and programmed ReRAM devices to particular resistance states. Dou-

ble crossbar array is adopted to obtain negative weights [3]. The 1T1R structure in the design can

effectively suppress the sneak path leakage and therefore make programming very efficient.

The system performance was measured by the probability of failed recognition (PF ). The anal-

ysis was conducted based on Monte-Carlo simulations (i.e., 10,000 simulations per configuration).

Noise patterns with a certain bit error rate (BER) were generated and used as the testing images.

The example in Figure 45(b) shows that visually, it is already very difficult to identify an image

with a BER >9%.

In the work, we are particularly interested in the impacts of physical constraints, including

the limited available resistance state levels and output spike number. We evaluated and compared

the designs of which the ReRAM devices provide the continuous analog resistance states (“A”) or

only 8 discrete resistance levels (“D”). The efficiency of the digitized output spikes was studied by

comparing the result obtained directly from the analog BL current (“C”) and that achieved based on

real output pulses (“P”). Thus, the configuration “AC” performs closely to the mathematical neural

network model and was taken as the baseline in the following evaluations. The configuration “DP”

corresponds to our proposed spiking neuromorphic design. Moreover, for comparison purpose, we

also implemented the previous memristor crossbar-based computing engine (“[3]”) which utilizes

voltage amplitude to differentiate the data value [3]. Here, we assumed 8 discrete resistance levels

of ReRAM devices and 20mV sensing margin of BL output op-amp design.
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The reliability analysis was conducted by assuming that the ReRAM resistances (“PV”) and

the IFC spike generation speed (“IFC”) follow normal distributions with a standard deviation of

10% and 5%, respectively. In Monte-Carlo simulations, the resistances of the crossbar array were

fixed as they are determined by the offline training and process variations. The IFC performance

was changed on-the-fly because it is affected by the signal fluctuation during the execution.

4.4.2 Feedforward Network Implementation

We realized a 1-layer feedforward network based on the scheme in Figure 15 for image recognition.

It maps an input pattern to the output through a direct graph without iterations. A 32× 6 crossbar

array was trained so that output j has the strongest response to number j of the six training patterns.

Figure 20 gives the simulation result when any standard pattern is used as the input. Output j

generates the biggest spike number to pattern j but demonstrates much weaker responses to other

patterns. Here, we say the recognition of a noisy testing image is failed when the corresponding

output doesn’t produce the most spikes or another output has the same number of spikes.

The computation period T selection: As shown in Figure 18, T determines the output spike

granularity and hence greatly affects the system performance. We investigated the performance of

FDP configuration by varying T from 10ns to 80ns. Figure 21(a) presents the results expressed by

the average failure rate of all the patterns (PF,all) under different BERs. The results show that when

T is less than 20ns, the design cannot produce enough output spikes to differentiate the top two

strongest outputs, resulting in a lot of failures. PF,all quickly drops to 5.57% when increasing T to
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Figure 20: Pattern recognition result in forward neural network in ideal condition.

32



Probability of Single Bit Error

F
ai

lu
re

 R
at

e

3% 6% 9% 12%0

1

2

N
or

m
al

iz
ed

 F
ai

lu
re

 R
at

e No Variation
PV
IFC
PV+IFC

3% 6% 9% 12%
0%0%

4%

8%

10%

20%

30%

3% 6% 9% 12% 3% 6% 9% 12%

(c) FAC(a) (d) FDP

Pattern 5

Pattern 0
Pattern 1
Pattern 2
Pattern 3
Pattern 4

Pattern 5

Pattern 0
Pattern 1
Pattern 2
Pattern 3
Pattern 4

(e)

10ns

20ns...
80ns

3% 6% 9% 12%0%

2%

4%

6%

2%

6%

0%

4%

8%

2%

6%

FAC
FDC

FDP

(b)

FAP

[15]

Figure 21: The simulations results of the feedforward implementation. (a) PF,all of FDP at var-

ious T ’s; (b) PF,all under different configurations; (c) PF,ind of FAC; (d) PF,ind of FDP; (e) The

normalized PF,all of FDP after considering process variations and IFC fluctuation.

30ns. Further prolonging T demonstrates marginal improvement. To guarantee sufficient system

performance, T = 30ns was selected, corresponding up to 15 input pulses per computation period.

The impact of physical constraints was evaluated by comparing the recognition qualities of dif-

ferent configurations shown in Figure 21(b). FAC as the baseline has the least failures. Reducing

the resistance states to 8 discrete levels inevitably results in quality loss when mapping the analog

values of a connection matrix to the limited conductances in a crossbar. Compared to FAC, PF,all

of FDC increases 0.71% at BER=12%. Changing from the analog BL current to the digitalized

spikes (FAC vs. FAP) causes up to 2.08% more recognition failures, implying that this feedfor-

ward network implementation is more sensitive to the granularity of output signals. Overall, our

proposed FDP obtains a PF,all of 5.57% at BER=12%, which is 4.21% higher than the baseline

FAC and 1.46% worse than the computing engineer of [3]. Figure 21(c,d) show the statistical re-

sults of each individual pattern (PF,ind) of FAC and FDP, respectively. Numbers 2∼5 with high

similarity in training patterns are more sensitive to the input defects during testing. The probability

of failures is much smaller for numbers 0 and 1.

The system reliability was conducted by including the variations in ReRAM resistances and the

IFC spiking generation. Figure 21(e) shows the relative PF,all of FDP under different conditions,

all of which are normalized to the ideal one without any variations. The variations in ReRAM

resistances can barely affect the system performance because it is buried under the resistance offset

caused by the mapping from connection matrix to crossbar array. The impact of the fluctuation in

IFC spiking generation is more obvious. Even though, PF,all under the worst scenario is still

<5.65%.
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Figure 22: The simulations results of the Hopfield implementation. (a) PF,all at various T ’s; (b)

PF,all under different configurations; (c) PF,ind of HAC configuration; (d) PF,ind of HDP configu-

ration; (e) The relative PF,all after considering process variation and IFC fluctuation.

4.4.3 Hopfield Network Implementation

Hopfield network is a typical recurrent neural network, in which any two neurons are linked

through a weighted connection. An input pattern distorted by noises goes through the network

iteratively and gradually converge to a local minimum. In the implementation, we extended the

crossbar size to 32 × 64 and used the combination of two columns to realize signed synaptic

weights [3]. When a testing image cannot converge or the converged data does not match any

training pattern, we say the recognition is failed. Note that this criterion is very restrict and there-

fore results in much higher failure rate compared to the feedforward design.

The computation period T selection: We investigated PF,all of HDP by changing T from 10ns

to 80ns and showed the results in Figure 22(a). A significant reduction in PF,all can be clearly

observed when raising T from 10ns to 30ns. Further increasing T , however, cannot improve PF,all

much. Thus, T = 30ns is adopted in the following analysis.

The impact of physical constraints: Five configurations were utilized to analyze the impact of

design constraints as shown in Figure 22(b). Compared to the feedforward design, the Hopfield

implementation has much bigger PF,all due to the difference in failure evaluation criteria: the only

requirement in the feedforward scheme is to distinguish the top two strongest outputs; while in

Hopfield, a recognition is considered as failed even there is only one bit error between the output

and its corresponding standard pattern.
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Compared to the baseline HAC, constraining ReRAM resistance into 8 levels causes up to

0.92% increase in PF,all (HDC), while the digitalized pulse generation by IFC results in up to

4.77% degradation (HAP). The trend is very similar to that of the feedforward implementation

while the impact on the Hopfield design is more severe due to the accumulation of errors in itera-

tions. Overall, the maximum PF,all of HDP is 20.01%, which is 11.31% higher than the baseline

HAC and 5.99% worse than the computing engineer of [3].

Figure 22(c,d) present the failure possibility of each individual pattern in HAC and HDP, re-

spectively. The two configurations demonstrate different trends of PF,ind’s. And all the PF,ind’s

in HDP grow rapidly as the BER of testing images increases. This is because a small network

is utilized with a relative high capacity, which is defined as the ratio of the amount of training

patterns over the pattern dimension, i.e., c=6/32=18.8%. It causes large overlaps of the domain of

attractions of these training patterns [3]. Thus a testing image at the boundaries of two or multiple

domains of attractions has a high possibility to converge into an unexpected local minimum, that

is, a failure.

The system reliability: Here, we applied the similar reliability tests for the feedforward imple-

mentations. Figure 22(e) shows the statistical results from Monte Carlo simulations. All the them

are normalized based on the PF,all of HDP without any variations. When BER is small and PF,all is

low, these variations cause dramatic increase in PF,all. As BER increases, the input defects domi-

nate the failures and the impact of variations become less severe. After including all the variations,

the maximal PF,all grows to 26.89%.

Table 1: System Evaluation and Comparison

NN System Area Power T Energy
(mm2) (mW ) (ns) (pJ)

Forward
This work 0.00135 0.577 30 17.32

[3] 0.0042 2.1 16.6 34.86
Diff. -67.58% -72.51% +80.72% -50.31%

Hopfield
This work 0.0144 5.054 30 343.60

[3] 0.0387 22.4 16.6 842.59
Diff. -62.88% -77.44% +80.72% -59.22%
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4.4.4 Design Comparison

We compared our spiking neuromorphic design with the previous memristor crossbar-based com-

puting engine [3]. Table 2 summarized the comparison for both feedforward and Hopfield imple-

mentations. The average power, latency, and energy were obtained based on the aforementioned

application of image recognition. More specific, the computation period T represents the delay of

the completed operation of the feedforward scheme or that of one iteration in the Hopfield network.

The energy consumption denotes the total energy required to finish the entire recognition proce-

dure so an average iteration number was taken to estimate the overall operation time in Hopfield

implementation.

The feedforward and Hopfield schemes respectively adopt the 32 × 6 and 32 × 64 crossbar

arrays. The key circuit components of our design include a crossbar array, WL drivers, and IFC.

Besides a crossbar array, the computing engine in [3] also requires Op-amps, comparators, sample-

and-hold (S&H) circuits, and analog-to-digital converters (ADCs) to detect, store, and transmit

analog signals. We obtained the data from circuit simulations and estimated the design area based

on the component layouts at IBM 130nm technology. We assumed that the extremely costly ADC

is not necessary for the image recognition so it was not included into the design estimation for [3].

