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BAYESIAN INFERENCE ON A MIXED-EFFECTS LOCATION-SCALE MODEL WITH

NORMAL AND SKEWED ERROR DISTRIBUTIONS

Brian McGill, PhD

University of Pittsburgh, 2017

In handling dependent data, mixed-effects models are commonly used. These models allow for

each individual in the population to vary randomly about an overall population location. Most

methods focus on modeling the mean structure and treat the resulting between- and within-subject

variances as nuisance parameters. Hedeker has extended these models to allow for simultaneous

modeling of both the mean and variance components, each with appropriate random effects. His

work has focused on data with large amounts of repeated observations (30-50) from a one-week

period. His Marginal Maximum Likelihood estimation approach provides unbiased estimates in

those situations, but oftentimes fails to provide feasible results for these mixed-effects location-

scale models in other situations. By implementing a Bayesian Markov chain Monte-Carlo I am

able to fit these models in a more general setting that can include repeat observations collected

over a two-year span. I have also adapted this model to utilize the skew-normal distribution which

allows for skewed-error distributions. In applying these techniques to data from a bipolar clinical

trial, I am able to explain how different treatments impact the resulting scores for depression and

mania in both their mean and variance. These techniques lend themselves to addressing many

research questions that would focus on stabilizing the mood in their subjects.
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1.0 INTRODUCTION

Many applications in fields such as medicine and finance give rise to dependent data. Traditionally,

individuals focus on modeling the mean structure of these types of data (e.g. comparing the mean

trajectory of two treatments over time) and treat the within- and between-subject variability as

nuisance parameters. However, Cleveland et al. (2000) showed using customer survey data that

failure to deal with these nuisance parameters appropriately will lead to inefficient mean estimates.

Cleveland introduced a method of dealing with random scale effects (subject specific variances) to

account for this inefficiency. In addition there are many important questions that revolve around

the variability of the observations as well as the mean. Hedeker et al. (2012) models both the mean

and variance of dependent data in a study of mood disorders through the use of a mixed-effects

location-scale model.

For data that arise from surveys, a common method of dealing with dependence due to repeated

observations on the same individual is to use a mixed-effects location model. This model allows

each individual in the population to vary randomly about an overall population location (mean)

structure. It is widely acknowledged that survey rater data such as the ones in Cleveland et al.

(2000) have not only varying locations (means), but varying scales (variances) as well (see Figure

1). It is uncommon however to model such scale effects by random effects due to the difficulties

involved in model building and fitting (Clark et al., 1999).

The interest in modeling intraindividual variability in psychology stems from John Nesselroade

of the University of Virginia, who in 1991 coined the phrase “measurement bursts”to describe the

main feature of intensive longitudinal designs that allows for the collection of large amounts of

data on individuals over a relatively short time period. This intensive data gathering method is

also called ecological momentary assessment (EMA). In the inaugural issue of Research in Hu-

man Development (2004), Nesselroade explained the scientific and clinical advantages of studying

1



Figure 1: HRS17TOT trajectories for two individuals in the IRRI Group displaying both random

location and scale effects (See Chapter 3 for data set description)

intraindividual variability, such as the prediction of a child’s temperament in later years through

the analysis of the intraindividual variability in infants’ heart rates (Nesselroade and Ram, 2004).

Hedeker et al. (2012) introduced the mixed-effects location-scale (MELS) model in order to

describe mood changes from an adolescent smoking study. In this study, similar to the work of

Nesselroade, the focus shifts from examining not only the mean structure but the variability of

the data or lability as well. With the MELS model it is now possible to analyze the effects that

potential covariates have on the mood variability in an attempt to investigate different methods of

stabilizing the lability.
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Fitting complex multi-dimensional models such as the MELS model, frequentist estimation

methods usually require the approximation of integrals. Accompanied with an optimization al-

gorithm, the model fit either fails to converge, provides infeasible results, or provides suboptimal

results for many data sets. The estimation method proposed by Hedeker et al. (2012) and based on

Marginalized Maximum Likelihood, provides results for the adolescent smoking study, but may

fail to provide results for other data sets. Research is needed in order to determine the best opti-

mization method to use in fitting a MELS model with frquentist approaches. Along with the use of

Markov chain Monte Carlo (MCMC), Bayesian techniques also allow for the estimation of com-

plex multi-dimensional models without the use of an optimization algorithm that in many cases

would not provide optimal, if any, results under frequentist approaches. I propose the use of a

Bayesian Markov chain Monte Carlo using Gibbs Sampling in order to estimate the mixed-effects

location-scale model and generalize its use to various fields of study.

A common assumption in fitting mixed-effects models is that the random effects (both the

between- and within-subject) and the error distributions are normally distributed. While this as-

sumption may be accurate in many situations, there are others where this assumption does not

hold. One such scenario would be observations arising from a skewed distribution. Chen (2012)

showed that when skewed distributions are fitted using normally distributed mixed-effects models

the estimates are biased. A common method of eliminating this skewness is to transform the re-

sponse variable; however, an unintended consequence of the transformation is the reduction of the

variability in the transformed data. When the research question involves simultaneously modeling

the mean and variance of the non-transformed data a skew distribution such as the skew-normal

and skew-t (proposed by Chen) would address this issue.

Previous work by Hedeker and his colleagues have assumed that the within-subject errors

are normally distributed. This assumption was used to fit an EMA data set where an average

of 30 observations per subject were obtained over a one-week period. In this short time frame

and for the data at hand the normal assumption was accurate. In a clinical trial conducted by

the Department of Psychiatry at the University of Pittsburgh (Frank et al., 2015), bipolar patients

currently in remission were studied to see if a new treatment would aid in lowering the patient’s

BMI even in the presence of potential weight inducing medicine. At baseline many patients had

low manic and depressive symptom levels due to their remission; however, some individuals had

3



sub-threshold mania or depression symptoms. During the study many individuals would become

manic or experience depressive episodes, resulting in skewed data such as the mania rating. This

skewness violates the normality assumption of Hedeker’s model and provides the motivation for

my adaptation of the skew-normal distribution in the MELS model.

From the bipolar study the two response variables of interest are the Hamilton Rating Scale

for Depression and the Young Mania Rating Scale. These variables are measured on the same

individuals at the same time which would suggest that their underlying error distributions are

closely related. Graphical results reveal normal error distributions for the Hamilton and skewed

error distributions for the Young ratings. Azzalini (1985) proposed a skew-normal distribution that

had strict inclusion of the normal density and allowed for a wide range of indices of skewness and

kurtosis. In order to allow for comparable inferences between the two rating scales I am proposing

a generalized form of the MELS model with skew-normal distributed errors in modeling the Young

Mania Rating Scale. This distribution allows for the special case of the normal distribution, which

the Hamilton distribution follows and has been used in previous applications of the mixed-effects

location-scale model. The form of the skew-normal distribution is based on the one proposed by

Chen (2012), but allows for random scale as well as random location effects. There are other skew

distributions such as the class of skew-elliptical and skew-t distributions that may be used, which

will be considered in later works.

In this dissertation I am proposing: 1) a new estimation technique (Bayesian MCMC) to use in

estimating a MELS model; and 2) the use of a skew-normal distribution to model skewed data in

a MELS model. In addition 3) the effects of sample size, both in number of subjects and number

of observations per subject, and their impact on the detection of treatment effects in both the mean

and variance structures will be explored.

This paper will be organized as follows. Chapter 2 will provide background information on a

MELS model starting with a literature review followed by a description of the present estimation

methods for the model. Chapter 3 will provide a detailed description of the bipolar data that will

be examined. Chapter 4 will introduce the proposed Bayesian MCMC methodology and apply

it to three data sets with normally distributed errors. Chapter 5 will introduce a skew-normal

distribution, adapt the Bayesian MCMC approach to estimate the model, and apply it to the bipolar

data. Chapter 6 assesses the impact of different sample sizes in estimating treatment effects for a

4



MELS model. Chapter 7 concludes the dissertation with a summary of my results and discusses

future applications of the MELS model.
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2.0 MIXED-EFFECTS LOCATION-SCALE MODEL

2.1 BACKGROUND

Longitudinal data (repeated observations on the same subject over time) is a classic example of

dependent data. Extensive research has been conducted that has accounted for this dependency by

explicitly modeling the covariance structure with certain forms, such as Toeplitz or autoregressive.

The first authors to model this dependence using a mixed-effects location model were Laird and

Ware (1982). This model (2.1) was an improvement over previous ones because it allowed for

unbalanced data, e.g. repeat observations on patients with varying time intervals between them.

This model also allowed for the explicit modeling and analysis of both the between- and within-

subject variability. Mixed-effects models account for the dependence in the data by allowing for

the mean structure to vary randomly, while assuming constant within-subject (WS) variability over

time. The model

yi = Xiβ+Zibi + ei (2.1)

is a general case of a mixed-effects location model for an individual i with ni observations. yi

is a ni×1 vector with a fixed effects design matrixXi (a ni×pmatrix). β is a p×1 vector of fixed

effects parameters. Zi is a ni × q random effects design matrix and bi is a q × 1 vector of subject-

specific random effects parameters. The random effects represent the between-subject variability

and are often modeled as bi ∼ N(0,D) and the within-subject errors assumed independent of the

random effects are modeled as ei ∼ N(0,Ri). HereD andRi are the covariance matrices for the

between- and within-subject random effects, respectively.

In these models the within-subject errors are often assumed to follow a distribution with con-

6



stant variance. However, recent literature has moved away from this assumption and allows for

this variability to arise from a random process. One of the earliest known works to allow for a

random process governing the within-subject variability dates back to Lindley (1971). In this work

variances among different groups were allowed to differ and the model was estimated using a

Bayesian approach where the variances followed a chi-squared distribution. The use of covariates

in explaining variability in the presence of these random processes was used by Cox and Solomon

(1986) in a blood pressure study. In this study, an overdispersion model (2.2) is presented to allow

for different group variances as follows

V ar(Yis) = σ2
i (2.2)

where i is the group and s is the observation within the ith group. Here the variances are indepen-

dent unobserved values of a random variable T with a probability density function h(t). Johnson

(1997) introduced the concept of a random variance to multirater ordinal data which presented a

method for measuring student performance that accounted for both the achievement level of stu-

dents within a class and instructor-specific grade cutoffs.

These works have been extended to a more general class of models where both the between-

and the within-subject variability are allowed to vary randomly. James et al. (1994) modeled the

random within-subject variation in a nonlinear random effects model using an inverse gamma

distribution for mitochondrial enzyme kinetic data. Chinchilli et al. (1995) used a mixed-effects

model with within-subject variances derived from an inverse gamma distribution for serum choles-

terol data. Lin et al. (1997) allowed for covariates to influence the within-subject variability in a

mixed-effects model with variances from an inverse gamma distribution for menstrual diary data.

Scarpa et al. (2008) extended the use of the previous models to economics in modeling the will-

ingness of customers to pay for various vacation locations in the Alps. A Gumbel distribution is

used to model the within-subject variability in this paper.

Over the last decade work in models with random scale effects has attempted to generalize their

use into other models. Cleveland et al. (2000) developed a sequence of steps to fit a general class

of models with normal errors through the use of unit regression. This work was extended upon

by Shu (2008) who developed a stepwise model building process for mixed-effects models with

random scale effects. This work allowed for different distributions to model the random effects

7



such as a t-distribution for the random location effects and inverse gamma and log normal for the

random scale effects.

The most recent work into modeling mixed-effects models with random scale effects is by

Hedeker. Hedeker proposes a mixed-effects location-scale model that allows for the inclusion of

covariates in modeling the within-subject (WS) variability in addition to random scale effects. He

has extended the model to allow for the random location and random scale effects to be correlated

(Hedeker et al., 2008). Hedeker’s mixed-effects location-scale (MELS) model takes the form for a

measurement y of subject i (i = 1, 2, . . . , N subjects) on occasion j (j = 1, 2, . . . , ni):

yij = x
′

ijβ + νi + εij (2.3)

xij is a p x 1 vector of fixed-effect predictors and β is the corresponding p x 1 vector of fixed-effect

coefficients. νi represents the random subject effect on the mean structure. Here the within-subject

errors εij are assumed to follow a normal distribution with mean 0 and variance σ2
εij

. To allow for

covariates to influence the WS variability and random scale effects the variance is modeled using

a log-linear form as:

σ2
εij

= exp(w′

ijγ + ωi) (2.4)

wherewij is a vector of covariates and γ is a vector of coefficients affecting the WS variability. ωi

represents the random scale effect that allows for the subject-specific WS variability. The random

location and scale effects can be modeled as:

νi
ωi

 ∼ N


0

0

 ,
σ2

νi
σνω

σνω σ2
ω


 (2.5)

σ2
νi

= exp(u′

iτ ) (2.6)

The random location and scale effects are allowed to be correlated with covariance σγω. The

between-subject variability can be modeled with influence by covariates u
′
i as well. τ is a vector

of coefficients affecting the between-subject variability.

Further work by Hedeker has extended these models to account for ordinal data (Hedeker et al.,

2006) (Hedeker et al., 2009) as well as a three-level MELS model that allows for the possibility of
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systematic day-to-day variation (Li and Hedeker, 2012). Pugach et al. (2014) developed a bivariate

MELS model to allow for the modeling of two continuous outcomes jointly, which was extended

to a general class of multivariate longitudinal outcomes by Kapur et al. (2015).

2.2 CURRENT METHODS OF MODEL ESTIMATION

Presently, there are two primary methods of estimating mixed-effects model with random scale ef-

fects. One method based on unit regression was proposed by Cleveland et al. (2000) and expanded

upon by Shu (2008). The other method used by Hedeker et al. (2008) is a maximum marginal like-

lihood (MML) estimation. The unit regression approach is a general top-down method that builds

upon successive residual analyses and is most useful for models where the focus is solely on the

estimation of location parameters. The MML procedure fits a specified parameterized model and

allows for the WS variability to be modeled as dependent on specified covariates which at present

Cleveland’s approach does not allow for. A drawback to MML is that the procedure relies on an

integral approximation and an optimization approach that in several cases may fail to converge or

provide sub-optimal estimation results.

2.2.1 Unit Regression

The unit regression procedure (which refers to scaling the residual terms to obtain an error variance

of 1) consists of a stepwise procedure that starts by fitting a fixed effects model then examines

residuals to determine if any underlying structure remains. The mixed-effects model with random

scale effects takes the form of

y∗ij = xijβ + νi + γi
ζij
σ(ε) (2.7)

where β are the fixed-effect parameters, νi are the random location parameters, γ2
i are the random

scale effects with a specified distribution (e.g. inverse gamma) and E(γ2
i ) = 1, and ζij is the error

term assumed to be i.i.d N(0, 1).
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2.2.1.1 Fixed Effect Estimation The first step is to estimate the fixed effect parameters using

ordinary least squares regression (OLS) for the specified model. An example of such model would

be:

yij = β0 + β1tij + β2τi + β3tij × τi + εij (2.8)

The model in 2.8 takes the form that typical psychiatric data might follow where yij is the response

variable (e.g. measure of a patient’s mood) for the ith subject (i = 1, 2, . . . , N ) at the jth time

point (j = 1, 2, . . . , ni). tij is the time point that may vary for each subject and τi is an indicator

variable that is 1 for the new treatment and 0 for the control treatment. The fixed effects parameters

β0, β1, β2, and β3 will be estimated using OLS.

2.2.1.2 Adjust for Fixed Scale Effects Let r∗ij be the residuals from the fitted model in 2.8.

r∗ij = yij − β̂0 − β̂1tij − β̂2τi − β̂3tij × τi (2.9)

Check the box plots for residuals against the fixed effects tij and τi. If a relation is found for say

the treatment effect τi, then use a weighted least square estimate approach for the regression model

r∗ij = βτi + eij (2.10)

assuming constant variance within treatment groups to estimate σ̂2
0(ε) for the group with the control

treatment and σ̂2
1(ε) for the group with the new treatment.

Define:

rij =
r∗ij

σ̂τi(ε)
, xij = 1

σ̂τi(ε)
(2.11)

This adjustment allows for the error distribution to have variance 1.

2.2.1.3 Unit Regression and Error Distribution Check Using the notation defined in 2.11 to

obtain N unit regressions:

rij = νixij + τij = νixij + γiζij (2.12)
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where

τij = γiζij (2.13)

By assuming that the random scale effect γi satisfies E(γ2
i ) = 1, this allows:

E(τij) = 0, V ar(τij) = 1 (2.14)

Using the assumptions in 2.14 we can fit 2.12 to obtain:

τ̂ij = rij − ν̂ixij = γiζ̂ij (2.15)

The standardized residuals are:

ψ̂ij = τ̂ij√
V ar(ζ̂ij)

= γi
ζ̂ij√

V ar(ζ̂ij)
(2.16)

The residual variance is:

s2
i =

∑ni
j=1 τ

2
ij

ni − 1 = γ2
i

ζ̂2
ij

ni − 1 (2.17)

The studentized residual is:

φ̂ij = ψ̂ij
si

(2.18)

Using the standardized residuals we can check the normality distribution assumption of the error

distribution. If it is not validated a new distribution assumption (such as a t-distribution) will be

used and the process will start over with the new distribution.

2.2.1.4 Check for Presence of Random Scale Effects Based on the error distribution found in

2.2.1.3 we can check if random scale effects are present:

H0 : γ2
i = 1, i = 1, . . . , N (2.19)

If the null hypothesis is rejected, then random scale effects are present and the distribution will

be determined. (See Cleveland et al. (2000) and Shu (2008) for further information). Based on
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simulation results Shu (2008) found that when random scale effects are present, but ignored in the

model the bias of the location estimates β̂ are not affected; however, the efficiency is reduced.

2.2.2 Marginalized Maximum Likelihood

The estimation procedure used by Hedeker et al. (2008) is based on a variant of maximum likeli-

hood proposed by Bock (1989) referred to as maximum marginal likelihood (MML). The unit re-

gression estimation technique uses a top-down estimation approach, whereas the MML estimation

begins by specifying the full model and then uses appropriate software (SAS PROC NLMIXED)

to fit the model. Unlike the unit regression approach which has only been used for mixed-effects

models with random scale effects such as those specified in equation 2.7, the MML technique al-

lows for the estimation of the MELS model proposed by Hedeker (given in equations 2.20 and

2.21).

One of my contributions to the work performed on mixed-effects model with random scale ef-

fects will be to provide an alternate estimation approach to MML. Hedeker’s MELS model contains

the flexibility to model the WS variability using covariates that Cleveland’s model does not. This

allows for research questions that involve assessing the effects of covariates on both the mean and

variance to be addressed with a single model. Due to this advantage my work will directly expand

upon those of Hedeker and his colleagues. I will compare my model with Hedeker’s approach.

The MML estimation technique uses the distributional assumptions of the random effects to

integrate out the individual-specific attributes in order to obtain the marginal distribution of the

response vector yi. The following model as detailed by Hedeker et al. (2008) takes the form:

yij = x
′

ijβ + νi + εij (2.20)

where
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εij ∼ N(0, σ2
εij

)

σ2
εij

= exp(w′

ijγ + ωi)νi
ωi

 ∼ N


0

0

 ,
σ2

νi
σνω

σνω σ2
ω




σ2
νi

= exp(u′

iτ )

(2.21)

In order to aid in estimation, the random effects will be expressed in standardized form using

a Cholesky factorization (Bock, 1975):

νi
ωi

 =
s1i 0

s2i s3i

θ1i

θ2i

 =
 σνi 0
σνω/σνi

√
σ2
ω − σ2

νω/σ2
νi

θ1i

θ2i

 (2.22)

Using the Cholesky factorizaton we can rewrite 2.20 as

yij = x
′

ijβ + s1iθ1i + εij (2.23)

where s1i = σνi = (exp(u′
iτ )) 1

2 and the WS and marginal variances are represented by

σ2
εij

= exp(w′

ijγ + s2iθ1i + s3iθ2i) (2.24)

V (yij) = exp(u′

iτ + exp(w′

ijγ + 1
2σ

2
ω) (2.25)

Written in vector notation the model to be estimated for subject i is

yi = Xiβ + 1is1iθ1i + exp
{1

2(Wiγ + 1is2iθ1i + 1is3iθ2i)
}

(2.26)

where Xi is the location design matrix, Wi is the scale design matrix and the standardized ran-

dom effects θ1i and θ2i are standard normal and independent of each other. Using a conditional

likelihood of the response variable yi on its respective random effects, the marginal likelihood

becomes

h(yi) =
∫

Θ
f(yi|θi)g(θi)dθi (2.27)
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f(yi|θi) is the normal distribution of yi and g(θ) is a standard bivariate normal density resulting

from the standardization performed by the Cholesky decomposition. The log-likelihood to be

maximized becomes

logL =
n∑
i=1

log h(yi) (2.28)

The integral in 2.27 does not have an analytical expression so Gaussian quadrature will be used

to approximate the integral. After an appropriate approximation is found an iterative optimization

approach, such as Newton-Raphson and Trust Region, will be used to maximize the likelihood

function in 2.28.

2.2.2.1 Estimation Procedure Due to the maximization of a nonlinear model over several di-

mensions, a detailed estimation approach must be used. This will maximize the chance of achiev-

ing the global maximum for the likelihood functions. Other possible problems that arise in fitting

this model come from convergence issues with respect to approximating the integral in 2.27 and

optimizing the equation in 2.28. These convergence difficulties may arise due to the lack of re-

peated observations.

Hedeker proposes the following steps to fit a MELS model using MML.

1. Fit the model in 2.20 as a mixed-effects location model with constant between- (BS) and

within-subject (WS) variances.

2. Specify the model to be approximated in SAS PROC NLMIXED

3. Use the parameter estimates from step 1 as initial estimates for step 2. The log of the BS and

WS variance estimates are used as the initial value of the intercept parameters for the fully-

parameterized variance structures. For additional variance parameters the initial parameter

estimate will be set as 0.

4. Run the model in SAS PROC NLMIXED using different optimization techniques (e.g. Quasi-

Newton, Trust Region, Newton-Raphson, Newton-Raphson w/ Ridging, Nelder-Mead, Double

- Dogleg, and Conjugate Gradient).
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2.2.2.2 Simulation Results In order to assess the accuracy of the steps taken in 2.2.2.1, I con-

ducted various simulations on data sets modeled to resemble a randomized treatment. In these

simulations subjects are divided equally into a control and a treatment group, baseline measure-

ments are recorded and follow up visits occur every half week. Half week follow up visits are used

in order to closely match Hedeker’s original model use. His original use involved observations all

recorded within one week, which would be difficult and in most cases non-informative for ran-

domized clinical trials. A half week interval provides a suitable balance (for modeling purposes)

in order to extend Hedeker’s original model use to clinical trials without seriously deviating from

the original real world use case. There will be one response variable and two independent variables

(week and treatment). The independent variables will impact the variance structure in select cases.

The subjects will have both individual specific means and WS variances (i.e. random location

and scale effects). The parameter values were chosen from fixed-effects models and descriptive

statistics used to analyze the Hamilton Rating Scale for Depression (discussed in Chapter 3). Sim-

ulations were done using SAS/IML.

For the ith subject (i = 1, . . . , N ) at the jth time point (j = 1, . . . , n) the first model considered is

yij = β0 + β1trti + β2weekij + νi + εij

εij ∼ N(0, σ2
ε )νi

ωi

 ∼ N


0

0

 ,
σ2

νi
σνω

σνω σ2
ω




σ2
νi

= exp(τ0 + τ1trti)

σ2
ε = exp(γ0 + γ1trti + ωi)

Using the built-in normal likelihood function for a simulation with 100 subjects and 33 obser-

vations per subject only resulted in convergence rates between 14% and 74% based on 50 simula-

tions as shown in Table 1.

The optimization procedure found to provide the best fit was Newton-Raphson; however, this

only shows that this approach converges most frequently not whether the estimates are solutions

from the global maxima rather than a local one. As seen in Table 1 none of the optimization

techniques converge 100% of the time. Hedeker and Pugach are able to obtain reliable convergence
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Table 1: % Convergence based on 50 Simulations for different optimization techniques

Optimization Technique % Converged
Quasi-Newton 54
Trust Region 64
Newton-Raphson 74
Nelder-Mead 68
Double-Dogleg 58
Conjugate Gradient 14

by using a user-specified likelihood function rather than the built-in version from SAS. By using a

user-specified likelihood I am able to increase the convergence rate to 100% for as many as 1,000

simulated data sets using the Newton-Raphson approach.

To assess the accuracy of this approach in capturing the global maxima four different scenarios

were run (results found in Tables 2 and 3) (Note: All analyses were done on a Samsung NP305E5A

laptop).

1. 50 subjects, 17 observations per subject

2. 50 subjects, 33 observations per subject

3. 100 subjects, 17 observations per subject

4. 100 subjects, 33 observations per subject

Looking at the estimates and their biases reveals that the MML procedure is an efficient esti-

mation method for the proposed model. The largest standardized bias in each scenario is for the

estimate of the random scale variance σ2
ω; however, this decreases by over 10% with an increase in

the number of observations per subject for both 50 and 100 subjects. Looking at Table 3 reveals

that the model has low power in detecting treatment effects in the variance at values close to 0. The

power does increase as the number of subjects and/or observations per subject increase. Chapter 6

will look at the issue of power for a MELS model in greater detail (For SAS Code related to the

fitting of the model see APPENDIX A).

In clinical data (such as the aforementioned bipolar data) a clinically significant question of

interest would involve the effect different treatments have over time. To address this question
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a treatment by time interaction can be added to the mean structure. Through the use of a MELS

model this interaction can be added to the structure of the within-subject variance as well. A model

that would address this question would take the form of

yij = β0 + β1trti + β2weekij + β3trti × weekij + νi + εij

εij ∼ N(0, σ2
ε )νi

ωi

 ∼ N


0

0

 ,
σ2

νi
σνω

σνω σ2
ω




σ2
νi

= exp(τ0 + τ1trti)

σ2
ε = exp(γ0 + γ1trti + γ2weekij + γ3trti × weekij + ωi)

(2.29)

With the addition of the time component to the within-subject variance and using the same proce-

dure for the first specified model, out of 50 simulated data sets there were no feasible results, either

from convergence issues or the inability to approximate the integral.

In some of Hedeker and his colleague’s papers (Hedeker et al. (2008) and Pugach et al. (2014))

a continuous covariate has been used in the log linear model of the WS variance; however, due to

the complexities involved in optimizing a model over several parameters the nature of the data plays

a critical component in obtaining reasonable estimates. Further research could be performed into

obtaining suitable optimization results using Hedeker’s proposed MML technique. These could

include reparameterizing the model and adapting an optimization technique that is more suitable

for the nonlinear nature of the MELS models.

In order to move away from the use of optimization and the step-wise procedures that both

Cleveland and Hedeker use in their model fitting, I propose the use of a Bayesian MCMC approach

in estimating the model (see Chapter 4). This technique often referred to as one of “last resort” is

more adept at estimating non-linear hierarchical models than frequentist methods (Gelman et al.,

2014a). A comparison between Hedeker’s frequentist and my Bayesian approach will be compared

using an EMA and a psychiatric longitudinal data set found in Hedeker and Nordgren (2013).
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3.0 BIPOLAR DATA SET

3.1 APPLICATION TO CLINICAL DATA

Previous work on mixed-effects location-scale models has focused primarily on its application to

EMA data sets. Another data collection process that would benefit from the model would be a

clinical trial. Using this method researchers are able to design experiments to determine (in most

cases) whether a treatment effect exists. With the use of a mixed-effects location-scale model it is

now possible to determine such an effect in not only the mean, but the variance as well. A useful

case arises in the study of bipolar.

Individuals suffering from bipolar I disorder spend varying amounts of time in one of three

states: depression, mania and euthymia (neither depressed nor manic). Mania is characterized

as a period with high levels of energy and euphoria. Depression is the longer lasting state and

is characterized by a negative outlook (Anderson et al., 2012). Often times in measuring the

bipolar characteristics of the individuals a questionnaire will be given which seeks to quantify

the patient’s mood and severity of their condition. Due to the oscillating nature of the disease the

mood measurements may vary widely. Focusing solely on the mean of the response variable only

reveals one part of the disorder. By jointly modeling the mean and variance through the use of the

MELS model researchers are able to get a better understanding of the treatment effects for these

individuals.
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3.2 BIPOLAR DATA DESCRIPTION

In a clinical trial conducted by the Department of Psychiatry at the University of Pittsburgh (Frank

et al., 2015), bipolar I patients (currently in remission) were investigated to see if a new treat-

ment would aid in lowering the patient’s BMI against the status quo. The typical treatment course

involves psychiatric treatment by a study psychiatrist and the care received from the patient’s pri-

mary care physician. As one of the leading causes of disability globally and with over $150 billion

in medical costs the researchers, seeking to mitigate this bipolar epidemic, developed the Inte-

grated Risk Reduction Intervention (IRRI) as a way to benefit bipolar patients by affecting their

modifiable health risks, such as their sleep/wake cycle, amount of social interaction, nutritional

intake, etc. In this study participants were assigned to either the IRRI or the Psychiatric Care with

Medical Monitoring (PCMM or status quo). The subjects in both of the groups were monitored by

a psychiatrist and provided with assessments and referrals when necessary. The main difference

between the groups comes from those assigned with the IRRI receiving a healthy lifestyle behav-

iors program. This program provided participants with educational sessions designed to promote

a healthy lifestyle (Frank et al. (2015) contains additional information on the study’s setup).

In order to enter the study individuals had to have had a lifetime diagnosis of bipolar I disorder,

which was currently in remission. Remission was determined through the use of the Hamilton

Rating Scale for Depression (HRS17TOT), Young Mania Rating Scale (YOUNGTOT) and Clinical

Global Impressions for Bipolar Disorder Scale (CGI-BP-S). Individuals were classified as being in

remission if for four consecutive weeks before the start of the study their HRS17TOT score was ≤

7, YOUNGTOT score was≤ 7, and CGI-BP-S score was< 3 concurrently. Since the focus was on

lowering an individual’s BMI only those with a BMI score≥ 25 were included in order to deal with

those individuals most likely to benefit from such treatment. Participants entered the study between

12 November 2008 and 14 July 2011, with the final participant visit coming on 4 September 2013.

122 individuals were entered into the study (evenly split between the two groups). The study

was designed to treat patients for two years with measurements made approximately every two

months. As is common with most clinical trials dropouts and missed visits did occur; however,

further investigation (not shown) concluded that these were likely missing at random.
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3.3 HRS17TOT VARIABLE ANALYSIS

A characteristic of clinical trials is the presence of unbalanced data through dropouts and missed

visits. In order to assess the overall shape and distribution the observations will be placed into

eight different bins corresponding to the time (measured in days) in which they were measured.