To provide sufficient output granularity, the operation of our spiking neuromorphic design is

slower than the pure analogue execution in [3]. However, the digitalized interface in spikes natu-

rally minimizes the use of analog components, making the proposed design a lot more attractive in

area, power and energy consumptions, as shown in Table 2.

4.5 CHIP DESIGN

4.5.1 Two Designs on a Chip

Basing on the spiking neuromorphic computing engine proposed above, an on chip design was

fulfilled. Two kinds of feedforward neural networks - single layer and two-layer for images classi-

fication are designed in hardware using full custom VLSI design flow. More specifically, there are

four designs on a single chip.
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• Two single-layer designs composing of 32×12 crossbar array for six patterns (black and white).

The images are shown in Figure 23.

• One two-layer design composing of 64× 40 and 20× 10 crossbar arrays to test MNIST hand-

written digit database that contain grey levels. The corresponding images are shown in Fig-

ure 24.

Figure 23: Images for classifying in the two single-layer design.

Figure 24: Images from MNIST database for classifying in the two-layer design.

The layout of the full chip and the pad ring arrangement is demonstrated in Figure 25 and

Figure 26, respectively.

4.5.2 Hardcoded Cell Design

In this tape out, we adopted the hardcoded cell design - 1T1R (one transistor and one resistor) cell

structure in the crossbar array design is adopted. As is demonstrated in Section 4.3, one transistor

is connected series following with the resistor, and NMOS transistor is utilized to minimize the

impact of sneak path leakage. Moreover, LVT transistor (low Vth) that offers higher drive ability is

used in the on-chip design. The width of NMOS transistor is set to 2µm, considering the trade off

between the voltage drop across the transistor and the cell size. In the implementation, eight hard-

coded resistance levels are adopted, representing the 3-bits analog values of the resistive switching

cell. The layout w/ diff. resistive values are depicted in Figure 27.
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Figure 25: The full chip layout of the two designs on a chip.
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Figure 26: The pad ring arrangement on the chip.

4.5.3 Single Layer Feedforward System Design

4.5.3.1 Block Diagram Figure 28 shows the circuits block diagram of the single layer design.

It can be divided to two major part: 1) Analog computation part: This part includes the resistive

crossbar and the integrate and fire circuit (IFC) for analog computing. Digits inputs from the

input driver are given to the crossbar array in parallel, and analog computation is fulfilled by the
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Figure 27: The layout w/ diff. resistive values in the hardcoded design.

crossbar and generate the sums-of-product results in current format. Then, the current output from

each bitline of the crossbar are transferred to output spikes by the IFCs. 2) Digital computation

part: There are three major parts for digital computation. One part is the circuits blocks generating

input spikes from outside digital signals and providing enough drive abilities for the crossbar array.

The other parts is the timing and control block, which generate internal timing signals to control

the execution of the computing. The final part consist of counters, subtracters, comparators, and

etc. to convert the output spikes from the IFC to digital signals and fulfill the computation for final

output results.

4.5.3.2 Signal Waveform The signal waveform of external and internal timing signals are

shown in Figure 29. The duration of an input pulse is set to be 5ns in the design. IPNT de-

notes the period to supply an input pattern. It varies from 60ns to 140ns, controlled by I4PN <

2 : 0 >. The signal waveforms in this example correspond to the computation period of 120ns

when I4PN < 2 : 0 >= 011.

4.5.3.3 Post-layout Simulation Result Example Figure 30 is an image classification result

example for classifying the six black and white digits images 0 ∼ 5 showing in Figure 23. It is the

post-layout simulation result on the condition of TT corner with Vdd of 1.2V and temperature of

27◦C. This result indicates that all images are classified successfully.
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Figure 28: The circuits block diagram of the single-layer design.

Figure 29: The ex- and internal timing signal waveform.

4.5.4 Two-Layer Feedforward System Design

4.5.4.1 Block Diagram Figure 31 shows the circuits block diagram of the two-layer design.

Two layers consist of 64× 40 and 20× 10 crossbar arrays representing synaptic matrix is designed

for images classification from MNIST digits database. In the design, three bits values in the form

of spike numbers 0 ∼ 7 are given to the first layer crossbar array to represent the grey scale of

the input images. Correspondingly, floating points images values are transformed to three bits

values in the two-layer neural network training. The three bits are designed to guarantee a good

classification accuracy with less design cost.
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Figure 30: An image classification result example.
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Figure 31: The circuits block diagram of the two-layer design.

Similar to the single-layer design, the two-layer design can also be divided to two major part:

1) Analog computation part: This part includes the resistive crossbars and the integrate and fire

circuits (IFCs) for analog computing. Digits inputs from the input driver are given to the crossbar

array in parallel, and analog computation is fulfilled by the crossbar and generate the sums-of-

product results in current format. Then, the current output from each bitline of the crossbar are

transferred to output spikes by the IFCs. Similar computation are executed in the second crossbar
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array and the flowing IFCs. 2) Digital computation part: There are four major parts for digital

computation. One part is the circuits blocks generating input pulses from outside digital signals

and providing enough drive abilities for the crossbar array. Another part is the timing and control

block, which generate internal timing signals to control the execution of the computing. It also

includes a computation part for layer one which is similar to the computation part in single-layer

design. The difference is that a rectifier (ReLU) activation function is implemented in the design,

and an input pulse generator is also designed to generate input pulses from the output spike from the

first layer IFCs. The final part is the computation part, including counters, subtracters, comparators

and DFFs to transform the output spikes from the second layer IFCs to digital signals and compute

for final output results.

4.5.4.2 Signal Waveform The signal waveform of external and internal timing signals are

shown in Figure 32. The global clock (GCLK) period is designed to be 15ns. The duration of

an input pulse is set to be 30ns in the design.
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Figure 32: The ex- and internal timing signal waveform.

4.5.4.3 Post-layout Simulation Result Example Figure 34 is an image classification result

example for classifying the ten digits images 0 ∼ 9 from MNIST database with eight grey scales

showing in Figure 33. The 28×28 pixels images from MNIST database are compressed into an

8×8 pattern because of the constrain of the first layer crossbar size with only 64 wordlines in it. It

is the post-layout simulation result on the condition of TT corner with Vdd of 1.2V and temperature

of 27◦C. This result indicates that all images are classified successfully.
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Figure 33: An image example from MNIST database (The 28×28 pixels images from MNIST

database are compressed into an 8×8 pattern).
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Figure 34: An image classification result example.

4.5.5 Fabricated Chip and Testing

The fabricated neuro-chip including 15 dies and 25 packaged chips has been received and are under

testing, as is shown in Figure 35. We set up the testing bench shown in Figure 35. It provides the

global clock signal from a high-frequency pattern generator and the input data from a FPGA board.

The output signals are received and monitored through an oscilloscope. A PCB board was designed

and made which is also shown in the figure.

Figure 36 demonstrate a test result example of the single-layer feedforward system for the six

digits recognition - “1”, “2”, “3”, “4”, “5”, “0”, as is described in Figure 23. In this example,

images with 3% defects were feed in using the digital pattern generator in a repeating sequence
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Figure 36: A test result example of the single-layer feedforward system for the six digits recogni-

tion.

of “0”, “1”, “2”, “3”, “4”, “5”. The 3% defects means 3% piexls of the images in Figure 23 were

assigned to reverse digital values, for example, 0 is switched to be 1. The output results from the

system were encoded to binary digits and captured by the logic analyzer. In the encoding circuit,

the result “1” is represented by “101”, “2” is represented by “100”, “3” is represented by “011”,

“4” is represented by “010”, “5” is represented by “001”, and “0” is represented by “000”. The

results show that all the images except “5” are recognized successfully.
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Figure 37: Testing results of the six digits with 0%, 3%, 6%, and 9% defects.

Figure 38: Statistical analysis of current margin of the six patterns.

Figure 37 depicts the statistical testing results of the six digits when 0%, 3%, 6%, and 9%

defects are considered respectively. The results show that the number “5” has lowest recognition

rate and more vulnerable to defects and process variation. The result is consistent with our analysis

on current margin of different patterns, as is indicated in Figure 38. The current margin represent

the current difference from the crossbar BLs with the largest and the second largest output.
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4.6 SUMMARY

In this chapter, we proposed a novel spiking neuromorphic design built with a resistive crossbar

array. It is a mixed-signal system that uses the digitalized spikes for data transferring and lever-

ages the high density crossbar structure for parallel computation in analog format. Such a design

naturally minimizes the use of analog components and therefore obtains significant savings in de-

sign area and energy consumption, compared with a previous crossbar-based computing engine

with completely analog operation [3]. We carefully studied the feasibility of the proposed design

in terms of the computation accuracy, efficiency, and reliability. The realization of neural net-

work models demonstrated that our design has a good tolerance in resistive device imperfection

but more vulnerable to the fluctuations in output spike generation. Moreover, a neuro-chip was

design and fabricated consisting of a single-layer and a two-layer feedforward neural network for

image classification. The post-layout simulation indicates that the both of the two systems have

correct function and images can be classified successfully. The testing results show that about 90%

recognition accuracy can be obtained in the single-layer feedforward network.
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5.0 A MEMRISTOR CROSSBAR BASED COMPUTING ENGINE OPTIMIZED FOR

HIGH SPEED AND ACCURACY

In the spiking neuromorphic system implemented in previous Chapter 4, the input information is

supplied in the spiking format. The matrix computation result is detected by an integrate-and-fire

circuit (IFC) and represented by output spikes. Such an approach demonstrates very high power

efficiency. However, computing accuracy and speed are constrained by the limited spike number,

limiting its application in matrix-vector computation. In this chapter, we propose a new memristor

crossbar based computing engine for matrix-vector computation which leverages a current-based

sensing scheme for higher computation speed and accuracy. The design supplies analog voltage

signals to wordlines in parallel, and a current-based sensing scheme is developed.