Table 4: Number of Observations per Bin

Bin Days Since Randomization # of Observations
1 0 - 100 421
2 101 - 200 298
3 201 - 300 265
4 301 - 400 235
5 401 - 500 219
6 501 - 600 189
7 601 - 700 166
8 701 - 800 64

The first variable analyzed is the Hamilton-Rating Scale for Depression (HRS17TOT) which

as previously mentioned was at a value ≤ 7 at the beginning of the study. Looking at Figures 2

and 4 one can see that the threshold value of 7 is exceeded by numerous participants. Furthermore,

Figures 6 and 7 shows that over half of the participants exceeded that threshold for almost the

entire length of the study. This indicates that over the course of the study many of the individuals

became symptomatic.

Looking at Figures 6 and 7 reveals varying amounts of within-subject variability. Figures 8

and 9 show a histogram and box plot respectively which compares the spread of the WS vari-

ability among the two treatments. Both the range and interquartile range of variability is larger

for the IRRI group than the PCMM which would indicate a less stable treatment. Furthermore

a breakdown of variances over time reveals that the IRRI has a consistently higher variance than

the PCMM (see Figure 10). The variance measurements in Figure 10 were obtained by taking the

average variance of all observations in the time bin. Unlike the results in Figures 6 and 7 these

results do not account for subject-specific mean levels. This indicates greater variability among the

IRRI group. The drop in variability at the 8th bin corresponds with the low number of observations
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at that time.

These figures reveal the extent to which the WS variability differs by both subject and treatment

and a MELS model will be used to assess their impact on the mean and variability. In implementing

the model an appropriate distribution must be specified. Hedeker’s work often assumes a normal

distribution and this will be used to model the HRS17TOT variable. As shown in the QQ-plots in

Figures 3 and 5 there are some data points in each bin that tail off and deviate from the normal

distribution assumption; however, most of the data in each bin follows the normal distribution.

The fitting of a MELS model to the Hamilton Rating variable under the normal assumption will be

performed in Section 4.4.
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Figure 2: Distribution of HRS17TOT scores for Bins 1-4
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Figure 3: QQ-Plots of HRS17TOT Scores for Bins 1-4

(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4
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Figure 4: Distribution of HRS17TOT scores for Bins 5-8
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Figure 5: QQ-Plots of HRS17TOT Scores for Bins 5-8

(a) Bin 5 (b) Bin 6

(c) Bin 7 (d) Bin 8
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Figure 6: HRS17TOT Scores by Time for each IRRI subject
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Figure 7: HRS17TOT Scores by Time for each PCMM subject
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Figure 8: Histograms of Individual Standard Deviations by Treatment
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Figure 9: Box plots of Individual Standard Deviations by Treatment
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Figure 10: HRS17TOT Variability Over Time
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3.4 YOUNGTOT VARIABLE ANALYSIS

The second variable analyzed is the Young Mania Rating Scale (YOUNGTOT). Similar methods

used to analyze HRS17TOT are used to analyze YOUNGTOT. The main difference between the

two variables is seen in Figures 11 and 13. Where the HRS17TOT distribution was roughly normal

with slight right skew, the YOUNGTOT distribution is strongly positively skewed. Over time the

amount of skewness changes and as evident in the 5th and 6th bins in Figure 13 the mean of

the responses changes as well indicating recurrence of bipolar symptoms. Figures 12 and 14 are

Normal QQ-plots which show strong deviation from the normal distribution. Looking at the time

plots in Figures 15 and 16 shows different variances for the two intervention groups. The IRRI

group contains a few possible outliers where scores are recorded around or greater than 30. Figures

17 and 18 reveal a greater spread among the standard deviations from the individuals in the IRRI

group compared to those in the PCMM. Accompanied with the trajectory of the variances shown

in Figure 19 these results seem to indicate that the IRRI group has a more volatile treatment similar

to the findings from the HRS17TOT analysis. Unlike the HRS17TOT time does appear to have an

effect on the variability.

A MELS model will be able to model the treatment and time effects on both the mean and

variance structure; however, the issue of skewness must be addressed before its use. Classical tech-

niques to eliminate skewness involve transforming the variables using the log, square root and other

transformations (e.g. Box-Cox). For data with positive skew such as the YOUNGTOT variable the

log-transformation is most commonly used. Besides removing skewness the transformation has (in

most cases) the desirable trait of removing heterogeneity. Looking at the log-transformed Figures

20, 21, and 22 in comparison to the non-transformed Figures 15, 16, and 17 shows the removal

of heterogeneity that was present in the data before the log-transformation (Figure 17 vs Figure

22). Before the transformation the PCMM revealed a more stable treatment than the IRRI; after

the transformation this difference is not discernible.

If the primary goal is to assess whether there is a treatment effect present either in the variance

or both the mean and variance then the underlying structure of the data must be preserved. Rather

than transforming the data to account for skewness Arellano-Valle et al. (2007) and Chen (2012)

have proposed the use of the skew-normal and skew-t distributions, respectively. These distribu-
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tions preserve the original nature of the data and are able to account for the skewness. In order

to model the YOUNGTOT variable with the MELS model I propose the use of the skew-normal

distribution. Fitting of this model will be performed in Chapter 5.
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Figure 11: Distribution of YOUNGTOT scores for Bins 1-4
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Figure 12: QQ-Plots of YOUNGTOT Scores for Bins 1-4

(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4
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Figure 13: Distribution of YOUNGTOT scores for Bins 5-8
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Figure 14: QQ-Plots of YOUNGTOT Scores for Bins 5-8

(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4
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Figure 15: YOUNGTOT Scores by Time for each IRRI subject
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Figure 16: YOUNGTOT Scores by Time for each PCMM subject
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Figure 17: Histograms of Individual Standard Deviations by Treatment
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Figure 18: Box plots of Individual Standard Deviations by Treatment

42



Figure 19: YOUNGTOT Variability Over Time
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Figure 20: Distribution of YOUNGTOT scores (log-transformed) over Time for IRRI
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Figure 21: Distribution of YOUNGTOT scores (log-transformed) over Time for PCMM
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Figure 22: Histograms of Individual Standard Deviations by Treatment (log-transformed)
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3.5 CLINICAL QUESTIONS ADDRESSED

Using standard mixed-effects models to address the clinical implications that arise from data sets

such as the bipolar data, we are only able to deal with questions that involve the mean structure.

Other statistical techniques may be used to deal with questions involving the variance structures,

but few are able to address questions involving both the mean and variance simultaneously. One

of the main benefits of the MELS model is that both the mean and variance parameters are able to

be estimated simultaneously.

As seen in Figures 8 and 17 the variances of depression and mania symptoms within the sub-

jects vary greatly. This suggests a random scale effect, which allows individuals to have their own

within-subject variance. If this random effect is ignored then the parameter estimates will be inef-

ficient (Shu, 2008). In addition, using a log linear model for the variance allows the effects of time

and the intervention to be investigated. A MELS model allows researchers to assess the impact

of various treatments on the mean and variance structure simultaneously. An example would be

two individuals having the same mean score, but different variances. The subject with higher vari-

ability would be considered less stable and more symptomatic than the other subject. Moreover

researchers can assess whether the proposed intervention (IRRI) results in a different trajectory

(with respect to either the mean or variance) than the status quo (PCMM). Further work can be

done to include additional covariates to assess their impact on the mean and variance structure.

A primary aim of Frank et al. (2015) was to assess whether individuals in IRRI and PCMM

had different levels of variability over time, as high variability is an indicator of a less stable

treatment course. Due to variable skewness and difficulties with model convergence the MELS

model proposed by Hedeker cannot address these issues. I propose a skew-normal distribution to

account for the skewness (this distribution allows for the original data structure of both the mean

and variance to be preserved) and the use of Bayesian Markov chain Monte Carlo (MCMC) instead

of Hedeker’s MML approach to deal with the model convergence issues.
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4.0 BAYESIAN MARKOV CHAIN MONTE-CARLO ESTIMATION FOR

MIXED-EFFECTS LOCATION-SCALE MODELS WITH NORMAL ERRORS

The simulation results for the model estimated in Section 2.2.2.2 appear to provide adequate re-

sults for the specified model, where the WS variances are modeled using treatment only. In the

bipolar clinical data (described in Chapter 3) one of the main clinical questions would involve a

treatment by time interaction. Using the estimation procedure from 2.2.2.2 to fit the aforemen-

tioned model with the addition of a first-order time effect and second-order time and treatment

effect to the WS variance fails to provide any reasonable estimates (either due to failure in the

Gaussian quadrature step or the multidimensional optimization step). Pugach et al. (2014) were

able to obtain convergence using continuous covariates in the WS variability using data from an

adolescent smoking study. While this demonstrates the capability of Hedeker’s technique to fit a

mixed-effects location-scale (MELS) model with continuous covariates it also highlights the im-

portance that the nature of the data has on the model fit especially as it pertains to the optimization

process.

While Hedeker has developed an established estimation technique for a MELS model due

to the lack in applications to different data sets from various fields a more general estimation ap-

proach is needed. Two methods of accomplishing this would involve the development of additional

optimization methods and the development of a Bayesian approach. The benefit of the optimiza-

tion approach would be the use of the well-established MML technique. However, drawbacks

would consist of adapting advanced optimization techniques and devising a method to select the

appropriate optimization for the data at hand. The Bayesian approach, often considered one of

“last resort”, has gained increasing popularity over the past twenty years as a way for modeling

systems due to the ever growing computational infrastructure. Its benefits consist of the use of

probability to estimate models and evidence that these approaches provide more accurate models

48



in comparison to non-Bayesian techniques especially for highly parameterized models (Gelman

et al., 2014a). Drawbacks consist of the lack of a viable method for model checking and in some

cases reliance on Markov chain Monte Carlo (MCMC) which may lead to approximation error due

to its computationally intensive nature.

In this section I propose a Bayesian MCMC estimation technique (implementable using OPEN-

BUGS software, which can also be called via R) and apply it to three different data sets. The first

data set consists of the bipolar data discussed in Chapter 3 with the HRS17TOT serving as the

response variable. The last two data sets are sample data sets from Hedeker and Nordgren (2013)

with one resembling a longitudinal data set and the second resembling an intensive longitudinal

data set from an EMA study.

4.1 BAYESIAN MARKOV CHAIN MONTE CARLO

4.1.1 Bayesian Analysis

Bayesian techniques differ from frequentist ones in that Bayesians believe parameters arise from

probability distributions; whereas, frequentists take parameters as fixed which are estimated through

optimization. When performing Bayesian analysis the first step is selecting the prior distributions

for the parameters Θ. This may be done through the use of prior knowledge or without. If per-

formed without prior knowledge prior distributions p(Θ) are often assumed to have large variances

which enables a greater parameter space to be explored and to be conjugate priors which simplifies

the derivation of the posterior distributions. The belief in Bayesian analysis is that by condition-

ing on the observations in the data set the posterior distributions will accurately represent the true

distribution of the parameters for the specified data. This is performed as follows:

1. Set up joint probability p(y,Θ) = p(y|Θ)p(Θ)

2. Condition on data p(Θ|y) = p(y,Θ)
p(y)

Here p(y|Θ) represents the likelihood function and p(y) is the normalizing constant. For basic

models where appropriate conjugate priors are chosen, the posterior distribution p(Θ|y) takes on a
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closed-form solution without the need for p(y) to be computed numerically. However, in any non-

linear model such as the MELS model computational difficulties arise when integrating p(y,Θ). A

procedure popularized by Gelfand and Smith (1990) known as Markov chain Monte Carlo is used

to bypass the integration.

4.1.2 Bayesian MCMC with Gibbs Sampling Procedure

In estimating the parameters of a MELS model using a Bayesian approach it is necessary to use a

MCMC approach. This approach makes use of a Markov Chain which under specific conditions

has a stationary condition. Let p(n)
ij represent the transition probabilities of a Markov Chain go-

ing from state i to j in n steps. If the Markov Chain is irreducible, aperiodic, and invariant, then

as n → ∞, p(n)
ij → π where π represents a stationary distribution. The use of a Markov Chain

in Bayesian inference uses the prior distributions and the initial data likelihood to determine the

transition probabilities. Under the above conditions for stationarity, a stationary distribution will

be determined which corresponds to the posterior distribution for the parameters after several it-

erations. Gibbs sampling will be used which consists of specifying transition probabilities for the

parameters, sampling a new value then updating the value for use in the distribution of the next

parameter.

The following steps will be used to determine the posterior distribution for the parameters

(Geman and Geman (1984) and Gelfand and Smith (1990)):

1. Start with initial state for parameters Θ(0) = (β(0), τ (0), γ(0), σ2(0)
ω )

2. Define transition probabilities for parameters

a. β(t+1)
k ∼ π(βk|y, β(t+1)

0 , . . . , β
(t+1)
k−1 , β

(t)
k , β

(t)
k+1, . . . , β

(t)
p , τ

(t), γ(t), σ2(t)
ω )

b. τ (t+1)
l ∼ π(τl|y,β(t+1), τ

(t+1)
0 , . . . , τ

(t+1)
l−1 , τ

(t)
l , τ

(t)
l+1, . . . , τ

(t)
l , γ

(t), σ2(t)
ω )

c. γ(t+1)
m ∼ π(γm|y,β(t+1), τ (t+1), γ

(t+1)
0 , . . . , γ

(t+1)
m−1 , γ

(t)
m , γ

(t)
m+1, . . . , γ

(t)
m , σ

2(t)
ω )

d. σ2(t+1)
ω ∼ π(σ2

ω|y,β(t+1), τ (t+1), γ(t+1), σ2(t)
ω )

3. Repeat step 2 B times until a stationary distribution is found according to specified diagnostic

criteria.

In conducting step 2, certain distributions π will not have a distribution that is easy to sample

from directly; therefore, a Metropolis-Hastings algorithm will be used for sampling (Metropolis
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et al. (1953) and Hastings (1970)). This method is able to draw samples from any probability

distribution π by using a target function f(x) that is proportional to π. The use of a distribution

proportional to π eliminates the requirement of having to calculate a normalizing constant which in

many cases might be numerically taxing. In addition a proposed distribution Q(x′|x(t)) is used to

generate samples from π. Depending on the parameters being estimated a symmetric distribution

such as the Normal or Uniform is suggested in order to obtain a stationary distribution quicker. The

proposed distribution used in this paper will be a normal distribution. The iteration steps involved

in the Metropolis-Hastings Algorithm are:

1. Using an initial value, say x(t), generate a sample x′ from the proposed distribution Q(x′|x(t))

2. Calculate the acceptance ratio using the target function f(x) as a = f(x′)
f(x(t)) which is π(x′)

π(x(t)) due

to the proportional assumption

3. If a ≥ 1 then accept state and x′ = x(t+1), else if a < 1 accept state with probability a, which

implies reject state with probability 1− a and set x(t+1) = x(t)

4.2 MIXED-EFFECTS LOCATION-SCALE MODEL WITH NORMALLY

DISTRIBUTED ERRORS

In order to fit the model in a Bayesian setup the following hierarchical set-up for the MELS model

will be used for subject i with ni observations:

Yi|νi, β,ψi, ωi
ind.∼ Nni(Xiβ+ 1ni

νi,ψi) (4.1)

νi|σ2
ν
ind.∼ N(0, σ2

ν), i = 1, . . . , N (4.2)

where the variances are modeled as follows
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σ2
ν = exp(uiτ )

ψi = Diag(σ2
εi1
, . . . , σ2

εini
)

σ2
εij

= exp(wijγ + ωi)

ωi ∼ N(0, σ2
ω)

Here the random effects νi (location) and ωi (scale) are assumed to be independent. Xi is a ni × p

design matrix of the fixed effects andwij is a 1×q vector of covariates influencing the WS variabil-

ity, which may vary over both subject and observation. ui is a 1× s vector of covariates affecting

the BS variability, which only varies by subject. 1ni
is a ni× 1 vector of 1’s and Diag is a ni× ni

diagonal matrix.

The conditional pdf on the sample y = (yT
1 , . . . ,y

T
N) is

f(y|ν, β, τ,ω) =
N∏
i=1
φni(yi|Xiβ+ 1ni

νi, ψi) (4.3)

where φni(y|µ,Σ) is the pdf of a ni dimensional multivariate normal random variable y with mean

µ and variance Σ. The common estimation technique is to maximize the marginal likelihood of

the response vector y. Using a theorem from Arellano-Valle et al. (2007) I derived the following

lemma (proof provided in APPENDIX).

Lemma 1 Let Yi = Xiβ+ 1ni
νi + εi, where νi ∼ N(0, σ2

ν) and εi ∼ N(0,ψi) are independent.

The variances are denoted by σ2
ν = σ2

ν(τ) and ψi = ψi(γ, ω) with ω ∼ N(0, σ2
ω). Then the

marginal distribution of Yi is

fYi
(yi|β, τ, γ,σ2

ω) =
∫
R
φn(y|Xβ,ψi + σ2

νJn)φ(ω|0, σ2
ω)dω (4.4)

The result from equation 4.4 in Lemma 1 cannot be simplified any further due to the nonlinear

nature in which the random scale effect enters the model. Therefore when implementing MML

integral approximations are used. The idea behind marginal maximum likelihood is to integrate

out the “nuisance” parameters which variance terms typically are treated as. However, when using

a MELS model the parameters associated with the variances are of importance as well as the mean
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parameters. In order to obtain appropriate inferences on all of the parameters Bayesian framework

is required (Verbeke and Molenberghs, 2000).

In order to estimate the MELS model defined in equations 4.1 and 4.2 using Bayesian MCMC,

prior parameter distributions must be assigned. One case of specified priors will be:

βk ∼ N(βk0, σ
2
k0) k = 1, . . . , p

τl ∼ N(τl0, σ2
l0) l = 1, . . . , r

γm ∼ N(γm0, σ
2
m0) m = 1, . . . , q

σ2
ω ∼ IG(a0, b0) (4.5)

Here N refers to the normal distribution and IG refers to an inverse gamma distribution. The

initial values of the hyperparameters will be chosen assuming no prior knowledge. Using the

prior distributions from 4.5 and the marginal pdf in 4.4 the joint posterior distribution of all of the

parameters given the observed sample y is

π(β, τ, γ, σ2
ω|y) ∝

N∏
i=1

∫
R
φn(yi|Xβ,ψi + σ2

νJn)φ(ω|0, σ2
ω)dω

×
p∏

k=1
φ(βk|βk0, σ

2
k0)×

r∏
l=1
φ(τl|τl0, σ2

l0)×
q∏

m=1
φ(γm|γm0, σ

2
m0)

× ba0
0

Γ(a0)σ
2(−a0−1)
ω exp

(−b0

σ2
ω

)
(4.6)

As is characteristic of a MELS model the resulting posterior distributions such as 4.6 do not

have closed form solutions therefore a Bayesian MCMC with Gibbs sampling and the Metropolis-

Hastings Algorithm will be used to determine the posterior distribution.
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4.3 SIMULATION RESULTS

In order to assess the accuracy of the proposed model, simulations will be performed using a

simulated data set that resembles the bipolar data set. 100 subjects will be randomly assigned to

two interventions: treatment and control. Measurements will be taken over a span of 108 weeks

(approximately 2 years) spaced 9 weeks apart (approximately 2 months). The specified model will

be

Yi|νi, β,ψi, ωi
ind.∼ Nn(β0 + β1trti + β2week

∗
j + β3trti × week∗j + 1nνi,ψi)

νi|σ2
ν
ind.∼ N(0, σ2

ν), i = 1, . . . , N
(4.7)

where the variances are modeled as follows

σ2
ν = exp(τ0 + τ1 × trti)

ψi = Diag(σ2
εi1
, . . . , σ2

εin
)

σ2
εij

= exp(γ0 + γ1trti + γ2week
∗
j + γ3trti × week∗j + ωi)

ωi ∼ N(0, σ2
ω)

The week variable is transformed to week∗j = weekj/100 to aid in model estimation.

As is characteristic of Bayesian statistics a prior distribution must be specified for each pa-

rameter. The choice of distribution will affect the estimates and implementation speed, so two

different scenarios with different priors will be assessed. Typically normal priors are assumed;

however, in many models such as the MELS model using the normal for all priors (especially for

those associated with the log-linear parameters γ and τ ) may result in erroneous results, such as

the distributions diverging. This happens most often in cases where the prior distributions have

large variances. A distribution such as a uniform would be able to limit the ranges that the values

that the parameters take.

The first scenario specifies the prior for the β, τ , and γ parameters as normal and the prior for

σ2
ω as an inverse gamma. In setting the hyperparameters the exponential nature of the WS variance

must be taken into consideration as values that are too large may result in the model diverging.
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Therefore reasonable hyperparameters must be set in order to avoid this issue. They are specified

as follows

βk ∼ N(0, 100) k = 0, 1, 2, 3

τl ∼ N(0, 100) l = 0, 1

γm ∼ N(0, 2) m = 0, 1, 2, 3

σ2
ω ∼ IG(10, 10) (4.8)

Th hyperparameter values were chosen through trial and error. Using large values of the hyper-

parameters is desired to have non-informative priors; however, this was not possible for all of the

prior distributions. The variance hyperparameter for τ was particularly troublesome and the model

fit would diverge for any hyperparameter variance values greater than 2.

Due to the nature of the Metropolis-Hastings Algorithm consecutive draws are highly corre-

lated. In order to make appropriate inference a Bayesian draw consisting of independent samples

is required. This correlation diminishes the further the draws are from each other. A thinning

procedure that samples every 10th draw will be used to diminish this dependency. A sample size

of 5,000 will be used after a burn-in period of 50,000 iterations. Under these conditions one run

for scenario 1 takes approximately 20 minutes on a Samsung NP305E5A laptop.

The 2nd scenario differs from scenario 1 by changing the prior distributions for the parameters

in the log-linear model from normal to uniform. The idea behind the use of the normal prior

is to use a symmetric conjugate prior. In most cases this works especially for mean parameters;

however, due to the log-linear nature of the variance the normal distribution is not a conjugate prior

for this model. Another symmetric prior distribution will be used and the results will be compared

to that of scenario 1. Hyperparameters are set using the same concept as previously described for

scenario 1. The specified priors are
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βk ∼ N(0, 100) k = 0, 1, 2, 3

τl ∼ U(−5, 5) l = 0, 1

γm ∼ U(−5, 5) m = 0, 1, 2, 3

σ2
ω ∼ IG(10, 10) (4.9)

An added benefit of using the more mathematically simple uniform distribution is that the number

of iterations required for the model to converge is half as much as scenario 1. For scenario 2

the burn-in period consists of 25,000 iterations and inference is based on a sample size of 2,500

obtained by selecting every 10th sample. One run takes approximately 10 minutes on a Samsung

NP305E5A laptop in comparison to the 20 minutes from the previous scenario. Table 5 provides a

comparison of the two scenarios based on 40 simulations and using the mean of the sample size as

the Bayesian estimate.

Comparing the results from the two scenarios reveals relatively similar results. The coverage

probabilities are approximately the same; however, the second scenario provides higher values in

five out of the eleven parameters whereas the first outperforms in only three instances. Looking at

the standard biases (obtained by dividing the bias by the standard error of the Bayes’ estimates)

shows that two of the estimates fall outside of the ± 20 range for the first scenario; whereas, none

of the estimates fall outside for the second scenario. These inferences are based on 40 simulations;

therefore, with relatively similar results for the two scenarios one would reasonably expect that as

the number of simulations increased the differences between the two would become even smaller.

Despite the minor computational differences between the two scenarios one major benefit of the

second scenario is the amount of computation time required (10 min/run compared to 20 min/run

for the first). This is a result of the Bayesian draw for the second scenario requiring half as many

iterations to satisfy the stationary distributions which can be visually inspected. The graphs from

these results are not shown; however, they resemble those provided in Figures 23, 24 and 25. The

number of iterations required for the distributions to resemble those in the aforementioned figures

are half as much as those required for scenario 1. Due to this benefit the prior distributions specified

in the second scenario will be used for the remaining models.
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Table 5: Simulation Results between Scenario 1 and 2

Scenario 1
Parameters True Value Estimate SE Bias St. Bias Cov. Prob. (%) Reject H0 (%)

β0 2 1.980 .210 -.020 -9.589 95 100
β1 .5 .512 .323 .012 3.730 92.5 40
β2 .2 .212 .119 .012 9.934 95 45
β3 -.2 -.212 .150 -.012 -7.944 95 20
τ0 .7 .680 .203 -.020 -9.856 95 92.5
τ1 -.1 -.069 .304 .031 10.230 95 5
γ0 -1.4 -1.395 .121 .005 4.059 95 100
γ1 .2 .158 .187 -.042 -22.574 95 12.5
γ2 2.5 2.468 .170 -.032 -18.856 97.5 100
γ3 -.5 -.387 .222 .113 50.822 97.5 22.5
σω .6 .613 .105 .013 12.454 90 100

Scenario 2
Parameters True Value Estimate SE Bias St. Bias Cov. Prob. (%) Reject H0 (%)

β0 2 1.980 .183 -.020 -10.984 100 100
β1 .5 .542 .256 .042 16.304 97.5 50
β2 .2 .204 .102 .004 4.373 97.5 30
β3 -.2 -.213 .163 -.013 -7.783 95 22.5
τ0 .7 .706 .195 .006 2.980 95 92.5
τ1 -.1 -.139 .272 -.039 -14.251 97.5 5
γ0 -1.4 -1.421 .165 -.021 -12.799 90 100
γ1 .2 .187 .227 -.013 -5.621 95 20
γ2 2.5 2.490 .234 -.010 -4.259 92.5 100
γ3 -.5 -.465 .327 .035 10.798 92.5 47.5
σω .6 .600 .089 .000 .221 97.5 100

Simulation results were expanded to 100 in order to better assess the MCMC’s accuracy. These

results (shown in Table 6) reveal an overall improved model fit when compared with the original

40 simulations. The mean estimates of the parameters have little to no bias and all of the coverage

probabilities are between 89% and 98%. As previously mentioned when examining data sets

similar to the bipolar data the parameters of interest are often the time and treatment interaction

terms which are represented by β3 and γ3. The “Reject H0” column represents the % of simulations
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whose 95% interval do not contain 0. The % of intervals that do not contain 0 are 22 and 41

respectively for the given true values. This reveals that the proposed technique does not do a good

job in detecting the treatment effects under the given conditions for the data set. These conditions

include the number of subjects, number of observations per subject and the effect size with a

focus on the treatment by time interaction in the within-subject variance. Methods to determine an

appropriate sample size for detecting the treatment by time effect will be discussed in Chapter 6.

Table 6: Simulation Results based on 100 simulations

Parameters True Value Estimate SE Bias St. Bias Cov. Prob. (%) Reject H0 (%)

β0 2 1.989 .216 -.011 -5.272 93 100
β1 .5 .523 .309 .023 7.57 89 45
β2 .2 .199 .112 -.001 -.639 95 34
β3 -.2 -.202 .156 -.002 -1.325 98 22
τ0 .7 .698 .208 -.002 -1.106 94 91
τ1 -.1 -.131 .297 -.031 -10.483 95 6
γ0 -1.4 -1.419 .159 -.019 -11.920 90 100
γ1 .2 .220 .226 .020 8.900 89 24
γ2 2.5 2.495 .219 -.005 -2.097 93 100
γ3 -.5 -.494 .314 .006 2.066 93 41
σω .6 .595 .097 -.005 -4.968 90 100
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4.4 APPLICATION TO BIPOLAR DATA

Based on the results from Section 4.3 the proposed estimation technique provides estimates with

low bias and appropriate confidence intervals. Using the prior distributions specified in 4.9 and the

model formulation in 4.7 the MELS model will be fit to analyze the HRS17TOT variable (discussed

in Section 3.3). The Bayesian draw will consist of a 25,000 burn-in period and inference will be

based on 2,500 samples obtained by sampling every 10th sample. The results are provided in Table

7 and diagnostic graphs are provided in Figures 23, 24 and 25.

Table 7: Estimation Results for HRS17TOT

Parameters Mean SD 2.5p MED 97.5p

β0 6.308 .536 5.235 6.312 7.292
β1 1.119 .868 -.585 1.150 2.758
β2 .801 .393 .034 .813 1.549
β3 -1.406 .634 -2.617 -1.428 -.178
τ0 2.483 .224 2.057 2.480 2.910
τ1 .423 .300 -.143 .417 1.007
γ0 2.475 .119 2.246 2.476 2.698
γ1 .326 .164 -.010 .327 .632
γ2 -.103 .219 -.518 -.108 .332
γ3 -.048 .310 -.633 -.039 .501
σω .837 .077 .701 .836 .987
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Figure 23: Convergence of Location Mean β Parameters
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Figure 24: Convergence of Scale τ and σ2
ω Parameters
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Figure 25: Convergence of Scale γ Parameters
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Based on the results in Table 7 there appears to be a significant impact by the treatment-by-time

location interaction term (β3), but not by the treatment-by-time within-subject variance interaction

term (γ3) on the HRS17TOT variable. Analyzing the impact of time on the patients receiving the

PCMM (β2) reveals a significant impact on their HRS17TOT ratings. Over the course of the study

these individuals on average have increasing scores over time which suggests a recurrence of their

bipolar symptoms. When looking at the time-by-treatment interaction term the corresponding

estimates are negative indicating a decrease in HRS17TOT scores over time. This suggests that

those receiving the IRRI are having their depressive scores drop over time on average indicating

fewer bipolar 1 symptoms. Further work into this phenomenon needs to be performed; however,

one speculation would be the added psychological benefits from the new intervention.

The benefit of a MELS model is the capability of jointly modeling the location and scale

effects. The results seem to indicate a marginal impact on variance by treatment (γ1), but no

impact due to time (γ2 and γ3). This supports the preliminary analysis shown in Figures 8 and 10

which suggested that the patients in IRRI had in general higher variability than those on PCMM.

The results appear to indicate that IRRI may result in lower levels of bipolar I symptoms over

time, but does so in a more volatile environment. No time effect was detected in the WS variance;

however, this may be due to the low sample size preventing the effect from being detected.