The rest of this chapter is organized as follows: Section 5.1 gives preliminary of the proposed

matrix-vector computation engine with memristor crossbar. Section 5.2 describes our proposed

circuit design. Section 5.6.5 evaluates the computing accuracy and performance of our proposed

design through a three-layer neural network for MNIST handwritten digit recognition. Section 5.4

presents the chip design of proposed matrix-vector computing engine. Section 5.5 summaries the

work and discusses the challenges in the proposed design. Section 5.6 describes an neuromorphic

engine with a current sensing scheme mainly for artificial network implementation. Section 6.4

summaries the chapter.
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5.1 THE PROPOSED MATRIX-VECTOR COMPUTATION ENGINE PRELIMINARY

5.1.1 Matrix-vector Computation with Memristor Crossbar

As illustrated in Fig. 39, the memristor based cross-point structure can be used to realize a matrix-

vector multiplication, e.g.,
−→
Yn

T =
−→
Xm

T ×Mm×n. More specific, we can use a crossbar arrayGm×n

to denote Mm×n by making gi,j , the conductance of the cell at the cross-point of WLi and BLj ,

represent the corresponding data in MM×N . The matrix-vector multiplication is then transformed

to
−→
In

T =
−→
Vm

T ×Gm×n. (5.1)

Where, the input vector
−→
Vm

T = [v1, v2, · · · , vi, · · · , vm] is composed of analog voltages to WLs.

The output current ij at the end of BLj produces a dot production, such as

ij =
M∑
i=1

gi,j · vi. (5.2)

Thus, all the BLs currents form the output vector
−→
In

T = [i1, i2, · · · , ij, · · · , in]. For the high

integration density and parallel operation, memristor crossbars greatly improve the efficiency in

matrix computation and therefore inspired extensive studies on the hardware implementation and

applications [3][43][55].
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Figure 39: Mapping a matrix-vector multiplication to a memristor crossbar.

48



5.1.2 Motivation of the Proposed Work

In the spiking neuromorphic system implemented in previous Chapter 4, it uses an integrate and

fire circuit (IFC) to detect the BL current and represent it by spike number. The charging and dis-

charging overhead of IFC results in a non-linear relationship between the ideal BL current as a sum

of weighted multiplication (
∑M

i=1 gijVi) and the output spiking number: with BL current increase,

the output spike number will increase first and then start to saturate, as shown in Fig. 40(a). It

can also be observed from the figure that prolonging the computing period, e.g., increasing it from

10ns to 50ns, will help produce more output spike number, resulting in better linearity and higher

computation accuracy.
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Figure 40: (a) The computation accuracy analysis of a spiking-based design [2]. (b) The relations

of output spike number vs. computing period when representing input data by spike chain or by

voltage amplitude.

Moreover, the input data in the spiking-based design [2] is converted to a chain of spikes: the

spike frequency (i.e., the number of spikes within a constant computing period) represents the scale

of data. Such a digitalized interface guarantees the good noise immunity and high energy efficiency

in signal transferring. However, it also induce a low utilization rate at time domain. Thus, the

computing period need to be sufficiently long to satisfy the computation accuracy requirement. In

contrast, when using voltage amplitude to represent the strength of input data as [3], the computing

period will be fully utilized and therefore could be a lot shorter. For example, we compared the

relations of the output spike number and the computing period of two designs and Fig. 40(b) shows

the results when the BL current is set to 0.6mA. To generate the same amount of output spikes,
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the computing period of the design representing input data by voltage amplitude is only about the

half of the version using an input spike chain.

We also note that the spiking-based scheme adopted one-transistor-one-memristor (1T1M)

cell structure. The use of selective transistor is highly recommended in data storage structure, to

alleviate the sneak path leakage problem in crossbar [49]. However, it significantly enlarges the

cell size (≥ 6F 2). Very importantly, more than 4% loss in computing accuracy has been induced

by selective transistor after including its state resistance into consideration [2].

5.2 THE PROPOSED CIRCUIT DESIGN

We propose to develop memristor crossbar based computing engine by integrating a current sensing

scheme. Instead of connecting each BL to an IFC, a current amplifier is used to detect BL current.

Thus, the voltage of BL will be clamped to a fixed voltage level and the matrix-vector operation

can closely follow the linear function of Eq. (5.2), without being affected much by the resistance

distribution in memristor crossbar.

When implementing the proposed matrix computation engine, the non-ideal effects are mainly

contributed by the memristor crossbar and the current amplifier. We investigated the computation

engine design made of a 144 × 144 memristor crossbar and the current amplifier at 130nm tech-

nology node. In this section, we will describe the detailed design considerations and analyze the

computation accuracy loss.
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Figure 41: The impact of wire resistance on the relation of Io,j vs.
∑M

i=1 gi,jvi.
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5.2.1 Memristor Crossbar Array

It has been well known that the sneak path leakage is a major concern in memristor crossbar de-

sign [49][50]. The sneak path leakage refers to the unexpected parasitic current leakage caused by

those unselected cells. To solve the issue, one-transistor-one-memristor (1T1M) and one-selector-

one-memristor (1S1M) cell structures have been investigated when using crossbar arrays for data

storage [51][52] and neuromorphic systems [2].

Our approach conducts the computation in a parallel mode: all inputs are represented by analog

voltage signals and sent to WLs of crossbar array simultaneously. The current amplifier help keep

BL at a constant voltage level. In this way, all the cells are selected and accessed at the same

time. The impact of sneak path leakage is negligible in such a multiple inputs multiple output

(MIMO) operation [56] so the BL current can follow Eq. (5.2). Therefore, we are able to adopt the

memristor-only cell structure which offers cell size of 4F 2 while assuring computation accuracy.

The series wire resistance could also affect the BL current and therefor distort the realization

of Eq. (5.2). To quantitatively evaluate the impact, we compared the relations of BL current (Io,j)

and
∑M

i=1 gi,jvi, with and without including the wire resistance into considerations. Each config-

uration conducted 2,000 simulations with randomly generated input data. Fig. 41 summarizes the

simulation results, where only a small subset of data is included for better illustration.

In the simulations, we assumed 3-bit resistance states of memristor device, that is, eight resis-

tance levels from Ron = 50KΩ to Roff = 1MΩ. The resistance patterns of crossbar were randomly

picked which cover the major portion of the range of
∑M

i=1 gi,jvi. For the 130nm technology

adopted in the work, the wire resistance per cell is about 0.52Ω. The simulation results show

that when the wire resistance is not included, all the output currents strictly follow the theoretical

analysis in Eq. (5.2) which is not affected by data patterns. A small shift occurs after including

the wire resistance into the simulation. Even though, the linearity between the output current and∑M
i=1 gi,jvi can still maintain because of the large resistance value of memristor. The fitting curve

obtained in our implementation is

Ĩo,j = γIo,j, (5.3)

where γ = 0.973. Note that our result is consistent to [57], where the largest reading error is less

than 5%. It was obtained at the farthest cell in the crossbar when all the remaining cells have the

lowest resistance value of Ron.
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Figure 42: The current amplifier design.

5.2.2 Current Amplifier

Fig. 42 depicts the schematic of our current amplifier design. It is used to detect the output cur-

rent from crossbar array. Since the conductance of memristor can represent a positive value, we

can subtract the results from two crossbar arrays to obtain the computation with negative matrix

elements [3]. To support the feature, we designed a bi-lateral current buffer amplifier with two

input ports Ij+ and Ij−, denoting the BL currents from the crossbars for the positive and nega-

tive elements, respectively. A system-level illustration is demonstrated in Fig. 44, which shall be

explained in Section 5.6.5.

In this current amplifier design, Vref is a reference voltage providing DC operating point. Three

high-gain operational impedance amplifiers (OTAs) are used to clamp the voltage level of the two

input ports Ij+ and Ij− at Vref during operation. OTAs also assist the function of the associated

current mirrors, e.g., keeping the same Vds for N1 ∼ N4.

The input current Ij+ injected into N2 is duplicated to N3. The subtraction of Ij+ − Ij− can

be compensated by the branch of P9 ∼ P10. A cascode structure is adopted at the output stage

to improve the accuracy of current mirror (P9 ∼ P12). For the design requiring only unilateral

current input, the current amplifier corresponding to Ij− can be trimmed by removing the part

within the red dashed box in Fig. 42.
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Compared to other current amplifiers such as [58], our approach tends to minimize the output

voltage variation under different amount of BL currents. Recall that in the spiking based design, a

BL is directly connected to IFC, and the integration/firing operations are realized through charg-

ing/discharging a capacitor inside IFC [2]. A stable charging voltage at the capacitor is necessary

in order to maintaining a fixed charging rate and therefore a constant spiking generation frequency.

Our current amplifier was designed for the purpose. We evaluated the performance of Iout of cur-

rent amplifier by fixing Ij− = 0 and sweeping Ij+. Here, Vref is set to 200mV. The result in

Fig. 52 shows that Iout follows well with Iin.

5.2.3 Overall Performance

After combining the non-ideal factors of the memristor crossbar and the current amplifier design,

the output signals can be fitted by a first-order function such as

I∗out = γ
M∑
i=1

gi,jvi. (5.4)

The root mean square errors of I∗out is 2.7% . The slight error of our design can be mitigated

by many system-level designs. For example, in developing neural network models, this error can

be included by substituting Eq. (5.4) into the training procedure so the computation accuracy at

system level will not be affected much. In Section 5.6.5, we will use a simple neural network to

evaluate the performance of the proposed computing engine.
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Figure 43: The characteristic of the current amplifier: Iin vs. Iout.
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5.3 APPLICATION AND EVALUATION

We designed a neuromorphic system by using memristor crossbar with the proposed current sens-

ing scheme. For each memristor crossbar, analog voltage signals are used as input data. The

current generated at BL will go through a current amplifier and an IFC in sequence to produce

output spikes. The performance and accuracy were evaluated through a three-layer neural network

for MNIST handwritten digit recognition [59].

5.3.1 Neuromorphic System Implementation

As discussed in Section 5.2.2, the proposed current amplifier is used to sense out the BL current

(Iout) with a close to ideal linearity, representing the sum of weighted multiplication. In real

applications, a current output need to be transformed into a voltage signal. The spiking based

architecture by Liu et al. [2] demonstrated a high power efficiency by eliminating the use of analog

components like analog-to-digital converters (ADCs) and digital-to-analog converters (DACs).

By leveraging the integrate-and-fire design concept, an approach of feeding Iout of the current

amplifier to an IFC and therefore transferring the computation results into a digitalized format has

been adopted in our design.