4.5 COMPARISON WITH MML

The Bayesian MCMC approach has an advantage over the MML approach in that it can model data

sets that the MML fails to do. One disadvantage is that it can be time consuming. Considering

the advantages and disadvantages of each method it is necessary to compare their performance on

data sets that can be fit with either method. The two data sets used were obtained from Hedeker

and Nordgren (2013) and consist of an EMA data set (POSMOOD) and a longitudinal data set

(REISBY).
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4.5.1 Analysis of POSMOOD Data Set

The POSMOOD Data Set comes from a longitudinal, natural history study of adolescent smoking

(Mermelstein et al., 2002). The study gave 515 students in either 8th or 10th grade a hand held

computer for 7 consecutive days. They were prompted at random times throughout the day result-

ing in 17,514 total observations. The dependent variable is “posmood”, which is a measure of the

subject’s positive mood and the explanatory variables are “alone” and “genderf”. The model fit to

the data is

Yi|νi, β,ψi, ωi
ind.∼ Nn(β0 + β1aloneij + β2genderfi + 1nνi,ψi)

νi|σ2
νi

ind.∼ N(0, σ2
νi

), i = 1, . . . , N
(4.10)

where the variances are modeled as follows

σ2
νi

= exp(τ0 + τ1genderfi)

ψi = Diag(σ2
εi1
, . . . , σ2

εin
)

σ2
εij

= exp(γ0 + γ1aloneij + γ2genderfi + ωi)

ωi ∼ N(0, σ2
ω)

Table 8: MML Estimation Results

Parameters Estimate SE 95% Confidence Limits

β0 7.015 .083 6.851 7.179
β1 -.354 .0243 -.402 -.306
β2 -.186 .110 -.401 .0292
τ0 .383 .099 .189 .577
τ1 -.064 .133 -.325 .196
γ0 .757 .047 .665 .850
γ1 .087 .025 .038 .135
γ2 .221 .061 .102 .340
σω .627 .041 .579 .671

The MML estimation was performed in SAS using the method described in Section 2.2.2.1.

The Bayesian results were obtained using the priors specified in 4.9. A 25,000 iteration burn-in

period was used and inference was made on a sample of 2,500 obtained by selecting every 10th

64



Table 9: Bayesian MCMC Estimation Results

Parameters Mean SD 2.5p MED 97.5p

β0 7.184 .095 7.009 7.180 7.356
β1 -.419 .025 -.047 -.419 -.365
β2 -.159 .126 -.398 -.157 .074
τ0 .532 .095 .356 .531 .723
τ1 -.026 .128 -.276 -.024 .213
γ0 .611 .028 .552 .611 .668
γ1 .121 .029 .059 .121 .179
γ2 .241 .028 .182 .240 .304
σω .796 .022 .750 .795 .845

sample. The MML approach took less than a minute to obtain an optimal solution; whereas, the

Bayesian approach took ≈ 159 minutes.

Examining the estimation results presented in Tables 8 and 9 reveals comparable results be-

tween the two estimation techniques. The two methods have the same results in detecting nonzero

parameter values. Both the β2 and τ1 parameters are not significant and this is shown by both

estimation methods. In addition the 95% coverage intervals for the Bayesian MCMC technique all

contain the MML estimate with the exception of σω. The 95% confidence limits from the MML

contain the mean value from the Bayesian MCMC technique for 5 out of the 9 parameters al-

though from an absolute value perspective the mean estimate does not differ significantly nor does

it provide a counter-intuitive result in terms of detecting a non-zero value. The only parameter that

appears to be significantly different in the two estimation techniques is the random scale value.

The Bayesian MCMC technique provides a larger individual subject variance in comparison to the

MML approach with the upper 95% CL being .671 for MML in comparison to .750 for the lower

95% CL for the Bayesian approach. This result is expected as in Section 2.2.2.2 the estimate of σω

is consistently underestimated for the MELS model whereas the results from the Bayesian MCMC

in Section 4.3 provide an unbiased estimate of σω.

The diagnostic plots for the Bayesian MCMC (not shown) do not reveal any unusual patterns

and show convergence for all parameters. The main difference between the two methods is the

65



amount of time it takes for the models to converge. This time difference is likely due to the amount

of observations in the data set (17,514). This large number of observations drastically slowed the

time it took to converge for the Bayesian MCMC approach, while it had no significant impact on

the MML approach. Based on the amount of time to converge as well as both methods having

comparable conclusions the MML would be the preferred method for the POSMOOD data set.

Table 10: Hedeker’s Estimation Results

Parameters Estimate SE 95% Confidence Limits

β0 6.990 .081 6.831 7.149
β1 -.370 .025 -.419 -.321
β2 -.150 .109 -.364 .064
γ0 .763 .047 .670 .856
γ1 .081 .025 .032 .129
γ2 .216 .061 .096 .336

The POSMOOD data set was used by Hedeker to demonstrate the use of the MIXREGLS

program. This program written in FORTRAN is designed to implement a MELS model using

maximum likelihood with the EM algorithm and a Newton-Raphson solution. It provides an alter-

native approach to the MML which is implemented in SAS. The results from MIXREGLS shown

in Table 10 match closely with the two previously discussed approaches. Hedeker uses a slightly

different model formulation for the between-subject structure and the random-scale effects, but this

does not have any impact on the conclusions drawn from the mean and within-subject parameters.

Regardless of which method is used the results obtained provide the same interpretation for

the data. Individuals who are alone tend to have lower positive mood scores and being female

appears to indicate lower scores as well, although this effect is marginally significant in all three

models. Female responses also tend to be less stable than males and being alone provides for

greater variability in scores.

4.5.2 Analysis of REISBY Data Set

The REISBY Data Set (Reisby et al., 1977) is a psychiatric longitudinal data set of 66 depressed

inpatients. The subjects were diagnosed with either endogenous or non-endogenous depression
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and rated with the Hamilton rating (response variable). The study lasted 6 weeks and includes the

type of depression (endog) and week (0-5) as the explanatory variables. There were 66 individuals

in the study accounting for 396 observations (missing Hamilton Depression scores were present).

The model fit to the data is

Yi|νi, β,ψi, ωi
ind.∼ Nn(β0 + β1weekj + β2endogi + β3weekj × endogi1nνi,ψi)

νi|σ2
ν
ind.∼ N(0, σ2

ν), i = 1, . . . , N
(4.11)

where the variances are modeled as follows

σ2
ν = exp(τ0 + τ1endogi)

ψi = Diag(σ2
εi1
, . . . , σ2

εin
)

σ2
εij

= exp(γ0 + γ1weekj + γ2endogi + ωi)

ωi ∼ N(0, σ2
ω)

Table 11: MML Estimation Results

Parameters Estimate SE 95% Confidence Limits

β0 22.251 .715 20.822 23.679
β1 -2.265 .185 -2.635 -1.895
β2 1.863 1.072 -.278 4.004
β3 -.014 .272 -.557 .528
τ0 2.169 .350 1.469 2.869
τ1 .512 .450 -.387 1.412
γ0 2.123 .227 1.670 2.577
γ1 .185 .062 .062 .309
γ2 .297 .232 -.166 .760
σω .605 .236 .3 .8
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Table 12: Bayesian MCMC Estimation Results

Parameters Mean SD 2.5p MED 97.5p

β0 22.410 .755 20.830 22.430 23.910
β1 -2.361 .187 -2.721 -2.361 -1.991
β2 1.836 1.130 -.304 1.834 4.065
β3 -.003 .267 -.532 .002 .516
τ0 2.305 .368 1.597 2.301 3.026
τ1 .565 .460 -.340 .563 1.457
γ0 2.238 .216 1.812 2.237 2.661
γ1 .175 .070 .036 .176 .308
γ2 .221 .192 -.166 .225 .578
σω .557 .156 .303 .547 .871

The MML and Bayesian estimation procedures were the same ones used in the POSMOOD

data set (see Section 4.5.1) and similar to the results in Tables 11 and 12 for the MML and Bayesian

techniques are comparable. They have the same performance in detecting non-zero parameter

values. In contrast to the POSMOOD data set the estimates from the REISBY data set all fall

within the other method’s 95% confidence interval. Comparing the MML’s estimate with the mean

of the Bayesian approach do not reveal any pattern in terms of one technique having consistently

higher or lower values than the other one. In terms of choosing which method to use there are

no major advantages nor disadvantages. The results are comparable and the convergence time for

both is less than one minute. The comparable results for the Bayesian MCMC to the well-tested

MML approach supports the use of this methodology and provides confidence to the accuracy of

the model in its application to additional data sets.

Similar to the POSMOOD data set the REISBY data set was used by Hedeker to demonstrate

the use of the MIXREGLS program. The results from MIXREGLS shown in Table 13 match

closely with the two previously discussed approaches. Hedeker uses a slightly different model

formulation for the random-scale effects, but this does not have any impact on the conclusions

drawn from the mean and between/within-subject parameters.

The results for each method all provided the same conclusions. Over time (β1) the subject’s
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Table 13: Hedeker’s Estimation Results

Parameters Estimate SE 95% Confidence Limits

β0 22.378 .723 20.960 23.796
β1 -2.295 .188 -2.663 -1.927
β2 1.879 1.076 -.231 3.989
β3 -.029 .268 -.749 .692
τ0 2.198 .354 1.503 2.893
τ1 .507 .458 -.391 1.405
γ0 2.088 .236 1.624 2.551
γ1 .192 .063 .069 .315
γ2 .288 .245 -.193 .769

depression score would decrease on average regardless of the type of depression (β2 and β3).

However, their scores would become more volatile over time (γ1). Having endogenous depression

may also result in more volatile responses, but this finding was marginal.

4.6 DISCUSSION

This chapter has investigated the use of a Bayesian MCMC approach in estimating the parameters

of a MELS model. Hedeker’s MML approach (implemented in SAS) is the prevailing estimation

technique for the model and has been shown to provide unbiased estimates (see Section 2.2.2.2).

However, due to the multidimensional and non-linear nature of the model there are numerous data

sets and model forms where the MML approach fails to provide reasonable results. To address this

issue I proposed the use of a Bayesian MCMC estimation technique. I was successfully able to use

this technique to model a bipolar I data set that the MML technique was unable to. In Section 4.5 I

compared the results from two data sets fitted with the Bayesian MCMC and MML approach. The

results from both of the data sets revealed comparable estimates and similar clinical findings.

The Bayesian MCMC technique was used to model a bipolar data set (Section 4.4) to assess

whether a new intervention had any impact on the recurrence of symptoms in both the mean and
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variance of the individuals. The results showed a significant impact on the mean and variance of

the HRS17TOT variable. Over time individuals began to develop more depressive symptoms, but

individuals under the new intervention had this impact lessened and in some cases their Hamilton

scores decreased over time. The major benefit of the MELS model is being able to jointly model

the mean and variance. With this model we are able to identify a potential impact on the variance

by the IRRI. Over time subjects receiving IRRI have lower depression scores in comparison to

PCMM, but do so in a less stable environment (higher variability).

The major advantage that the Bayesian MCMC approach has over the MML is its applicability

to a greater variety of data sets. Optimization over multidimensions fails to converge in many

cases. Bayesian MCMC moves away from the reliability on optimization in order to obtain better

model convergence. However, a disadvantage of this approach is the amount of computational

time required. In modeling the POSMOOD data set the MML fit time was less than 30 seconds

in comparison the Bayesian approach took ≈ 159 minutes. My recommendation would be to use

the MML approach at first due to its smaller computational cost and use the Bayesian MCMC

approach if necessary.
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5.0 BAYESIAN MCMC ESTIMATION FOR MIXED-EFFECTS LOCATION-SCALE

MODELS WITH SKEW-NORMAL ERRORS

In fitting a MELS model, Hedeker has assumed that the errors are normally distributed. For many

mixed-effects models this is a reasonable assumption. Hedeker’s application to an adolescent

smoking EMA data set studies individuals over a short time frame; therefore, the normal and

time-invariant assumption should be accurate. In the bipolar data set (discussed in Chapter 3)

the Young Mania Rating (YOUNGTOT) scores are positively skewed and time-dependent. If the

MELS model were to be fit to this data under the normal assumption then the results would have

considerable bias. A common method of dealing with skewness is to transform the data. For

positively skewed data log transformations remove this skewness; however, it also eliminates any

heterogeneity. For skewed data sets where the focus lies on the mean parameters this would be an

appropriate action. With the YOUNGTOT variable the clinical questions involve both the mean

and variance. Through the use of the log transformation, questions involving treatment effects on

the mean and variance of the data would not be addressed with a single model. Rather than use a

log-transformation I propose the use of a skew-normal distribution in modeling the YOUNGTOT

data. This distribution preserves the variability of the data and can be implemented with the MELS

model in order to assess how the interventions affect the patient’s mania scales in both their mean

and variance.

The skew-normal distribution is not the only distribution that would be appropriate for skewed

data. There is a whole family of skew-elliptical distributions such as the skew-t that are also avail-

able. I am proposing the use of the skew-normal distribution as a starting point in the expansion

of the MELS model to other error distributions. The model has previously only been used with a

normal error distribution, so by extending its use to a skew-normal which the normal is a special

case of, I am allowing for a more flexible modeling approach.
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5.1 MIXED-EFFECTS LOCATION-SCALE MODEL WITH SKEW-NORMAL

ERRORS

The proposed MELS model with skew-normal errors in a hierarchical set-up for subject i with ni

observations is:

Yi|νi, β,ψi, ωi
ind.∼ SNni(Xiβ+ 1ni

νi,ψi,∆) (5.1)

νi|σ2
ν
ind.∼ N(0, σ2

ν), i = 1, . . . , N (5.2)

where the variances are modeled as follows

σ2
ν = exp(uiτ )

ψi = Diag(σ2
εi1
, . . . , σ2

εini
)

σ2
εij

= exp(wijγ + ωi)

ωi ∼ N(0, σ2
ω)

The same notation from Section 4.2 is used with the addition of SNni(µ,ψ,∆) which represents

a ni dimensional skew-normal distribution with location parameter µ, variance parameter ψ, and

skewness parameter ∆. In the above model ∆ = Diag(δ1, . . . , δn), where δj is the skewness

parameter for the jth time point.

5.1.1 Skew-Normal Distributions

The skew-normal distributions are part of a broad class of skew-elliptical distributions. Their use-

fulness stems from the desire to accommodate well-known and theoretically sound distributions

in describing various data sets that arise in practical implementations. It was based on the idea

to create a broad set of distributions that are flexible to the presence of skewness and easily im-

plementable, which is obtained by transforming the error distributions rather than the data (Sahu

et al., 2003).

In choosing which skew distribution to model, the nature of the data must be considered. In

Section 4.4 the HRS17TOT was analyzed under the assumption of a normal error distribution
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(supported through graphical analysis). Skew-elliptical distributions are a broad class of distri-

butions, which include the skew-normal, that allows for a skewed, unimodal density with heavy

tails. Graphical analysis of the YOUNGTOT reveals a unimodal, skewed distribution, but does not

provide evidence for heavy tails. The presence of heavy tails would suggest a skew-student dis-

tribution; however without their presence I propose the skew-normal. This distribution accounts

for the skewness present and allows for both the HRS17TOT and YOUNGTOT variables to be

modeled with comparable distributions as desired. The normal distribution is a special case of

the skew-normal distribution and as such provides a method of modeling the response variables as

stemming from similar distributions.

The probability density function of the skew-normal distribution as derived by Sahu et al.