Fig. 44 demonstrates the system-level approach for neural network implementation. Instead of

using a chain of spikes as the data input, analog voltage signals generated by DAC will be simul-

taneously supplied to the wordlines of crossbar to represent input vector. As discussed previously,

this approach can produce more output spikes within the given computing period, offering better

computation accuracy, compared to the original spike-based design. For the analog voltage inputs

with different voltage amplitudes, the current amplifiers performs like buffers that isolate the cross-

bar array from IFCs. It helps eliminate sneak-path leakage and grantee good computing accuracy

as discussed in 5.2.3.

As shown in Fig. 44, two memristor crossbars are used in each layer, in order to realize both

the positive and negative matrices terms without modifying original neural network models. The

two crossbars are respectively denoted as M+ and M− [3]. To conduct a subtraction operation

and match the mathematical algorithm in training and recall processes, the current outputs from

two corresponding BLs of the two crossbars will be connected to the two input ports of an current
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Figure 44: The system architecture used for neural network implementation.

amplifier. The computation output will be then transferred to the output of the current amplifier

Iout, which is the input of IFC for output spike generation. The output spikes can be encoded to

digital signals by digital circuitry and gives out digital voltage signal [2]. When implementing a

multi-layer neural network system, the output digital signals of one layer are transferred to analog

format and fed to the following layer.

In this work, we evaluated the proposed new design denoted as AnalogV in the following con-

text and compare it with spiking based design in [2], which is denoted as Spiking. Comparing

the two type of system implementations, AnalogV offers an analog-digital flow, while Spiking pro-

vides a completed digitalized data transmission. The computation accuracy of Spiking is affected

by the non-linearity effect shown in Fig. 40(a) and the selective transistor resistance in the 1T1M

cell structure. The low output spiking rate in a certain computing period due to the non-linearity

resulted by IFC charging and discharging described in [2] and the spiking input with 50% utiliza-

tion rate are also major concerns. While, the system AnalogV proposed in this work can provide

a higher output spiking rate because of the parallel analog voltage signal adopted in this design.

Meanwhile, the crossbar of AnalogV is denser for it composed of only memristors. However, the

design requires extra components, including current amplifier and DACs. The induced overheads

have been carefully considered in the following evaluations.
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5.3.2 Application of Digital Pattern Recognition

We tested and compared the two system designs on a three-layer feed-forward neural network.

Here, 60,000 digital patterns from MNIST [59] were used for training, and a test set of 10,000

examples was selected randomly. During the training and testing, we resized digital patterns in

28 × 28 pixels from MNIST database to smaller patterns in 12 × 12 pixels to match the maximal

allowable 144 × 144 memristor crossbar in this work. Each memristor represents a 3-bit data (8

resistance levels). Traditional back-propagation and delta rule were used for training and then

each memristor cell in the crossbar was programmed to a target resistance [56]. Fig. 45 shows an

example of patterns 0 ∼ 9 with 4-bit gray-scale used in our training and testing.

The crossbar sizes of layer 1 ∼ 3 are 144×128, 64×128 and 64×20, respectively. The numbers

were determined for the best recognition accuracy obtained at software level. We evaluated and

compared the performance of AnalogV and Spiking systems under different design considerations,

including the input width, input bits, and resistance value variance. The impacts of matrix-vector

computation accuracy on these systems were measured by the failure rates in pattern recognition

testing.

5.3.3 Design Parameter Considerations

In both system implementations, integrate-and-fire circuits are adopted to transform the current

computation results to readable digital voltage signals. As such, the computing accuracy of the

integrate-and-fire circuits that is mainly affected by the computation period is a major concern in

the failure rate of the two systems in pattern recognition. The computation period of the IFC will

Figure 45: An example of patterns 0 ∼ 9 with 4-bit gray scale in testing.
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Figure 46: The MNIST recognition failure rates of AnalogV and Spiking system designs when

applying different (a) input widths, (b) input bits, and (c) resistance value variations.

be determined by both input signal width and input bits. Therefore, the input signal width and in-

put bits will be two important design parameters needed to be consideration. As discussed above,

DACs are used in our proposed system AnalogV and its resolution will affect the computation ac-

curacy of the system. In the hardware design, DAC with half-bit resolution error was implemented

and the induced computation accuracy loss was considered in the following evaluation. More-

over, during programming memristor with multiple value, variations in resistance value cannot be

ignored and will be considered.

5.3.3.1 Input Width Dependence We first tested the pattern recognizing failure rated under

different input signal widths. Inputs were set to 4-bit value in this evaluation. Fig. 46(a) demon-

strates the result when varying the input width from 10ns to 100ns. The failure rate under the

ideal condition is 2.66%, which was obtained from software simulation without including any real

implementation consideration. The simulation results showed that both AnalogV and Spiking sys-

tems are sensitive to the input width, and the new scheme AnalogV has the higher computation

accuracy. More specific, the failure rate of AnalogV is 5.43% at the input width of 100ns, which is

8.11% less than that of Spiking design (13.54%).

The large input width dependency is mainly caused by IFC design so computation accuracy

improves as the input width increases. Accordingly, the failure rate decrease as the input width

grows up, especially when it is smaller than 60ns. Spiking demonstrates a much higher failure

rate (38.43%) than AnalogV (14.75%) under the input width of 60ns. This is because sparse input

pulses are given as input for Spiking and the real computation time is decrease by half. More output
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spikes will be generated in system AnalogV in a certain input width as analog signals are applied

to crossbar with 100% of utilization. The failure rate fluctuation of Spiking at small input width

indicate the high instability of the system and high randomness of the testing results. The accuracy

loss caused by the non-linearity of IFC in AnalogV is much smaller than the accuracy decrease in

Spiking in the same computation speed. In the other words, our proposed system AnalogV could

obtain much higher computing speed (about twice) than Spiking when they target at the same

computation accuracy.

Another concern on AnalogV design is the frequency of DACs that generate discrete analog

signals as crossbar inputs. In our implementation, DAC was designed with a maximum frequency

of 100MHz, corresponding to 10ns analog input width. The maximum frequency can be increased

in real design but power and area will be scarified. The result in Fig. 46(a) indicates that the input

width must be longer than 60ns in order to achieve a reasonable failure rate. Therefore, the DAC

with 100MHz frequency is large enough and will not be a constraint in the system design.

5.3.3.2 Input Bits Dependence Fig. 46(b) shows the impact of pattern input bits, reflecting the

pattern color depth on the system failure rate. Based on the above analysis, we evaluated the input

bits dependence by using 60ns input width. The two systems were first tuned till they can obtain

similar accuracy. Comparing with prior design Spiking, AnalogV obtained lower failure rate when

the input pixel has more than 2 bits It matches well with the simulation results discussed above.

As can be seen from the ideal curve, there is a valley value. This is because more input bits per

pixel of input images indicates higher complexity of neuromorphic system should afford, and the

computation accuracy is limited by the available resistance states of memristors. Practically, we

observed that the values of
∑M

i=1 gi,j · vi drops statistically, leading to higher quantification error in

IFC. These two opposite factors together influence the trend shown in Fig. 46(b). We chose 4-bit

color-depth to obtain a relatively high accuracy in difference systems.

5.3.3.3 Impact of Resistance Value Variation The impact of the resistance value variation in

computation failure rate was evaluated too. The failure rates of both systems with 0%, 10%, and

20% resistance variation are summarized in Fig. 46(c). The systems failure rate increases with the

increasing of resistance value variation. System Spiking is more vulnerable to the resistance value

variation because of the lower output spike number in it. We observe a large failure rate increase

when increasing the resistance value variation from 10% to 20%. The results show that the failure
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rate of our proposed design AnalogV is under 20% when the variation is 10%, while the failure

rate of Spiking increases to more than 45%.

Table 2: System Performance Comparison

Area Power Speed Energy

AnalogV (This work) 0.426mm2 100.6mW 16.7MHz 6.04nJ

Spiking [2] 0.476mm2 82.93mW 10MHz 8.29nJ

Difference -10.5% +17.6% +40.1% -27.1%

5.3.4 Design Comparison

The area, power, speed and energy consumption of the two systems were compared and summa-

rized in Table 2. Area and power data are based on the systems implementation at 130nm tech-

nology node. The DACs and the current amplifiers used in AnalogV induce more area and power

consumption. However, less IFCs and digital circuits are needed in AnalogV as the subtraction

of computing result from the positive and negative crossbars can be executed by current amplifier.

The 1T1M crossbar structure of Spiking induces more area cost.

Comparing to Spiking, AnalogV obtains 10.5% decrease in area while increases power con-

sumption 17.6%. This is caused by the extra power consumed by the current amplifier and DACs.

When testing the speed of AnalogV and Spiking, we selected 60ns and 100ns as input pulse widths

respectively to maintain an approximate similar failure rate 15%. AnalogV executes much faster

than Spiking, obtaining 40.1% speed improvement. Overall, AnalogV lowers the energy consump-

tion 27.1% comparing with Spiking.
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Figure 47: The circuits block diagram of the matrix-vector computation system.

5.4 CHIP DESIGN

Basing on the neuromorphic engine with current sensing proposed above, a matrix-vector com-

putation system is designed for a on-chip design using the analog-mixed-signal design flow. The

circuits block diagram and signal flow is shown in Figure 47. In this design, a 4-bit digital-to-

analog converter (DAC) is needed before each wordline of the crossbar to transfer the external

digital signals to analog voltage signals. Then, the analog voltage signals with voltage amplitude

to represent the signal strength are given to the crossbar. The register files are designed before

the DACs to store the external 16 bits signals (< 15 : 0 >)temperately and generate the 128 bits

signals (< 127 : 0 >) for the inputs of the DACs after 8 clock cycles.

Similar to the on-chip design of the spiking engine in Chapter 4, we adopted the hardcoded cell

design - 1T1R (one transistor and one resistor) cell structure in the crossbar array design. Output

current from each bitline of the crossbar are copied without accuracy loss to the input of the IFCs

by adopting the current amplifier. Counters, DFFs and MUXs are designed to convert the output

spikes from the IFC to digital signals and fulfill the computation for final output results. Internal
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Figure 48: The ex- and internal timing signal waveform.

clock signals are generated by the timing and control circuit block to control the execution of the

computing. The signal waveform of external and internal timing signals are shown in Figure 48.

The layout of the matrix-vector computation system is shown in Figure 49.

5.5 CHALLENGE AND DISCUSSION

In this work, a memristor crossbar based computing engine using current sensing was proposed

for matrix-vector computation. The parallel exaction was realized by applying analog voltages

to every wordline of memristor crossbar. A current amplifier circuit was designed which mirrors

the current from the crossbar with a slight accuracy degradation. To evaluate the computation

accuracy of the scheme, we implemented a three-layer feed-forward neural network and plugged

different memristor crossbar based computing engines for comparison. We thoroughly analyzed

the newly proposed system and a prior reported design from perspectives of accuracy, speed, area,

and energy. The results show that our system has lower area and energy consumption with a higher

speed than prior spiking based design. The computation accuracy of the new system based on

our computing engine can reach 94.6%. Overall, it demonstrates a good computation accuracy
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Figure 49: The layout of the matrix-vector computation design.

in matrix computation with a lower energy consumption. Moreover, a matrix-vector computation

system is designed on a chip. Challenges in the proposed design is that IFCs are still used to

generate readable digital signals which limit the computation accuracy. Therefore, a current-to-

voltage converter based on a current amplifier is designed which converts the output current from

the crossbar to analog voltage without computing accuracy loss. ADCs are needed when applying

it in matrix-vector computation, which will bring extremely high design cost in the on-chip design.

Therefore, this approach is mainly designed for artificial neural network implementation.

5.6 AN NEUROMORPHIC DESIGN FOR NEURAL NETWORK IMPLEMENTATION

In this work, we focus on improving the computation accuracy for memristor based neuromorphic

engine. A current-to-voltage converter based on a current amplifier is designed which converts the

output current from the crossbar to analog voltage without computing accuracy loss. Moreover, a

rectified linear unit activation function is implemented by using the current-to-voltage converter.
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A hardware implementation flow based on the proposed design approach is built for multi-layer

as well as single-layer feed-forward neural network. Two neural networks including a single-

layer system and a two-layer neural network will be implemented for MNIST handwritten digit

recognition. Various design parameters are considered and their impact on classification accuracy

are evaluated.

5.6.1 Design Motivation

In memristor crossbar based sums-of-product computation, it is essential to sense the BL currents

out to obtain the computation result. A linear relationship between the outputOo,j and
∑n−1

i=0 gi,j vi

shall be followed to guarantee a successful sensing without computation accuracy loss:

Oo,j = k ×
n−1∑
i=0

gi,j vi, (5.5)

where, k is a constant value independent on any parameter related to the memristor-based crossbar.

Previously, Hu et al. adopted a voltage sensing scheme: a fixed resistor Rs is inserted at the

end of each BL; the BL current is then transferred to the voltage across Rs and detected through an

operational amplifier [3]. The design initiated an effective matrix computation. However, the use

of Rs severely degrades the accuracy and limits its applications. More precisely, the output voltage

at BLj can be expressed as [3]:

vo,j =
1

gs +
∑n−1

i=0 gi,j

n−1∑
i=0

gi,j vi (5.6)

where, gs is the conductance of Rs. Eq. (5.6) implies that vo,j is not only determined by the sum-

of-product
∑n−1

i=0 gi,j vi but also affected by
∑n−1

i=0 gi,j denoted as the data pattern to BLj . In other

words, even for the same sum-of-product, BLs with different data patterns could generate different

output voltages. The scenario is shown in Fig. 50(a). Here, we apply different data patterns – all

Ron, Roff , and a random combination. They all have close-to-linear output/input relation but in

different slope rates. The resistances of memristors range from Ron = 10KΩ to Roff = 500KΩ,

and Rs is 1KΩ. A possible solution could be developing a BL compensation circuit adaptive to

various data patterns, which could be very costly.
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Figure 50: Computation accuracy analysis for (a) voltage-based sensing [3], (b) spiking design [2].

The spiking-based approach usually uses integrate and fire circuits (IFCs) to detect the output

from BL and represent it by spike number [2]. However, the intrinsic delay of the IFC results in

a non-linear relationship between the output spike number and the sum-of-product. A test case

result is shown in Fig. 50(b). Recently, a traditional circuit – trans-impedance amplifier (TIA) was

adopted to convert the output current io,j to voltage signal directly [60]. This approach can retain a

linear sensing in Eq. (5.5). However, its output range is narrow in real implementation, especially

on-chip designs.

Another challenge faced in memristor-based neuromorphic systems is that two memristor

crossbars are usually required to represent each neuron layer of an artificial neural network (ANN).

That is because synaptic weight with negative values besides positive values are necessary. How-

ever, it doubles the use of memristor crossbars and induce in a lot more computation resources in

data subtraction and transformation [3][2].

5.6.2 Design and Application of Our Proposed Design

In this work, we develop a memristor crossbar based neuromorphic engine with a current sensing

scheme. In addition, the design space of the proposed sensing scheme in implementing the artificial

neural network with a single crossbar for each neuron layer is explored.
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Figure 51: The design scheme of current-to-voltage converter.

We designed a current-to-voltage converter basing on a current amplifier which is connected

to each bitline of crossbar directly. The voltage at the end of each BL is retained to a fixed value

by the current amplifier, helping eliminate the sneak path leakage issue. Most importantly, the

computation in crossbar is isolated with the current to voltage converting execution by the current

amplifier. As such, the computation result of the crossbar will not be distorted and the linear

function in Eq. (5.5) is implemented. The computation of the proposed neuromorphic engine is

executed in a parallel format: input voltage vi with different amplitude representing signal strength

is supplied to each WL simultaneously; and the sum-of-product in each BL are sensed out through

BLs all together.

In this section, we first present the design of current-to-voltage converter for the current sens-

ing scheme and analyze its sensing accuracy. A computation engine made of a 32× 16 memristor

crossbar and the current sensing scheme at GlobalFoundry 130nm technology node are imple-

mented. Its performance in the sum-of-production is investigated. In this work, the resistance

range of memristors is set from Ron = 10KΩ to Roff = 500KΩ with 16 resistance states.
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5.6.3 Current-to-Voltage Converter

Fig. 51 demonstrates the schematic of our proposed current-to-voltage converter design. It is used

to copy the output current of the crossbar and convert the current to output analog voltage by

following a linear property. Different from the narrow output range of TIA, the proposed current-

to-voltage converter has an output range larger than 0 ∼ 1V . In this section, the working function,

converting accuracy and computing accuracy with memristor-based crossbar of the proposed de-

sign are analyzed.

Two operational amplifiers (op-amp), OP1 and OP2, are used in the design. OP1 and M1 to-

gether create a negative feedback, and a reference voltage Vref is given to the negative port of OP1

to clamp the positive port voltage to the same level. Therefore, the tail voltage of crossbar bitlines

will be fixed to Vref when connecting the proposed converter to the crossbar. This characteristic

enables the aforementioned parallel computing execution, without inducing the sneak path leakage

problem. The input current Iin combining the bias current through transistor M3 are injected to

M1 which is mirrored to M2 with a ratio of θ (0 < θ < 1). θ = β/α, where α is the W/L ratio

of M1 and β is the W/L ratio of M2. Here, the parameter θ shall be optimized to obtain a good

linearity in current to voltage converting.

Another negative feedback loop is generated by OP2 and M5. The Vx depicted in Fig. 51 is set

to be Vref by the negative feedback loop, helping increase the accuracy of the current mirror pair

of M1 and M2 apparently. R0 in the current-to-voltage converter design also assists in maintaining

the linearity during the current to voltage conversion. It makes the source voltage Vs of M5 to

follow Vs of M6 which corresponds to the output voltage. At last, the load resistor RL senses the

copied current out to an analog voltage signal.

The sensing accuracy of the proposed current-to-voltage converter is verified on a single device

firstly and the result is shown Fig. 52. The reference voltage Vref is set to 0.1V for general sun-of-

product exploration. A linear relationship between the output voltage Iin and input current Iin is

obtained, that is

Vout = a Iin + b. (5.7)

Where, a = 2.47 and b = 0.004, and the current is in an unit of mA. It indicates that current

can be transformed to voltage signal by our proposed current-to-voltage converter with a linear
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relationship. The offset of b = 0.004 is caused by the non-ideal property of the op-amps in real

circuit implementation. Even though, a good sensing accuracy is still guaranteed by the linear

relationship in sum-of-product. The output voltage has a range of 0 ∼ 1V when input current

varies from 0 to 0.4mA in this implementation, while the input range can be extended with the

same output range by adjusting the design parameter.
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Figure 52: Sensing accuracy of the proposed current-to-voltage converter.

The sum-of-product computation accuracy of the proposed current sensing engine is evaluated

with a 32 × 16 memristor crossbar. Results as shown in Fig. 53 indicates that the computation

result Vo,j follows a linear relationship with
∑n−1

i=0 gi,j vi:

Vo,j = k ×
n−1∑
i=0

gi,j vi + b∗. (5.8)

where k is 2.46 and b∗ is 0.012. The small difference between k and a is caused by the random

noises caused by the crossbar. Ideally, Eq. (5.8) should follow the Eq. (5.5) in Section 5.6.1.

Similar to Eq. (5.7), a non-zero parameter b∗ exists for the same reason. And its value is slightly

larger as memristor crossbar is involved. Based on these results, we can conclude that our proposed

design has a good computation accuracy for the sum-of-products with memristor-based crossbar.
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Figure 53: The computation accuracy of sum-of-product with proposed current sensing scheme.

5.6.4 Single Crossbar Utilization in Neuron Layer

We also explore the approach of utilizing a single crossbar to realize both positive and negative

synaptic weights. The computation accuracy and the involved design considerations are analyzed

and discussed. In artificial neural network model, a synaptic weight could be positive or negative.

As discussed above, two memristor crossbars are commonly adopted and the weighted signals of

the corresponding cells are subtracted with each other to represent negative weights. A lot more

computation resources are introduced in such a scheme, including the extra crossbar, the doubled

sensing circuits, and the additional subtraction circuitry. The design cost is especially higher in

the multi-layer neural network design, as an additional computation flow with ADCs→ DACs→

Subtractors→ ADCs are needed to generate analog inputs for the sequential hidden layers.