(2003) and using multivariate elliptically symmetric distributions is:

f(y|µ,ψ,∆) = 2n|ψ + ∆2|−1/2φn

{
(ψ + ∆2)−1/2(y − µ)

}
P (V > 0)

V ∼ Nn{∆(ψ + ∆2)−1(y − µ), I −∆(ψ + ∆2)−1∆}
(5.3)

where µ is the location parameter vector, ψ is a positive-definite variance matrix, and ∆ is a

diagonal matrix with skewness parameters δ1, . . . , δn. The distribution in equation 5.3 is denoted

by SN(µ,ψ,∆). An alternative form of the skew-normal density function is:

f(y|µ,ψ,∆) = 2nφn(y|µ,ψ + ∆∆T )

× Φn(∆T (ψ + ∆∆T )−1(y − µ)|0, (In + ∆Tψ−1∆)−1) (5.4)

The mean and variance are:

E(Y ) = µ+
 2
π

1/2

, cov(Y ) = ψ +
1− 2

π

∆2

The stochastic representation of the skew-normal distribution obtained from Arellano-Valle

et al. (2007) (shown in Proposition 1) will be useful in simulating and adapting the OPENBUGS

software (implementable in R) for fitting the specified model.

73



Figure 26: SN Dist with (+) Skew Figure 27: SN Dist With (-) Skew

Proposition 1 Let Y ∼ SNn(µ,ψ,∆). Then

Y
d= ∆|X0|+X1 (5.5)

whereX0 ∼ Nn(0, In),X1 ∼ Nn(µ,ψ) and are independent.

Using the stochastic representation from Proposition 1 produces the skew-normal graphs in

Figures 26 and 27 for parameters µ = 0, Σ = 1, and varying skewness parameters (δ).

5.2 BAYESIAN INFERENCE WITH SKEW-NORMAL DISTRIBUTIONS

The conditional pdf on the sample y = (yT
1 , . . . ,y

T
N) is

f(y|ν, β, γ,ω) =
N∏
i=1

2niφni(yi|Xiβ+ 1ni
νi, ψi + ∆2)

× Φn(∆(Ψi + ∆2)−1(y −Xβ − 1nνi)|0, (In + ∆Ψ−1∆)−1) (5.6)

Using the same methods to derive Lemma 1 from Section 4.2 I derived the following marginal

distribution (see APPENDIX for proof):
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Lemma 2 Let Yi = Xiβ + 1ni
νi + εi, where νi ∼ N(0, σ2

ν) and εi ∼ SNni(0,ψi,∆i) are

independent. The variances are denoted by σ2
ν = σ2

ν(τ) and ψi = ψi(γ, ω) with ω ∼ N(0, σ2
ω)

and skewness parameter ∆i = Diag(δi1, . . . , δini). Then the marginal distribution of Yi is

fYi
(yi|β, τ, γ,∆, σ2

ω) =
∫
R

2niφni(y|Xβ,Γ)

× Φni(A(y −Xβ)|1niµ+A1niµ,B + ΛAJniBT )φ(ω|0, σ2
ω)dω

(5.7)

where

Γ = Ψi + ∆2
i + σ2

νJni , Λ =
 1
σ2
ν

+ 1∑ni
j=1(σ2

εij
+ δj)

−1

A = ∆i(Ψi + ∆2
i )−1, B = (Ini + ∆iΨ

−1∆i)−1

µ = ∆i1
′
ni

(Ψni + ∆i)−1(y −Xβ)

In order to estimate the model specified in equations 5.1 and 5.2 the Bayesian MCMC proce-

dure described in Section 4.1 will be utilized with the priors from 4.9 and added priors for the skew

parameters

δh ∼ N(δh0, σ
2
h0) h = 1, . . . , n (5.8)

Using the marginal pdf from Lemma 2 and the specified priors gives the joint posterior distri-

bution for the specified parameters given the observed sample y

π(β, τ, γ, δ, σ2
ω|y) ∝

N∏
i=1

 ∫
R

2niφni(y|Xβ,Γ)

× Φni(A(y −Xβ)|1niµ+A1niµ,B + ΛAJniBT )φ(ω|0, σ2
ω)dω


×

p∏
k=1

φ(βk|βk0, σ
2
k0)×

r∏
l=1

1
τlb0 − τla0

×
q∏

m=1

1
γmb0 − γma0

× ba0
0

Γ(a0)σ
2(−a0−1)
ω exp

(−b0

σ2
ω

)
×

n∏
h=1

φ(δh|δh0, σ
2
h0) (5.9)

This posterior distribution does not have a closed form solution therefore a Bayesian MCMC

with Gibbs sampling will be used to determine the posterior distribution (described in Section 4.1).

75



5.3 SIMULATION RESULTS

To assess the accuracy of the model a simulation similar to the one in Section 4.3 will be used with

the addition of a skew parameter that will be assumed to be constant throughout the study. The

model simulated is

Yi|νi, β,ψi, ωi
ind.∼ SNni(β0 + β1trti + β2week

∗
j + β3trti × week∗j + 1nνi,ψi,∆i)

νi|σ2
ν
ind.∼ N(0, σ2

ν), i = 1, . . . , N
(5.10)

where the variances and skew parameters are modeled as follows

σ2
ν = exp(τ0 + τ1 × trti)

ψi = Diag(σ2
εi1
, . . . , σ2

εin
)

σ2
εij

= exp(γ0 + γ1trti + γ2week
∗
j + γ3trti × week∗j + ωi)

ωi ∼ N(0, σ2
ω)

∆i = Diag(δ, . . . , δ)

The week variable is transformed to week∗j = weekj/100 to aid in model estimation.

Conjugate priors will be specified as in Section 4.3 with the addition of the prior distribution

for the skew parameter

βk ∼ N(0, 100) k = 0, 1, 2, 3

τl ∼ U(−5, 5) l = 0, 1

γm ∼ U(−5, 5) m = 0, 1, 2, 3

σ2
ω ∼ IG(10, 10)

δ ∼ N(0, 100)

(5.11)

The simulation results provided in Table 14 are based on a Bayesian draw with a 25,000 itera-

tion burn-in period and a sample size of 2,500 obtained by selecting every 10th sample. One run

takes approximately 15 minutes on a Samsung NP305E5A laptop.
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Table 14: Simulation Results Based on 100 Simulations

Parameters True Value Estimate SE Bias St. Bias
Coverage

Prob (%)
Reject H0 (%)

β0 2 1.987 .252 -.013 -5.046 96 100
β1 .5 .470 .364 -.030 -8.124 96 25
β2 .2 .192 .327 -.008 -2.573 95 10
β3 -.2 -.185 .436 .015 3.504 96 3
τ0 .7 .703 .281 .003 1.041 95 75
τ1 -.1 -.081 .389 .019 4.876 97 6
γ0 -1.4 -1.731 .717 -.331 -46.129 92 77
γ1 .2 .089 .903 -.110 -12.23 95 5
γ2 2.5 2.702 .760 .202 26.650 97 96
γ3 .5 .659 1.025 .159 15.522 95 7
σω .6 .629 .197 .029 14.502 95 100
δ 5 5.025 .155 .025 16.432 97 100
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Figure 28: Convergence of Scale γ and σω Parameters
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The results in Table 14 show coverage probabilities that are approximately the same as the

nominal value for a 95% confidence interval. Similar to the results in Section 4.3 the results

have low power which may be due to low sample size, observations per subject, effect size, or

a combination of the three. However, looking at the diagnostic plots in Figure 28 for the scale

parameters reveals that the inferences were not made on a stationary distribution. This problem

can be alleviated by extending the number of iterations for a Bayesian MCMC draw. In addition

the presence of skewness in the model structure may lead to greater difficulty in estimating, so

reducing the hyperparameters in particular for σω is recommended.

The scenario that led to consistence convergence used a 50,000 iteration burn-in period and a

sample size of 5,000 obtained by sampling every 10th value. In addition the hyperparameters for

σω were lowered from 10 to 5. Each run took approximately 30 minutes on a Samsung NP305E5A

laptop.

Table 15: Simulation Results Based on 50 Simulations – new priors

Parameters True Value Estimate SE Bias St. Bias
Coverage

Prob (%)
Reject H0 (%)

β0 2 1.985 .244 -.015 -6.102 96 100
β1 .5 .441 .418 -.059 -14.104 92 20
β2 .2 .175 .310 -.025 -7.989 100 14
β3 -.2 -.178 .473 .022 4.574 92 6
τ0 .7 .733 .254 .033 13.142 94 80
τ1 -.1 -.166 .388 -.066 -17.077 96 4
γ0 -1.4 -1.790 .808 -.390 -48.288 90 72
γ1 .2 .121 1.018 -.079 -7.752 94 4
γ2 2.5 2.646 .812 .146 18.022 94 80
γ3 .5 .661 1.041 .161 15.483 98 6
σω .6 .728 .165 .128 77.476 96 100
δ 5 5.078 .159 .078 48.922 94 100
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Figure 29: Convergence of Scale γ and σω Parameters
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The results in Table 15 show coverage probabilities that are comparable to the 95% nominal

confidence intervals and low power in rejecting the null hypothesis for the time-by-treatment inter-

action for both the location and scale structures. This matches with the results from the previous

scenario; however, the diagnostics plots in Figure 29 show random dispersion throughout, which

improves upon the results from Figure 28. There is some concern with the results for σω; however,

based on the nominal estimates this should not impact the inferences of the other parameters.

Using the skew-normal distribution provides a method of dealing with the skewness present in

the data without having to transform the data, but does so at a computational cost. In comparing the

computation time required to fit a skew-normal versus a normal model using Bayesian MCMC the

skew-normal takes twice as long. In the case of the σω parameter some concern over convergence

remains; whereas, the normal specification did not have this concern. To assess the impact of

the different specifications and the robustness of the Bayesian MCMC estimation I simulated data

arising from a skew-normal distribution (as shown previously) and modeled the data using a normal

distribution (as shown in Chapter 4). The prior distributions used are the ones used to obtain the

results in Table 15 without the prior for the skewness parameter. The simulations results based on

50 simulations are provided in Table 16.

Table 16: Simulation Results from Normal Model Specification

Parameters True Value Estimate SE Bias St. Bias
Coverage

Prob (%)
Reject H0 (%)

β0 2 5.795 .304 2.795 919.41 0 100
β1 .5 .551 .409 .051 12.47 94 16
β2 .2 .273 .363 .073 20.11 92 12
β3 -.2 -.198 .583 .002 .34 92 10
τ0 .7 .595 .368 -.105 -28.53 92 52
τ1 -.1 -.012 .467 .088 18.84 96 4
γ0 -1.4 2.094 .123 3.494 2,840.65 0 100
γ1 .2 -.061 .166 -.261 -157.23 70 8
γ2 2.5 .318 .172 -2.182 -1,268.60 0 38
γ3 .5 .324 .243 -.176 -72.43 92 18
σω .6 .410 .082 -.190 -231.71 34 100

The results in Table 16 reveal considerable bias in most of the estimates. The coverage prob-
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abilities are 0% for three parameters (β0,γ0, and γ2) which can lead to erroneous clinical impli-

cations. In a MELS model the intercept term for the within-subject structure (γ0) determines not

only the statistical significance of the other WS parameters, but also their practical (or clinical)

significance. Assuming no effect by the random scale effect (i.e. ωi = 0) the following scenarios

will be used to determine WS variance estimates at various time points:

1. γ0 = −1.4, γ1 = .2, γ2 = 2.5, γ3 = .5 (true values only)

2. γ0 = 2.094, γ1 = .2, γ2 = 2.5, γ3 = .5 (different γ0)

Table 17: WS Variances at Various Configurations

Week # Intervention WS Contribution WS Variance WS St. Dev.

Scenario 1

0 PCMM -1.4 0.246 .496
0 IRRI -1.2 0.301 .549

52 PCMM -.1 0.905 .951
52 IRRI .36 1.433 1.198

Scenario 2

0 PCMM 2.094 8.117 2.849
0 IRRI 2.294 9.914 3.149

52 PCMM 3.394 29.785 5.457
52 IRRI 3.854 47.181 6.869

The difference in the two scenarios is the WS intercept term (baseline for the PCMM group).

The first scenario has a negative value of -1.4; whereas, the second scenario uses the estimated

value from the normal model specification of 2.094. Due to the nature of the exponential function

the output values for negative input values are closer together than those with positive input values.

This can be seen in Table 17 where a difference of one year in the first scenario predicts an increase

in the WS standard deviation for the PCMM by .7 units which contrasts with the second scenario

where under the same condition the standard deviation increases by 2.6 units. In both the normal

and skew-normal model specifications these increases may be found to be statistically significant;

however, due to the model misspecification in the normal model the practical significance may be

overstated. When fitting MELS models the Bayesian MCMC estimation approach is not robust

to model misspecifications and careful consideration must be placed on the estimates to ensure

accurate identification of potential clinical signficance.
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5.4 APPLICATION TO BIPOLAR DATA

5.4.1 Skew-Normal Fit

Based on the results in the previous section the following prior distributions provide estimates

with stationary distributions and coverage probabilities that match with their nominal confidence

intervals:

βk ∼ N(0, 10) k = 0, 1, 2, 3

τl ∼ U(−5, 5) l = 0, 1

γm ∼ U(−5, 5) m = 0, 1, 2, 3

σ2
ω ∼ IG(5, 5)

δ ∼ N(0, 100)

(5.12)

The simulated results were applied to a balanced data set;whereas, the the bipolar data set is unbal-

anced. This may result in a larger amount of iterations before convergence is obtained. After fitting

the model in OPENBUGS to the YOUNGTOT variable the distributions of the mean parameters

(βk) and the skewness parameter (δ) converge relatively quickly, but those of the within-subject

variance (γm) do not (see Figure 30).
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Figure 30: Convergence Results After 15,000 Iterations
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To obtain stationary distributions a burn-in period of 100,000 iterations is used and inference is

based on 5,000 samples obtained by selecting every 10th iteration. The diagnostic plots in Figure

31 reveal stationary distributions for parameters that did not converge after 15,000 iterations.

Figure 31: Convergence Results for γ1,γ2, and σω

Based on the results shown in Table 18 the new intervention (IRRI) has a statistically sig-

nificant effect on both the mean and variability of the Young Mania Rating Scale. The location

interaction term (β3) indicates that in comparison to those on the PCMM the subjects receiving the

new treatment will have a higher mania score on average. The variance interaction term (γ3) sug-

gests greater variability in scores for the IRRI. Based on these results it would appear that the IRRI

results in higher and more variable mania scores on average. The estimate for the random scale

effect (σω) is on a higher magnitude than the parameter estimates associated with the covariates

which indicates a greater amount of variability that goes unexplained by the model.

Looking at the parameter estimates reveals a statistically significant effect, but does not reveal
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Table 18: Estimation Results for YOUNGTOT

Parameters Mean SD 2.5p MED 97.5p

β0 .528 .002 .513 .527 .544
β1 -.494 .002 -.505 -.493 -.476
β2 -.040 .001 -.056 -.037 -.024
β3 .080 .004 .060 .076 .095
τ0 -.113 .203 -.491 -.118 .313
τ1 -.070 .283 -.618 -.069 .493
γ0 -4.783 .216 -4.992 -4.859 -4.310
γ1 -1.022 .775 -2.18 -1.043 .475
γ2 -2.998 1.066 -4.502 -3.045 -1.013
γ3 3.074 1.153 .495 3.187 4.852
σω 5.447 .391 4.741 5.412 5.997
δ 2.299 .001 2.283 2.299 2.314

a clinical impact. The mean estimate for the intercept term for the within-subject variance (γ0) is

-4.783 indicating that at baseline on average a patient would have a WS variance of .008 (or .09

WS standard deviation). After 100 weeks the variance is expected to drop to .00044 (or .02 WS

standard deviation). These values which are comparable to those for the IRRI do not indicate any

noticeable treatment and time effects. As such based purely on the results from the application of

a MELS model to the YOUNGTOT variable, there does not appear to be any noticeable difference

between the two treatments. In Table 18 the standard deviations for the estimates of the location

parameters (β0, β1, β2, and β3) are 0 due to the difference in convergence between the location

and scale parameters. The location parameters converge in only 15,000 iterations; whereas, it

takes almost 100,000 iterations for the scale parameters to converge. Due to the difference in the

number of iterations it takes to converge caution is urged when basing any statistical inference on

the location parameters cannot be made outside of their point estimates.