In this work, negative weighted signals are generated by the proposed current-to-voltage con-

verters to save computation resource. Noticeably, the reference voltage Vref in the proposed

current-to-voltage converter is used to clamp the tail voltage of the crossbar BLs and suppress

the sneak path leakage. Thus, the effective voltage across the memristor device would be v∗i =

vi − vref . Different from the low vref setting above for general sum-of-products with all positive

computation results, in this single crossbar for negative weighted generation, vref is set as the half
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Figure 54: Computation accuracy of
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i=0 gi,j v
∗
i vs. Vo,j .

of Vdd (0.6V ) while input signals vi are in the range of 0 ∼ Vdd (0 ∼ 1.2V ) with 16 analog voltage

value (4 bits). Therefore, negative values of v∗i will be generated when the inputs are lower than

it, resulting in negative weighted signals of gi,j v∗i . Fig. 54 shows the relationship of the weighted

signals
∑n−1

i=0 gi,j v
∗
i and output of the current-to-voltage converter Vo,j , that follows

Vo,j =


k ×

∑n−1
i=0 gi,j v

∗
i + b,

∑n−1
i=0 gi,j v

∗
i > 0

0, otherwise

(5.9)

Here, k = 2.69 and b = −0.0021. A linear relationship is obtained when the output current of

each BLs is positive, which guaranteed a good computation accuracy. Meanwhile, a grounded

output voltage is generated when the sums of the weighted signals of a BL is negative. That is a

rectified linear unit (ReLU) activation function without requiring any additional circuitry. In other

words, extra circuits are not needed anymore to fulfill the activation functions in neural network

implementation.
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Figure 55: The system-level approach for a multi-layer feedforward neural network.

5.6.5 Neural Network Implementation and Evaluation

In this section, feedforward neural networks for MNIST handwritten digit recognition (0 ∼ 9) are

implemented by our proposed sums-of-product engine – adopting memristor-based crossbar for

synaptic weight implementation and a current-to-voltage converter for neuron computing. The re-

quired computing resource and performance of the implemented neural networks for classification

accuracy are evaluated. 60,000 digital patterns from MNIST were used for training, and a test set

of 10,000 examples was selected randomly [59].

5.6.5.1 Feedforward Neural Network Implementation In the neuromorphic engine, digital

images are encoded to inputs in floating-point formate and are then mapped to analog voltage sig-

nals with the closest possible amplitude. Thus digital-to-analog converters (DACs) are needed

to generated the analog signals for input vector by digital signals from outside. Fig. 55 demon-

strates the system-level approach for a multi-layer feedforward neural network implementation. A

single-layer network is a simplified version with only one hidden layer weight matrix.

Each weight matrix layer is fulfilled by memristor-based crossbar and the weight is represented

by the conductance of each memristor cell. During computation, analog voltage signals from DACs

are given to the memristor crossbar simultaneously, forming the input vector. Weighed signals by

dot productions from each memristor cell are summed and integrated at the end of BL of the

crossbar. The computation current results from the crossbar will be injected to a current-to-voltage

converter (I-to-V Converter) at the end of each BL.
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Here, four important functions are implemented by the proposed current-to-voltage converter.

Firstly, the current amplifier in the current-to-voltage performs like a buffer that isolates the cross-

bar array from the current-to-voltage procedure. It helps eliminate sneak-path leakage and grantee

good computing accuracy as discussed in 5.6.2. Secondly, the negative besides positive weighted

values can be generated by applying a higher reference Vref to the current-to-voltage converter like

half of Vdd, while providing inputs with a full 0 ∼ Vdd input range. Therefore, only one memristor

crossbar is needed in each layer without expecting much classification accuracy loss. Thirdly and

very importantly, the injected current from the memristor crossbar is converted to analog voltage

signals that can be sensed out in a single-layer design or transmitted to the next layer in a multi-

layer design. Additionally, a rectified linear unit (ReLU) activation function can be implemented

by the current-to-voltage converter as the simulation results in Section 5.6.2 indicate.

Therefore, a positive analog signal following a linear relationship with the output current from

the crossbar are generated through an I-to-V Converter. In our design, this analog signal is trans-

mitted forward to the next hidden layer and acts as its input signals. A sample-and-hold circuit is

adopted here for maintaining signal stability and controlling timing. After the final neural layer

with memristor crossbar, a positive analog voltage signal is given to an analog comparator. It helps

capture the maximum output from the last layer by outputting it as logic 1 while others to be zero.

As such, an entire computation is implemented and corresponding output image is obtained.

In this work, two feedforward neural networks are implemented by using GlobalFoundry

130nm technology: one is a single-layer neural network and the other is a two-layer neural net-

work. 4-bit DACs are implement on this technology node and used in system implementation. The

memristor has a resistance range of 10KΩ ∼ 500KΩ with 16 analog levels (4 bits). Digit image

classification accuracy of our proposed system are evaluated under different design considerations.

5.6.5.2 Classification Accuracy Evaluation As is discussed above, input vectors with floating-

point values extracted from the image are mapped to discrete analog values that can be generated

by DACs. Therefore, the resolution of DACs, meaning the analog voltage levels the DACs can pro-

vide, will affect the image recognition accuracy. In the neural network implementation, weights

with continuous values obtained from software training are mapped to the memristor cell in the

crossbar. However, available memristance states that can be programmed successfully with good
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stability are limited. This discrete weight values resulting from the memristor cell will also influ-

ence classification accuracy. Moreover, the crossbar size and wire resistance in the crossbar in real

implementation will also have an impact on the classification accuracy. All of these parameters

have been considered and investigated in our neuromorphic system implementation.

5.6.5.3 Single-layer Neural Network The single-layer neuromorphic design is evaluated firstly

with different input image size and input bits consideration. The input image size here refers to the

real image size adopted in the implementation, corresponding to the crossbar size in WLs direc-

tion. For instance, a 784× 10 crossbar is needed for the 28× 28 original image size from MNIST

data base without compression in the single-layer design. To reduce design cost in using such a

large size crossbar, images are usually compressed to make smaller size crossbar available in the

image recognition while not decrease computation speed. Here, the effect of this compression on

image recognition error rate is investigated.
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Figure 56: The MNIST recognition error rates of the single-layer system when applying different

input image size and input bits.

Fig. 56 depicts the image recognition error rate when varying the image size from 5× 5, 8× 8,

12× 12, 20× 20, to 28× 28, as well as increasing the input bits from 2, 4, 6, to 8. Each memristor

cell can be programmed to a 4-bit value in this evaluation. The results indicate that the image

recognition error rates increase with the decrease of input image size, especially when the image
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size is smaller than 12 × 12. This is because smaller image size involved in heavier compression,

resulting in worse image resolution. The error rate decrease is extremely small when the image

size is larger than 12 × 12. The error rate dependency on input bits is also illustrated in Fig. 56.

Identical to the discussion above, different input bits will bring in different error rates. However,

there is nearly no error rate decrease when input bits are larger than 4-bit, especially when the input

image size is large.

Overall, a 89.5% image recognition accuracy can be obtained in the 12 × 12 input image size

with 4-bit input bits. With the original 28 × 28 input image size and an 8-bit input bits, there is

a 91.9% accuracy rate in our implementation. 12 × 12 input image size and 4-bit input bits are

adopted in our design and used in the following evaluation.

5.6.5.4 Two-layer Neural Network In our work, a two-layer neural network is also imple-

mented and tested. Different with the crossbar size in WLs direction in Section 5.6.5.3, the impact

of crossbar size in BLs direction in the two-layer design is evaluated with wire resistance is in-

volved in. The error rates in different crossbar size without or with wire resistance consideration

are demonstrated in Fig. 57. The wire resistance is considered here because it will decrease the

access voltage and contaminate the computing accuracy in memristor crossbars. With the increase

size in the BLs direction of the crossbar, its affect will be more severe. For the 130nm technology

adopted in the work, the wire resistance per cell is about 0.52Ω.

Results in Fig. 57 presents a large error rate decrease from 14.5% to 3.4%, when increasing the

crossbar size from 144× 20 to 144× 80, without considering wire resistance. However, error rate

decrease is not obvious once the crossbar size reaches 144 × 80 and a high recognition accuracy

can be obtained. Comparing the error rate with wire resistance considered to the result without

wire resistance consideration, not much increase is observed. This is because the wire resistance

is much smaller than the memristor resistance with Ron = 10KΩ and Roff = 500KΩ. Moreover,

resistance states mostly concentrate in the high resistance level in the training, decreasing the

impact of the wire resistance furthermore.

The impact of memristance bits are also evaluated with involving in circuit performance. The

results in Fig. 58 show that there is nearly no error rate increase when the resistance bits is larger

than 5. However, a large error rate increase occurs when the resistance bits continues to be de-
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Figure 57: The MNIST recognition error rates in different crossbar size without or with wire

resistance consideration.

creased lower than 5 bits. As discussed in Section 5.6.5.3, the current-to-voltage converter has

a good linearity guaranteeing good computation accuracy. Therefore, the circuit variation is ma-

jorly introduced by the memristor and the DACs. In evaluation, a ±5% variation of both of the

memristor and DACs are considered, which causes slight difference.

5.7 SUMMARY

In this Chapter, a memristor crossbar based computing engine using current sensing was proposed

for high speed and accuracy. A parallel execution of sums-of-product computation is implemented

by adopting a memristor-based crossbar and applying analog voltages to each wordline of the

memristor crossbar simultaneously. Two current sensing scheme are proposed. First, a current

amplifier circuit was designed which mirrors the current from the crossbar with a slight accuracy

degradation, and then the current is computed by the integrate-and-fire circuit (IFC). The system

demonstrates a good computation accuracy in matrix computation with a lower energy consump-

tion. Moreover, a matrix-vector computation system is designed on a chip.
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Figure 58: The MNIST recognition error rate with different resistance bits of memristor cell.

Second, A current-to-voltage converter based on a current amplifier is designed which converts

the output current from the crossbar to analog voltage without computing accuracy loss. Moreover,

a rectified linear unit activation function is implemented by using the current-to-voltage converter.

A hardware implementation flow based on the proposed design approach is built for multi-layer

as well as single-layer feed-forward neural network. Two neural networks including a single-layer

system and a two-layer neural network are implemented for MNIST handwritten digit recognition.

Various design parameters are considered and their impact on classification accuracy are evalu-

ated. The proposed computing system demonstrates good classification accuracy: a maximum

computation accuracy of 91.8% can be reached in a single layer design while a 96.12% compu-

tation accuracy value is obtained in the two-layer design. Overall, the proposed memristor-based

neuromorphic engine demonstrates a good computation accuracy in neural network applications.
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6.0 RESCUING MEMRISTOR-BASED NEUROMORPHIC DESIGN WITH HIGH

DEFECTS

As is talked in the above chapters, memristor-based synaptic network has been widely investigated

and applied to neuromorphic computing systems for the fast computation and low design cost.

However, as memristors continue to mature and achieve higher density, bit failures within crossbar

arrays can become a critical issue. These can degrade the computation accuracy significantly. In

this Chapter, we propose a defect rescuing design to restore the computation accuracy. In our

proposed design, significant weights in a specified network are first identified and retraining and

remapping algorithms are described.

In this chapter, we will present the details of the proposed rescue neuromorphic design as the

follows: Section 6.1 gives the development status of the memristor crossbar and analysis of impact

of the single-bit defects; Section 6.2 presents the details of the defect rescuing design methodology.

Section 6.3 evaluates the performance and robustness of the proposed rescue design in feedforward

neural networks; At last, we summary the work in this chapter in Section 6.4.

6.1 OBSERVATION & MOTIVATION

6.1.1 Random SBF in a Memristor Array

In a neuromorphic application of memristor crossbar arrays, multiple stable conductance states are

necessary for each memristor to represent synaptic weights in neural networks. Reported by HPE

Labs recently, at least 64 conductance levels (6 bits) can be successfully programmed in Tantalum

Oxide (TaOx) based crossbar arrays in a one-transistor-one-memristor (1T1M) design [61]. Fig-

ure 59(a) shows a 44 × 44 pattern in a 64 × 64 1T1M array It can be seen that the SBF defects
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distribute randomly across the array and blur the programmed pattern. In fabrication, memris-

tor arrays demonstrate very different defect patterns and yields. Among all the measured arrays,

this example has the lowest yield of 84%. However, across the full lifetime of a memristor array

used for neural network inference and training, the memristor cells can be heavily exhausted and

damaged by aggressive programming and testing cycles.
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Figure 59: (a) The conductance distribution (in µS) and (b) the measured stuck-on (+1) and stuck-

off (−1) defects of a 64×64 memristor crossbar array.

Figure 59(b) shows the stuck-on/off SBF distribution of the 44 × 44 sub-region. For ease of

illustration, stuck-on defects are displayed as +1 and stuck-offs are presented as −1. It is worth

pointing out that a defect is not fixed to the highest conductance gH or the lowest value gL. As

our design utilizes the full analog conductance range of memristor, a device is taken as defect

when its gerror is out of tolerance after programming, where gerror = gfinal − gtarget denotes the

conductance difference between the real programmed and the target values. In this work, a device

with gerror > 30µS is considered as a stuck-on. The measurement shows that the conductance of

stuck-on devices ranges from 330µS to 1200µS. The devices with gerror < −30µS are defined

as stuck-offs, most of which demonstrate less than 1µS conductance value. For the example in

Figure 59(b), 18.4% of defects are stuck-off and the remaining are stuck-on.

The measurement data depicts a random distribution of the SBF defects. When utilizing a

memristor-based functional unit for data storage, the data at defective cells can still be read and

corrected if necessary. Traditional methods such as redundancy and error correcting codes (ECC)

can effectively solve these issues for storage. For in-memory computations, however, the situation

is more complex and errors in the conductances aggregate in a non-trivial manner, requiring new

correction schemes.
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Figure 60: (a) An illustration of synaptic weight defects; (b) the impact of SBF on the classification

accuracy of a two-layer neural network.

6.1.2 Impact of SBF on Neuromorphic Systems

We take a two-layer neural network for MNIST classification as the example to evaluate the impact

of random SBF defects on the memristor-based neuromorphic design. Figure 60(a) depicts the

network model which consists of an input layer, a fully-connected synaptic weight matrix W and

an output layer. The well-tuned floating-point values of the synaptic weight matrix WI will be

mapped to the analog conductances that a memristor array can afford (e.g., 64 levels). Besides

the slight precision loss during the mapping, unpredictable defects shall be considered. So we

generate defect matrices WD randomly and apply them to test the impact of SBF on the system

performance.

Figure 60(b) shows the classification performance statistics when 5%∼30% stuck on/off SBF

are injected in a 784 × 10 memristor-based array. For each setup, the impact of defects is eval-

uated on 1,000 test cases that are generated by randomly spreading defects. Without defects, the

network achieves a classification accuracy of 92.64%. The normalized accuracy rate defined as

Accreal/Accideal in Figure 60(b) demonstrates the significant performance degradation due to de-

fects: adding 10% SBF defects results in an average normalized classification accuracy rate of

59.7%, that is, 55.3% real classification accuracy for MNIST dataset.
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Our observation of the large performance degradation here is different from previous research

conclusion that comparable accuracy can be retained with weights penalties in deep neural net-

works (DNNs) [62, 63]. In the methods such as L1/L2 regularization and dropout, only those

weights with near-to-zero parameters are penalized as they are less important. For example, the

near-to-zero synaptic weights could be removed through network sparsification to realize recogni-

tion systems with high computation accuracy and efficiency [64, 65]. The SBF defects, however,

can occur anywhere in a memristor array. Many of them could greatly affect the network perfor-

mance. Moreover, the sparsification method completely removes some connections by forcing the

corresponding matrix entry to 0. A defect could still contribute certain error to the computation

result.

6.2 DESIGN METHODOLOGY

We propose a defect rescuing design methodology to improve the efficiency of memristor-based

neuromorphic system. The impact of synaptic weights on system performance first is quantified

and analyzed. We then develop a retraining algorithm in network learning and a remapping scheme

in hardware implementation.

6.2.1 Weight Significance

We first quantify the impact of each weight on system performance, denoted as weight significance.

Back-propagation is the key step in network training, which updates synaptic weights according to

the errors received at neurons. A gradient decent algorithm is usually adopted in which the weight

updating process can be formulated as [66]:

∆wj,i = −η
∂E

∂wj,i
= η f ′

∑
k∈downstream(j)

(
wk,j

∂E

∂wk,j

)
xj,i. (6.1)

WhereE represents the global error, η is the learning rate, f ′ denotes the deviation of the activation

function of the hidden layer, wj,i is the weight associated with the ith input to neuron j, and ∆wj,i

is the updated weight computed by propagating the error back from the downstream units j.
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Figure 61: (a) Accreal/Accideal from experiments; (b) ∂E/∂wj,i during training; (c) Accuracy

degradation due to defects on significant and insignificant cells.

During the learning, each weight demonstrates different sensitivity to E, resulting in different

∆w. Therefore, we can analyze the sensitivity of wj,i through network training, i.e., ∂E/∂wj,i,

to classify the weight significance. The weight significance can also be ascertained directly from

experiments by inserting defects in a well-tuned network, e.g., the two-layer neural network for

MNIST classification in this work. When inputing an image to the network, we insert a single-bit

defect and compare the real and the ideal accuracy rates Accreal/Accideal.

Figure 61(a) shows the statistical result of the network’s first layer, the trend of which is con-

sistent to the normalized sensitivity ∂E/∂wj,i in Figure 61(b). We divide all the weights into

significant and insignificant groups based on the value of ∂E/∂wj,i and re-characterize their im-

pacts at the system level. Figure 61(c) shows the accuracy degradation that induced respectively

by the significant and insignificant weights when 10% SBF is considered. Here, 55% weights
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are characterized to be insignificant with a threshold t of ∂E/∂wj,i. 1,000 random test cases are

utilized and results in three scenarios are depicted in the Figure 61(c): best, worst, and average

correspond to the highest accuracy, the lowest accuracy, and the mean of the highest and lowest

values, respectively. As expected, defects on significant weights dramatically affect the system

performance. Oppositely, insignificant weights are more tolerable to defects. It indicates that de-

fects in some of the classified insignificant weights can be tolerated by network itself and induce

negligible impact in accuracy degradation.

6.2.2 Network Retraining

Retraining is usually carried out to optimize the recognition accuracy after the a sparsification step

of DNNs [64]. In this work, a hardware specific retraining methodology is developed to recover

the accuracy loss induced by SBF defects.

Through a normal training process for a neural network, parameters are learned and the weight

matrix is generated for a given application. Memristor cells in the crossbar array will be pro-

grammed to the corresponding conductance values, determined by the mapping algorithm in the

memristor-based neuromorphic system. Some memristor cells will then be identified as stuck at

certain conductance levels and not adjustable. Therefore, incorrect outputs are generated from the

stuck weights. Our proposed retraining methodology attempts to recover the accuracy by re-tuning

all remaining weights that are adjustable. Figure 62 illustrates a simple recovery model that is

assisted with other trainable weights. The network retraining includes two major steps:

• Weight initialization: Instead of assigning random values to synaptic matrices, the pre-trained

weight matrix WIdeal will be used to initialize and accelerate the retraining process. The defect

map obtained from chip testing will be applied, providing the initial values to the defected

cells.
• Weight updating: Backpropagation is adopted to update the synaptic weights. In the retraining,

∆wj,i at a defected location will be forced to be 0 so wj,i remains unchanged in iterations.
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Figure 62: The illustration of the weight distributions before and after retraining.

In this way, the behavior of the memristor array with some non-adjustable weights is mim-

icked in the retraining. Weights with defects maintain constant values according to the measured

mapping. Accuracy is then recovered by updating the trainable weights.

6.2.3 Defect Rescuing Design Flow

Based on the weight significance analysis and the network retraining, a defect rescuing flow pre-

sented in Figure 63 was developed for the memristor-based neuromorphic systems.

First, a pre-training procedure is executed. This targets an initial weight matrix WIdeal through

normal neural network training consisting of forward and back-propagation. WIdeal will then be

mapped to a conductance matrix implemented on a memristor array as described in [60]:

G ⇀↽ α ·W + β, (6.2)

where, α and β are two linear mapping coefficients. These follow the relationship α = (gH −

gL)/(wH − wL) and β = gH − α · wH . [gL, gH] is a selected conductance range for a linear

computation in matrix-vector calculations. wL and wH are the minimum and maximum synaptic

weight values in the well-tuned WIdeal. In this way, a conductance within the range is normalized

to a weight in [−1,+1]. Through array testing, defect information including stuck-on and -off

conductances and their locations is obtained, forming a defect conductance matrix Gdefect. Again,

by following Eq. (6.2), Gdefect will be translated to matrix Wdefect. The recognition accuracy will

be retested after considering Wdefect.