5.4.2 Normal Fit

Section 5.3 showed with simulated data that when skew-normal data is fitted with a normal model

the results are biased and may result in erroneous results. The YOUNGTOT data while skewed
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may not necessarily follow from a skew-normal distribution, so a normal model will be fit to assess

their differences.

The model fit will resemble the one used for the HRS17TOT variable in section 4.4 with the

prior distributions used in section 5.4.1. Using a 100,000 iteration burn-in period and a 5,000

sample size obtained by sampling every 10th iteration produces the results in Table 19.

Table 19: Estimation Results for YOUNGTOT Based on Normal Model

Parameters Mean SD 2.5p MED 97.5p

β0 .957 .000 .943 .957 .972
β1 .276 .000 .261 .276 .291
β2 .002 .000 -.012 .002 .017
β3 -.002 .000 -.016 -.002 .013
τ0 .629 .192 .277 .626 1.017
τ1 .178 .280 -.365 .178 .721
γ0 -4.756 .222 -4.992 -4.816 -4.238
γ1 -1.727 .732 -3.117 -1.715 -.718
γ2 .496 .729 -1.048 .534 1.712
γ3 -.637 1.511 -2.428 -.868 2.053
σω 10.43 .213 10.06 10.44 10.81

The results between the skew-normal and normal fit reveal significant differences between the

two model fits. The most noticeable is the difference in estimates for the random scale effect σω,

5.45 for the skew-normal and 10.43 for the normal fit. As previously discussed large values of the

variance for the random scale effect result in the model failing to detect significant effects among

the within-subject variance parameters. For the skew-normal fit the time parameters γ2 and γ3

are both significant, but they are not in the normal fit. Looking at the mean parameters shows a

different conclusion for the treatment parameter β1. The normal fit expects a higher YOUNGTOT

offset for the IRRI in comparison to the PCMM group; whereas, the skew-normal fit expects the

opposite. The random location effects are significant for the normal, but not for the skew-normal.

In selecting the appropriate model in Bayesian applications one of the most widely used cri-

terion is the Deviance Information Criterion (DIC) (Gelman et al., 2014b). The DIC proposed by

Spiegelhalter et al. (2002) serves as a semiformal method of identifying models that best explain

the observed data. This is done by minimizing the uncertainty around the observations. When
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choosing which model based on DIC the one with the lowest value will be the “best” for the data

at hand. The DIC for the skew-normal fit is -28,030 and -7,046 for the normal fit. This supports

the use of the skew-normal model over the normal model that was hypothesized.

5.5 DISCUSSION

In applying the MELS model it is important to preserve the original structure of the data as in-

ference is desired both on the mean and variance components. When dealing with skewed data,

data transformation fails to preserve the variability of the original response variable. I proposed

a skew-normal model to account for this. The added complexity of this model results in higher

number of iterations in order to obtain a stationary distribution in comparison to the normal model

formulation from Chapter 4. Failure to specify a skew-normal model and using a simpler model

such as the normal one may result in faster convergence, but results in highly biased estimates.

The application of the skew-normal model to the Young Mania Rating Scale revealed statis-

tically significant effects by both intervention and time, but no practical results were noted. The

results indicated that any WS variability was largely unexplained as evident by the value of the

σω estimate. The estimate of the skewness parameter δ reveals moderate positive skewness which

based on previous works suggests a more accurate performance by the skew-normal over the nor-

mal model. This would also suggest along with the results for the HRS17TOT variable in section

4.4 that the participants regardless of intervention spend more time in the depressive state than the

manic state.
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6.0 EFFECT OF SAMPLE SIZE AND PARAMETER CONFIGURATIONS ON

ESTIMATION OF TREATMENT EFFECTS

6.1 ASSESSING THE LIMITATIONS OF THE CURRENT MODEL

Section 4.3 assessed the accuracy of the proposed model (equation 6.1), through simulations on

an data set that resembles the bipolar data discussed in Chapter 3. Here 100 subjects are assumed

to be randomly assigned to two interventions: treatment and control with 50 subjects in each

intervention. Measurements would be taken over a span of 108 weeks (approximately 2 years)

spaced 9 weeks apart (approximately 2 months). The model was fitted using Bayesian MCMC

with the priors specified in equation 6.2. The results from a simulation with 100 runs are given in

table 20.

Yi|νi, β,ψi, ωi
ind.∼ Nn(β0 + β1trti + β2week

∗
j + β3trti × week∗j + 1nνi,ψi)

νi|σ2
ν
ind.∼ N(0, σ2

ν), i = 1, . . . , N
(6.1)

where the variances are modeled as follows

σ2
ν = exp(τ0 + τ1 × trti)

ψi = Diag(σ2
εi1
, . . . , σ2

εin
)

σ2
εij

= exp(γ0 + γ1trti + γ2week
∗
j + γ3trti × week∗j + ωi)

ωi ∼ N(0, σ2
ω)

The week variable is transformed to week∗j = weekj/100 to aid in model estimation.
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βk ∼ N(0, 100) k = 0, 1, 2, 3

τl ∼ U(−5, 5) l = 0, 1

γm ∼ U(−5, 5) m = 0, 1, 2, 3

σ2
ω ∼ IG(10, 10) (6.2)

Table 20: Simulation Results from Scenario 2 in Section 4.3 with 100 runs

Parameters True Value Estimate Bias St. Bias Cov. Prob. (%) Reject Ho (%)
β0 2 1.989 -.011 -5.272 93 100
β1 .5 .523 .023 7.57 89 45
β2 .2 .199 -.001 -.639 95 34
β3 -.2 -.202 -.002 -1.325 98 22
τ0 .7 .698 -.002 -1.106 94 91
τ1 -.1 -.131 -.031 -10.483 95 6
γ0 -1.4 -1.419 -.019 -11.920 90 100
γ1 .2 .220 .020 8.900 89 24
γ2 2.5 2.495 -.005 -2.097 93 100
γ3 -.5 -.494 .006 2.066 93 41

Under the specified conditions the Bayesian MCMC estimated approach provides unbiased

estimates of all the parameters; however, the number of instances where the approach would reject

Ho (i.e. that the parameter is not significant) varies from 5% to 100%. In detecting whether there is

a treatment-by-time effect in both the mean and variance β3 and γ3 respectively, the percentage of

times where the effect is detected is only 22% and 41%. In designing an experiment with the aim of

detecting the treatment-by-time effects, these values would not provide investigators with enough

confidence to move forward with a similar experiment. Due to the time commitment involved

for both the patients and researchers, appropriate sample sizes are required in both the number

of subjects and number of observations per subject. This chapter will determine the appropriate

sample sizes required to detect this difference with sufficient confidence using the following 8

scenarios:

1. 50 subjects, 7 observations/subject (Week Max = 54)
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2. 50 subjects, 13 observations/subject (Week Max = 108)

3. 50 subjects, 19 observations/subject (Week Max = 162)

4. 50 subjects, 25 observations/subject (Week Max = 216)

5. 100 subjects, 7 observations/subject (Week Max = 54)

6. 100 subjects, 13 observations/subject (Week Max = 108) (base case)

7. 100 subjects, 19 observations/subject (Week Max = 162)

8. 100 subjects, 25 observations/subject (Week Max = 216)

6.2 COMPARING OPENBUGS AND PYMC3

In fitting the model using Bayesian MCMC I previously used the OPENBUGS software. This

software is one of many that can be used and in this chapter, along with exploring the effects of

varying observations on the percent of runs that reject Ho for the treatment-by-time interaction

effect, the use of another software to fit the model will be investigated. The software studied is the

PyMC3 Python module implemented in the Python programming language (Salvatier et al., 2016).

A major benefit of using PyMC3 over OPENBUGS is that the source code is readily available

which allows anyone to modify it as desired. This provides the flexibility to adapt the procedures

for different prior distributions and optimization techniques that are not supported by OPENBUGS.

A disadvantage in using PyMC3 is the lack of “ready-to-use” features in specifying the number

of iterations in fitting a Bayesian MCMC. The developers of OPENBUGS have already accounted

for burn-in iterations as well as thinning methods. Both of these are not built in to the current

version of PyMC3. In OPENBUGS I applied a thinning method by selecting one out of every

50 observations along the Markov chain random samples in order to deal with the dependency

Markov chains have among successive draws. In order to implement this feature in PyMC3 at the

present state this would require recording the entire sequence of random draws for each parameter

and then manually selecting every 50th iteration. Depending on the number of iterations required,

this could lead to large data sets that could result in memory issues. The rest of the analysis in this

chapter will not use a thinning approach in selecting the samples to use. I would suggest future

researchers to adapt the PyMC3 module to handle this limitation.
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The results in table 21 are from 100 runs in Python and use the same model structure and prior

distributions specified in section 6.1 in PyMC3 (the Python code is provided in the Appendix). The

only difference is the number of iterations used for a burn-in period (5,000) and the iterations used

for inference (1,000). These iterations also did not use a thinning procedure (discussed previously).

The simulation results using OPENBUGS is provided in table 20 and the results from PyMC3 are

in table 21.

Table 21: Simulation Results from Scenario 2 in Section 4.3 fitted with PyMC3

Parameters True Value Estimate Bias St. Bias Cov. Prob. (%) Reject H0 (%)

β0 2 1.981 -.019 -9.578 89 100
β1 .5 .523 .023 8.019 91 55
β2 .2 .196 -.004 3.362 93 32
β3 -.2 -.179 .021 13.177 97 16
τ0 .7 .688 -.012 -5.695 96 92
τ1 -.1 -.063 .037 12.137 95 4
γ0 -1.4 -1.233 .166 99.359 60 100
γ1 .2 .189 -.010 4.383 82 39
γ2 2.5 2.471 -.028 -13.512 86 100
γ3 -.5 -.451 .049 16.702 89 48

When comparing the metrics in the two tables, especially the standardized bias column, those

from OPENBUGS outperform those from PyMC3 with respect to providing unbiased estimates.

There is not much difference between the coverage and reject Ho %. The results from PyMC3

may be due to the the lack of thinning and the amount of iterations used. It also may be due to a

potential misspecification of a model. It is worth noting in the literature that relatively few exam-

ples exist for fitting a mixed-effects model with this Python module; whereas, there are numerous

cases in OPENBUGS. Despite these differences especially with the parameter γ0, the results for

the treatment-by-time interaction parameters (β3 and γ3) of interest appear to be unbiased estimates

of the true parameter value. The coverage probability and reject Ho columns are practically iden-

tical between the two tables. Simulation studies performed on the other 7 scenarios discussed in

section 6.1 (not shown) revealed identical results with respect to the nature of the estimates. This

provides confidence in using the PyMC3 module to determine effective sample sizes for detecting

the treatment-by-time effects.
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6.3 SAMPLE SIZE SPECIFICATIONS

Figures 6.3, 33, and 6.3 provide the % of simulations the reject Ho (i.e. there is no parameter

effect) for the 10 parameters (excluding the random scale component) specified in the model.

These graphs show how this percentage varies when the number of subjects in the study is either

50 or 100, as well as observations varying from 7 to 25 per subject. The parameters of interest

are β3 and γ3. These parameters measure the treatment-by-time interaction effect for the mean

and variance components, respectively. As can be seen in the graph for β3 the reject % increases

from 30% for 7 observations per subject to 40% for 25 observations per subject when a study has

100 subjects. For γ3 the increase is more dramatic. For studies where there are either 50 or 100

subjects, the number of simulations that would detect an effect increases from 20% to 100% with

100 subjects reaching 100% at a quicker rate than the one with 50.

While both parameter effects may not be detected at the same rate, a mixed-effects location-

scale model would be able to detect the variance treatment-by-time interaction effect for small

effects. For the base case where there were only 13 observations per subject the number of success-

ful treatment-by-time interactions in the variance component was low (39 out of 100 simulations).

However, by increasing the number of observations per subject from 13 to 19 for 100 subjects, this

rate increases to over 90%. These simulations suggest that within the confines of a typical clinical

trial, it is possible to simultaneously measure the impacts of both the mean and variance without

having large amounts of repeated measurements per observation. Hedeker’s motivating studies

relied on over 30 measures per subject over a span of one week. However, my results show that

such effects can be detected with about half as many measures over a multi-year clinical trial.

In looking at the figures for β1, β2, τ0, and τ1 there are some concerns since the graphs are not

monotonically increasing. We would expect that as the per subject sample size increases the treat-

ment and time effects would be more detectable not less. These results may be due to the random

variation resulting from using 100 runs for each simulation. I would expect that by increasing the

number of runs the current behavior would be removed. Another potential remedy may be to apply

a monotone smoothing condition. I would suggest future researchers to look into and attempt to

remedy this behavior before proceeding.
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Figure 32: Reject Hypothesis % for β parameters
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Figure 33: Reject Hypothesis % for γ parameters
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Figure 34: Reject Hypothesis % for τ parameters
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7.0 FUTURE WORK

The MELS model is a relatively unused model with recent literature coming from Hedeker and

his students. I speculate that this is due to the difficulty involved in fitting this model which is

currently done using MML. As discussed in this dissertation the MML technique provides unbiased

estimates for data similar to Hedeker’s; however, the amount of similar data sets that provide results

when a MELS model is estimated with MML is limited. My Bayesian MCMC approach is able to

expand the scope of data sets that can be used with this model. One extension is to a clinical trial

where patients with bipolar symptoms are followed for almost 2 years.

The benefit of the Bayesian MCMC over the MML approach is its ability to provide estimates

in cases where we previously were not. A major disadvantage is the amount of time it takes to

fit the model. Depending on the computing system the MML can fit the model in under a minute

compared to almost 20 minutes for the Bayesian approach. This issue can be mitigated by obtaining

more computing power. Another solution is investigating the different softwares available for

fitting these models. This dissertation looked at two different programming languages/software

in OPENBUGS and Python; however, there are countless others available that may be optimal in

fitting nonlinear models of this nature.

Another area that we can extend the MELS model into is bivariate modeling. Similar to Pu-

gach et al. (2014), this model can be extended to modeling two response variables simultaneously.

The HRS17TOT and YOUNGTOT variables (see chapter 3) are modeled separately in this dis-

sertation; however, they are outcomes from the same data and should be modeled simultaneously.

Future work should look into this bivariate aproach while allowing for the variables to follow two

different error distributions such as the normal and skew-normal. Additional research also needs

to be conducted in improving the convergence rates for the Bayesian MCMC approach. This can

be done by specifying different prior distributions as well as transforming the parameters. Section
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5.4.2 showed an instance where the location parameters achieved a stationary distribution after

only 10,000 iterations; however, it took another 90,000 iterations in order for the scale parameters

to achieve a stationary distribution. This discrepancy led to zero standard deviations for the loca-

tion parameters. This prevents the use of hypothesis testing and confidence intervals to perform

statistical tests.