82



Pre-training

Map the ideal weights to 
memristor conductance

Well-tuned weights

Memristor stuck on/stuck 
off defects information

Programming 
& Testing

Weights significance 
classification

Significant?

Statistics data

Yes

Network retraining with 
the defects information

Accuracy rescued?

Yes

End

No

Redundancy column 
utilization

No

Remapping the most 
significant defect weights 

New weight matrix
Testing

Final weight matrix

Figure 63: The proposed defect-rescuing neuromorphic design flow.

In accuracy checking, it is possible that only defects occur at insignificant weights. As shown

in Figure 61(c), this results in negligible accuracy loss. In such a case, the retraining procedure

may be omitted. Of most interest is when a certain accuracy degradation is caused by SBF defects.

The proposed retraining is executed to rescue the accuracy loss by generating a new weight matrix,

including the existing SBF defects. Then, the neural network is tested again with the new weight

matrix. If the accuracy is recovered successfully after the retraining, the weights are finalized.

In the worst-case scenario when there are too many defects or the performance loss cannot be

compensated by retraining, a remapping algorithm utilizing redundant memristor columns will be

used. This additionally requires peripheral circuits such as the TIA and sample-and-hold blocks

to support re-routing and operation from the redundant columns. In contrast to redundancy in the

memory domain, only a small portion with the most significant defect weights will be mapped to

redundancy columns in neuromorphic computing systems.
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6.3 EVALUATIONS

In this work, the efficiency of the defect rescuing design is evaluated on feed-forward neural net-

works for MNIST handwritten digits classification [59]. Two networks with two-layer and three-

layer structures are trained and tested. Here, 60,000 digital patterns from MNIST are used for

training, and a test set of 10,000 examples are selected randomly.

One weight matrix W is included in the two-layer network with the array size of 784 × 10.

The implementation of the three-layer neural network utilizes W1 with the array size of 784× 256

between the input layer and the hidden layer, and W2 with the array size of 256 × 10 between

the hidden layer and the output layer. The two networks obtain 92.64% and 97.82% classification

accuracy at the software level, respectively.

Through neural network training, the synaptic weights of any array, i.e., WIdeal, can be ob-

tained and mapped to the conductances of memristor arrays, i.e., GIdeal. The memristor normal

operation range [gL, gH] is set to be [1µS, 300µS] to guarantee a linear matrix-vector computa-

tion based on the measurement data. The stuck-on and -off conductance ranges are respectively

considered to be [300µS, 1200µS] and [0.01µS, 1µS] based on the measured worst-case conduc-

tances. As mentioned in Section 6.2.3, a defect weight matrix Wdefect can be obtained from the

measured Gdefect. Based on this information, the impact of the SBF defects are evaluated in the

two feedforward neural networks and our described defect rescuing flow is adopted to restore the

accuracy.

6.3.1 Robustness of Retraining

Figure 64 summarizes the normalized accuracy defined as Accreal/Accideal, the ratio of the re-

trained accuracy with SBF defects compared with the ideal accuracy without defects. The results

before and after applying the proposed retraining process on the two-layer and three-layer feedfor-

ward neural networks are presented. Under each condition, the result is obtained from 1,000 test

cases of defects at random locations, stuck mode, and conductance values.

In the two-layer neural network, large accuracy degradation can be observed due to the random

stuck-on/off SBF. The degradation increases with number of defects as shown in Figure 64(a).

For example, only 42.5% accuracy can be achieved on average when considering 20% defects.
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Figure 64: The impact of random stuck-on/off defects (a) and the recovered accuracy after retrain-

ing (b) in the two-layer neural network; The impact of random stuck-on/off defects to W1 and W2

(c) and the recovered accuracy after retraining (d) in the three-layer neural network.

The corresponding lowest and highest accuracy rates in the 1,000 tests are 21.2% and 63.7%,

respectively. The reason for such a large variation between the best and worst cases is the highly

varying significance of the defect weights, as previously discussed in Section 6.2.1. The retraining

result for the same network is presented in Figure 64(b). This shows that the worst-case accuracy

of 21.2% is recovered to 97.9%. On average, the accuracy can be rescued to 98.8% and 98.1%,

considering 10% and 20% random SBF defects respectively. Moreover, the variations become

much smaller after applying our retraining—less than 0.4%.

Figures 64(c) and (d) show the impact of the SBF on the three-layer network before and after

retraining in three scenarios, assuming a certain percentage of defects only in W1, only in W2,

or in both W1 and W2. Similarly, 1,000 random cases are tested and the average accuracy is

presented. Figure 64(c) indicates that W1, i.e., the weight matrix between the input layer and the

hidden layer is more sensitive to defects than W2. This is because W1 is designed to learn image

features so as to have more severe impact [66]. As expected, the largest accuracy degradation

happens when both W1 and W2 have defects. At a defect rate of 20%, the network shows only

10% classification accuracy. Utilizing the proposed retraining can recover the accuracy to 94.5%

from the most destroyed network. We also observe that W2 has higher resilience, with a retained

accuracy of 99.6% compared to the ideal result without defects. The rescuing ability of retraining
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is dominated by the more significant weight matrix W1. The results demonstrate that the retraining

is robust and efficient in rescuing the accuracy loss caused by the random SBF.
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Figure 65: (a) The distribution of GIdeal; (b) The conductance distribution with stuck-on defects

after retraining; (c) The conductance distribution with stuck-off defects after retraining.

Figure 65 shows the conductance distributions of the two-layer network. Specifically, Fig-

ure 65(a) is the conductance distribution without defects, and Figure 65(b,c) show the weight dis-

tributions after retraining with 10% stuck-on or stuck-off defects. By comparing the distributions,

we note that the trainable weights are re-tuned to compensate for the error caused by defects, con-

sistent with our approach described in Section 6.2.2. The values of trainable weights shift toward

the larger side when inserting stuck-on defects while it shifting to smaller when including stuck-off

defects. In contrast to other work [67], our approach is able to accommodate both types of defects

simultaneously with no observed challenges compared to a single type of defect.

6.3.2 Resilience of (In)significant Weights

Synaptic weights in a neural network can be characterized to be significant or insignificant, yielding

different sensitivity to defects. Figure 66(a) shows that insignificant weights have lower accuracy

degradation. For example, when 20% defects all fall at significant or insignificant weights, the

test on significant weights shows 37.5% more degradation in accuracy. Here, 55% weights are

classified to be insignificant when taking the two-layer network as the example.

In both cases, retraining leads to improved accuracy. But Figure 66(b) shows that the insignif-

icant weights have better resilience to defects. By retraining as described here, the normalized

accuracy can be recovered to 99.9% even with 30% defects in the insignificant weights. Corre-

spondingly, the normalized accuracy can be recovered to 95.1% when 30% defects happen at the

significant weights.
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Figure 66: (a) The accuracy degradation in the significant and insignificant weights; (b) The ability

to recover accuracy for defects at significant and insignificant weights through retraining.

6.3.3 Redundancy Memristor Design

The above evaluations prove that most of the accuracy, e.g., 98.1%, can be recovered by the re-

training algorithm even with 20% SBF defects. In this work, a remapping process assisted with an

efficient redundancy design is also developed to address the case where SBF defects arise at many

significant weight locations that cannot be fully recovered by retraining. Figure 67(a) shows the il-

lustration of the redundancy scheme: columns that are heavily polluted by defects will be replaced

by additional memristor columns with a remapping algorithm. And outputs resulting from the new

columns will be selected and utilized for the next step computation.

The results in Figure 66(b) prove that the defects with low significance have better resilience

on retraining. Therefore, only the most significant defects weights are considered to be remapped

to redundancy columns to decrease the design cost while improving the accuracy efficiently. Fig-

ure 67(b) shows the results when 0% ∼ 5% of the most significant defects are remapped to the

redundancy columns that without significant defects at 20% SBF defects, again taking the two-

layer network as the example. The results show that 99.3% accuracy can be obtained with 5%

significant defects being remapped, increasing from the 98.1% that was restored by retraining

only. It is also observed that the accuracy improvement flattens out going from 4% to 5%, as the

defects remapped are increasingly less significant. Hence, our proposed redundancy scheme is

able to improve accuracy with minimal redundancy and design cost.
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Figure 67: (a) A simple redundancy scheme; (b) Recovered accuracy with significant defects

remapping at 20% SBF defects.

6.4 SUMMARY

The computation accuracy for memristor-based neuromorphic systems can be degraded signifi-

cantly by random defects across memristor arrays. In this work, we proposed a defect rescuing

design to effectively restore the accuracy. The proposed design has three major aspects including

a weight significance categorization, a robust retraining algorithm, and an efficient remapping pro-

cess. Basing on experimental device testing data in memristor arrays, the rescuing ability of our

proposed design was evaluated in feed-forward neural networks for MNIST digit recognition. Con-

sidering 20% random single-bit defects, our proposed retraining process recovered the recognition

accuracy to 98.1% and 94.5% from 42.5% and 10% in the two-layer and three-layer feed-forward

networks, respectively. Additionally combining this with a remapping process, 99.3% accuracy can

be achieved overall by remapping only 5% of the most significant defects to redundant columns in

the two-layer network having 20% defects.
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7.0 CONCLUSION

In my PhD career, my research work started with memristor devices modeling and related circuits

design in resistive memory (ReRAM) technology by investigating their physical mechanism, sta-

tistical analysis, and intrinsic challenges. I successfully fulfilled neuromorphic computing systems

by leveraging memristor devices and algorithm scaling in neural network and machine learning

algorithms based on the similarity between memristive effect and biological synaptic behavior. At

a higher level, I worked on the application-specific optimizations for further reliability improve-

ment of the developed neuromorphic systems. From my work on the bran-inspired computing, I

acquired a deep understanding of emerging technologies and the non-von Neumann computer. As

well, I gained extensive experience in VLSI design by leading several Neuro-chips Tape-outs and

implementing the on-chip designs.
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