Chapter 6 showed the required sample sizes to detect treatment-by-time interaction for speci-

fied scale parameters at various observation configurations (looking at different subjects and differ-

ent number of observations per subject). This was only done for one combination of parameters. If

another set of parameters were used the current process is too time-consuming. A better approach

for calculating sample sizes in order to detect the treatment-by-time parameter will be investigated

in future work.
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APPENDIX A

SAS CODE FOR 2.2.2.2

PROC NLMIXED DATA= SIM INPUT GCONV=1E-12 METHOD=GAUSS

QTOL = .01 TECH=NEWRAP;

PARMS B0 = &&INTERCEPT & JJ . B1 = &&TREATMENT & JJ . B2 = &&WEEK & JJ .

TAU0 = &TAU EST GAMMA0 = &GAMMA EST TAU1 = 0 GAMMA1 = 0 COV= 0 VARU2 =

0;

Z = B0 + B1*TREATMENT + B2*WEEK + U1;

VARU1 = EXP(TAU0 + TAU1*TREATMENT);

VARE = EXP(GAMMA0 + GAMMA1*TREATMENT + U2);

LOGLIK = -0.5*LOG(2*3.1415926*VARE)-0.5*(RESPONSE - Z)**2/VARE;

MODEL RESPONSE GENERAL(LOGLIK);

RANDOM U1 U2 NORMAL([0,0],[VARU1,COV,VARU2]) SUBJECT=SUBJECT;

ODS OUTPUT PARAMETERESTIMATES = SIM.PAREST & JJ CONVERGENCESTATUS = CON-

VERG; RUN;
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APPENDIX B

USEFUL RESULTS FROM ARELLANO ET AL. (2007)

LEMMA A1 Let Y |X = x ∼ Np(µ+Ax,Σ) and X ∼ Nq(η,Ω). Then,

φp(y|µ+Ax,Σ)φq(x|η,Ω) = φp(y|µ+Aη,Σ +AΩAT )

× φq(x|η + ΛATΣ−1(y −mu−Aη),Λ),

where Λ = (Ω−1 +ATΣ−1A)−1.

LEMMA A2 Let Y ∼ Nn(µ,Σ). Then for any fixed k-dimensional vector a and k×n matrix B,

E[Φk(a+BY |η,Ω)] = Φk(a|η −Bµ,Ω +BΣBT ).
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APPENDIX C

PROOFS OF LEMMAS 1 AND 2

Proof 1 (for Lemma 1) Begin by dropping subscript i and substituting ni = n. We can write the

marginal density as

fY (y|β, τ, γ,σ2
ω) =

∫
R2
f(y|ν,β, γ, ω)f(ν|τ )f(ω|σ2

ω)dνdω

=
∫
R2
φn(y|Xβ+ 1nν,ψi)φ(ν|0, σ2

ν)φ(ω|0, σ2
ω)dνdω (C.1)

Using Lemma A1 from Arellano-Valle et al. (2007) the first two pdfs of equation C.1 can be

rewritten as

φn(y|Xβ+ 1nν,ψi)φ(ν|0, σ2
ν) = φn(y|Xβ,ψi + σ2

νJn)φ(ν|Λ1T
nψ

−1
i (y−Xβ),Λ)

where Jn is a n x n matrix of 1s and

Λ =
( 1
σ2
ν

+
n∑
j=1

1
σ2
εij

)−1

We can rewrite C.1 as:

fY (y|β, τ, γ,σ2
ω) =

∫
R2
φn(y|Xβ,ψi + σ2

νJn)φ(ν|Λ1T
nψ

−1
i (y−Xβ),Λ)φ(ω|0, σ2

ω)dνdω

=
∫
R
φn(y|Xβ,ψi + σ2

νJn)φ(ω|0, σ2
ω)dω
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Proof 2 (for Lemma 2) Begin by dropping the subscript i and substituting ni = n. Using the

alternative skew-normal representation given in equation 5.4 and the assumptions in the lemma

the marginal distribution of Y can be written as

f(y|β, τ ,γ,∆, σ2
ω) =

∫
R2
f(y|β,γ,∆, ν, ω)f(ν|τ )f(ω|σ2

ω)dνdω

=
∫
R2

2nφn(y|Xβ + νi1n,Ψi + ∆2
i )

× Φn(∆i(Ψi + ∆2
i )−1(y −Xβ − ν1n)|0, (In + ∆iΨ

−1
i ∆i)−1)

× φ(ν|0, σ2
ν)φ(ω|0, σ2

ω)dνdω (C.2)

DefineA = ∆i(Ψi + ∆2
i )−1 andB = (Ini + ∆iΨ

−1∆i)−1 and substitute into C.2 to obtain

f(y|β, τ ,γ,∆, σ2
ω) =

∫
R2

2nφn(y|Xβ + νi1n,Ψi + ∆2
i )Φn(A(y −Xβ − ν1n|0,B)

× φ(ν|0, σ2
ν)φ(ω|0, σ2

ω)dνdω (C.3)

Using Lemma A1 from Arellano-Valle et al. (2007)

φn(y|Xβ + νi,Ψi + ∆2
i )φ(νi|0, σ2

ν) = φn(y|Xβ,Ψi + ∆2
i + σ2

νJn)

× φ(νi|Λ1′n(Ψi + ∆2
i )−1(y −Xβ),Λ) (C.4)

where Λ =
(

1
σ2
ν

+ 1∑ni
j=1(σ2

εij
+δij)

)−1

Define Γ = Ψi + ∆2
i + σ2

νJn and µ = Λ1′n(Ψi + ∆2
i )−1(y−Xβ) and substitute along with C.4

into C.3 to obtain

f(y|β, τ ,γ,∆, σ2
ω) =

∫
R2

2nφn(y|Xβ,Γ)φ(νi|µ,Λ)

× Φn(A(y −Xβ − ν1n)|0,B)φ(ω|0, σ2
ω)dνdω (C.5)

Using Lemma A2 from Arellano-Valle et al. (2007) with

E[Φn(A(y −Xβ − νi1n)|0,B], νi1n ∼ N(µ1n,ΛJn) (C.6)
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gives

fYi
(yi|β, τ, γ,∆, σ2

ω) =
∫
R

2niφni(y|Xβ,Γ)

× Φni(A(y −Xβ)|1niµ+A1niµ,B + ΛAJniBT )φ(ω|0, σ2
ω)dω

which completes the proof.
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APPENDIX D

OPENBUGS CODE FOR SECTION 4.4

hrs17tot_model=function(){

for (i in 1:N) {

y[i] ˜ dnorm(mu[i],tau.ws[i])

mu[i] <- beta0 + beta1*treatment[i] + beta2*(week[i]/100)

+ beta3*treatment[i]*(week[i]/100) + alpha[person[i]]

log.sigma2[i] <- gamma0 + gamma1*treatment[i] + gamma2*(week[i]/100)

+ gamma3*treatment[i]*(week[i]/100) + zeta[i]

sigma2.ws[i] <- exp(log.sigma2[i])

tau.ws[i] <- 1/sigma2.ws[i]

zeta[i] ˜ dnorm(0,tau.ws2)

}

for(j in 1:114){

alpha[j] ˜ dnorm(0, tau.bs[j])

sigma2.bs[j] <- exp(tau0 + tau1*treatment2[j])

tau.bs[j] <- 1/sigma2.bs[j]

}
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#Prior Distribution of Parameters

#Location Parameters

beta0 ˜ dnorm(0,.01)

beta1 ˜ dnorm(0,.01)

beta2 ˜ dnorm(0,.01)

beta3 ˜ dnorm(0,.01)

#BS Parameters

tau0 ˜ dunif(-5,5)

tau1 ˜ dunif(-5,5)

#WS Parameters

gamma0 ˜ dunif(-5,5)

gamma1 ˜ dunif(-5,5)

gamma2 ˜ dunif(-5,5)

gamma3 ˜ dunif(-5,5)

tau.ws2 ˜ dgamma(.1,.1)

sigma.ws <- pow(tau.ws2,-1/2)

}
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APPENDIX E

OPENBUGS CODE FOR SECTION 5.4

youngtot_model=function(){

for (i in 1:N) {

x[i] ˜ dnorm(0,1)%_%I(0,)

z[i] <- mu[i] + delta*x[i]

mu[i] <- beta0 + beta1*treatment[i] + beta2*(week[i]/100)

+ beta3*treatment[i]*(week[i]/100) + alpha[person[i]]

y[i] ˜ dnorm(z[i],tau.ws[i])

log.sigma2[i] <- gamma0 + gamma1*treatment[i] + gamma2*(week[i]/100)

+ gamma3*treatment[i]*(week[i]/100) + zeta[i]

sigma2.ws[i] <- exp(log.sigma2[i])

tau.ws[i] <- 1/sigma2.ws[i]

zeta[i] ˜ dnorm(0,tau.ws2)

}

for(j in 1:114){

alpha[j] ˜ dnorm(0, tau.bs[j])

sigma2.bs[j] <- exp(tau0 + tau1*treatment2[j])
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tau.bs[j] <- 1/sigma2.bs[j]

}

#Prior Distribution of Parameters

#Location Parameters

beta0 ˜ dnorm(0,.1)

beta1 ˜ dnorm(0,.1)

beta2 ˜ dnorm(0,.1)

beta3 ˜ dnorm(0,.1)

#Skew Parameter

delta ˜ dnorm(0,.1)

#BS Parameters

tau0 ˜ dunif(-5,5)

tau1 ˜ dunif(-5,5)

#WS Parameters

gamma0 ˜ dunif(-5,5)

gamma1 ˜ dunif(-5,5)

gamma2 ˜ dunif(-5,5)

gamma3 ˜ dunif(-5,5)

tau.ws2 ˜ dgamma(.5,.5)
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sigma.ws <- pow(tau.ws2,-1/2)

}
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APPENDIX F

PYTHON CODE FOR SECTION 6.1

import pandas as pd

import numpy as np

import pymc3 as pm

from s im mixed norma l import s im mix norma l

import t h e a n o . t e n s o r a s t t

import t h e a n o

import d a t e t i m e

i f n a m e == ” m a i n ” :

s im number = 33

f i l e n u m b e r = 1

week max = 162

week = range ( 0 , week max +9 ,9 )

b i p o l a r f u l l = s im mix norma l ( sim num = sim number )
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# I n i t i a l i z e Data Frame

f u l l d a t a = pd . DataFrame ( )

f o r i in range ( s im number ) :

d a t a = b i p o l a r f u l l [ b i p o l a r f u l l . S i m u l a t i o n == i +1]

d a t a [ ’HRS17TOT ’ ] = d a t a [ ’HRS17TOT ’ ] . a s t y p e (

t h e a n o . c o n f i g . f l o a t X )

n u m t r t = l e n ( d a t a . T r e a t m e n t . un iq ue ( ) )

s u b j e c t n a m e s = d a t a . S u b j e c t . u n i qu e ( )

n s u b j e c t s = l e n ( d a t a . S u b j e c t . un iq ue ( ) )

s u b j e c t i d x = np . r e p e a t ( range ( n s u b j e c t s ) , l e n ( week ) )

n s u b j e c t s = l e n ( d a t a . S u b j e c t . un iq ue ( ) )

w i th pm . Model ( ) a s h i e r a r c h i c a l m o d e l :

# H y p e r p r i o r s f o r group nodes

# I n t e r c e p t

b e t a 0 = pm . Normal ( ’ b e t a 0 ’ ,mu = 0 , sd = 100**2)

# S l o p e s

b e t a 1 = pm . Normal ( ’ b e t a 1 ’ ,mu = 0 , sd = 100**2)

b e t a 2 = pm . Normal ( ’ b e t a 2 ’ ,mu = 0 , sd = 100**2)

b e t a 3 = pm . Normal ( ’ b e t a 3 ’ ,mu = 0 , sd = 100**2)

# S u b j e c t S p e c i f i c Parame te r s
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#BS

t a u 0 = pm . Uniform ( ’ t a u 0 ’ ,−5 ,5)

t a u 1 = pm . Uniform ( ’ t a u 1 ’ ,−5 ,5)

#WS

gamma0 = pm . Uniform ( ’gamma0 ’ , −5, 5 )

gamma1 = pm . Uniform ( ’gamma1 ’ , −5, 5 )

gamma2 = pm . Uniform ( ’gamma2 ’ , −5, 5 )

gamma3 = pm . Uniform ( ’gamma3 ’ , −5, 5 )

b s n o t r t = pm . Normal ( ’ b s n o t r t ’ , mu = 0 ,

sd = np . s q r t ( np . exp ( t a u 0 ) ) ,

shape = n s u b j e c t s / 2 )

b s t r t = pm . Normal ( ’ b s t r t ’ , mu = 0 ,

sd = np . s q r t ( np . exp ( t a u 0 + t a u 1 ) ) ,

shape = n s u b j e c t s / 2 )

b s v e c = t t . c o n c a t e n a t e ( ( b s n o t r t , b s t r t ) )

# WS e r r o r ( random s c a l e )

eps = pm . InverseGamma ( ’ eps ’ , 1 0 , 1 0 )

w s e r r o r = pm . Normal ( ’ w s e r r o r ’ , mu = 0 ,

sd = eps , shape = l e n ( d a t a ) )

# L o c a t i o n

h r s e s t = b e t a 0 + b e t a 1 * d a t a . T r e a t m e n t . v a l u e s +
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b e t a 2 * d a t a . Week . v a l u e s / f l o a t ( 1 0 0 ) +

b e t a 3 * d a t a . T r e a t m e n t . v a l u e s *

d a t a . Week . v a l u e s / f l o a t ( 1 0 0 ) +

b s v e c [ s u b j e c t i d x ]

# S c a l e

h r s e r r o r = t t . s q r t ( t t . exp ( gamma0 +

gamma1* d a t a . T r e a t m e n t . v a l u e s +

gamma2* d a t a . Week . v a l u e s / f l o a t ( 1 0 0 ) +

gamma3* d a t a . T r e a t m e n t . v a l u e s *

d a t a . Week . v a l u e s / f l o a t ( 1 0 0 ) + w s e r r o r ) )

# Data l i k e l i h o o d

h r s l i k e = pm . Normal ( ’ h r s l i k e ’ , mu= h r s e s t ,

sd= h r s e r r o r , o b s e r v e d = d a t a . HRS17TOT)

wi th h i e r a r c h i c a l m o d e l :

s t e p = pm . M e t r o p o l i s ( )

#Warmup

h i e r a r c h i c a l t r a c e 1 = pm . sample ( 5 0 0 0 , s t e p ,

i n i t = None , n j o b s =2)

# Sample f o r S t a t i s t i c s

h i e r a r c h i c a l t r a c e 2 = pm . sample ( 1 0 0 0 , s t e p ,

i n i t = None , n j o b s =2 ,

s t a r t = h i e r a r c h i c a l t r a c e 1 [−1])
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o u t p u t 1 = pm . df summary ( h i e r a r c h i c a l t r a c e 2 ,

varnames = [ ’ b e t a 0 ’ , ’ b e t a 1 ’ , ’ b e t a 2 ’ , ’ b e t a 3 ’ ,

’gamma0 ’ , ’gamma1 ’ , ’gamma2 ’ , ’gamma3 ’ , ’ t a u 0 ’ ,

’ t a u 1 ’ , ’ eps ’ ] )

o u t p u t 1 [ ’ S i m u l a t i o n ’ ] = i + 1

f u l l d a t a = f u l l d a t a . append ( o u t p u t 1 )
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