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Treatment of major depressive disorder (MDD) currently relies on a prolonged trial and error 

process to identify the best pharmacological regimen. This process is further prolonged in older 

adults with major depressive disorder (Late-Life Depression or LLD), where it is associated with 

a host of negative outcomes, including suicide, worsening medical comorbidity, and poor quality 

of life. Functional magnetic resonance imaging (fMRI) brain changes have been associated with 

depression severity and treatment outcomes. Previous studies have shown that recovery from 

depression can be predicted using both pre-treatment neuroimaging as well as follow-up scans 

from the early treatment period. Pharmacological functional magnetic resonance imaging 

(phMRI) is an approach that utilizes multiple fMRI scans to investigate changes in functional 

neuroimaging following acute doses of pharmacotherapy. It has been demonstrated that 

antidepressants have a fast uptake period, effecting resting state networks as well as functional 

brain activation after only a single dose. We aimed to evaluate the efficacy of phMRI to identify 

these very early (single dose) functional changes, and use these to predict remission. Data was 

collected from an open-label pharmacologic treatment study of LLD (N=51). Multi-modal MRI, 

including phMRI, were acquired at 5 time-points. Results showed accurate prediction of 

depression remission from pre-treatment, as well as phMRI after only a single dose of 

pharmacotherapy. The trajectory of the neuroimaging changes across the treatment trial suggest 

an initial engagement of large scale resting networks, followed by engagement of implicit 

emotion control networks, and later changes in explicit emotion regulation. Utilizing kernel-
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based (multi-factor principal components) machine learning, we found that leveraging both 

pharmacological neuroimaging and clinical data improved prediction efficacy of remission. In 

this body of work, we have integrated multiple imaging modalities to explain the long delay in 

clinical response to antidepressants, and to identify early markers of response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  vi 

TABLE OF CONTENTS 

PREFACE ................................................................................................................................. XIV 

1.0 INTRODUCTION AND SPECIFIC AIMS ....................................................................... 1 

2.0 MAGNETIC RESONANCE IMAGING (MRI) ................................................................ 4 

2.1 MRI: NON-INVASIVE IMAGING OF THE BRAIN ............................................. 4 

2.2 MR SCANNER, PHYSICS, AND IMAGE ACQUISITION ................................... 5 

2.2.1 MR Components .............................................................................................. 5 

2.2.1 MR Physics and Signal .................................................................................... 5 

2.2.1 Image Acquisition and Parameters ................................................................ 6 

2.3 STRUCTURAL NEUROIMAGING ......................................................................... 9 

2.4 DIFFUSION WEIGHTED IMAGING .................................................................... 10 

2.5 ARTERIAL SPIN LABELING (ASL) .................................................................... 10 

2.6 FUNCTIONAL MRI (FMRI) ................................................................................... 11 

2.6.1 Blood Oxygen Level Dependent (BOLD) Response .................................... 11 

2.6.2 Intrinsic Resting State Activation ................................................................. 13 

2.6.3 Task-Based Activation ................................................................................... 13 

3.0 PROCESSING NEUROIMAGING DATA ..................................................................... 16 

3.1 PRE-PROCESSING NEUROIMAGING DATA ................................................... 16 



 

  vii 

3.1.1 Slice-Time Correction .................................................................................... 17 

3.1.2 Coregistration and Motion Correction ........................................................ 18 

3.1.3 Unified Segmentation and Normalization .................................................... 21 

3.1.4 Effects Of White Matter Disease On The Accuracy Of Automated 
Segmentation .................................................................................................. 22 

 
3.1.5 Smoothing ....................................................................................................... 24 

3.2 LONGITUDINAL GRAY MATTER DENSITY ESTIMATION ........................ 25 

3.3 WMH SEGMENTATION ........................................................................................ 27 

3.4 DIFFUSION TENSOR IMAGING: FA AND MD ................................................. 28 

3.5 ASL: PERFUSION .................................................................................................... 29 

3.6 RESTING STATE FMRI: EIGENVECTOR CENTRALITY ............................. 30 

3.7 TASK-BASED FMRI ACTIVATION ..................................................................... 33 

3.8 STATISTICAL GROUP INFERENCE .................................................................. 34 

4.0 MACHINE LEARNING .................................................................................................... 36 

4.1 REGRESSION ........................................................................................................... 36 

4.1.1 Logistic Regression ........................................................................................ 37 

4.2 SUPPORT VECTOR MACHINES (SVM) ............................................................. 40 

4.2.1 Functional and Geometric Margins ............................................................. 41 

4.2.2 Defining the Minimization Problem ............................................................. 42 

4.2.3 Dual Form of the Minimization Problem .................................................... 44 

4.2.4 Kernels ............................................................................................................ 45 

4.2.5 Sequential Minimal Optimization (SMO) .................................................... 46 

4.3 MACHINE LEARNING MODEL BUILDING PROCEDURE ........................... 47 

4.4 PRACTICAL PROBLEMS AND SOLUTIONS .................................................... 51 



 

  viii 

4.4.1 Common Machine Learning Problems ........................................................ 51 

4.4.2 A Practical Solution: Principal Components Analysis ............................... 52 

4.4.3 Kernel-Based Regression ............................................................................... 54 

4.4.4 Multi-Factor Analysis .................................................................................... 56 

4.5 MULTI-FACTOR KERNEL BASED MACHINE LEARNING .......................... 57 

4.5.1 Single Feature: Kernel Based Learning ....................................................... 57 

4.5.2 Multiple Features: Multi-Factor Kernel Based Learning .......................... 58 

5.0 NEURAL CORRELATES OF LATE-LIFE DEPRESSION ......................................... 61 

5.1 MAJOR DEPRESSIVE DISORDER ...................................................................... 61 

5.2 LATE-LIFE DEPRESSION (LLD) ......................................................................... 63 

5.2.1 Treatment of LLD .......................................................................................... 64 

5.3 NEURAL PREDICTORS OF RESPONSE TO PHARMACOTHERAPY ......... 65 

6.0 INTRINSIC FUNCTIONAL CONNECTIVITY IN LATE-LIFE DEPRESSION 
(LLD): TRAJECTORIES OVER THE COURSE OF PHARMACOTHERAPY IN 
REMITTERS AND NON-REMITTERS ......................................................................... 70 

 
6.1 ABSTRACT ............................................................................................................... 70 

6.2 INTRODUCTION ..................................................................................................... 71 

6.3 METHODS ................................................................................................................. 75 

6.3.1 Study Design and Subjects ............................................................................ 75 

6.3.2 MRI Data Collection ...................................................................................... 77 

6.3.3 Preprocessing .................................................................................................. 77 

6.3.4 Eigen-Vector Centrality (EVC) and ROI to Voxel Maps ........................... 78 

6.3.5 Statistical and Cluster Analysis .................................................................... 79 

6.4 RESULTS ................................................................................................................... 80 



ix 

6.4.1 Executive Control Network (ECN) ............................................................... 83 

6.4.2 Default Mode Network (DMN) ..................................................................... 83 

6.4.3 Anterior Salience Network (ASN) ................................................................ 83 

6.4.4 Eigen-Vector Centrality (EVC) .................................................................... 86 

6.5 DISCUSSION ............................................................................................................. 88 

7.0 FUNCTIONAL BRAIN ACTIVATION DURING EMOTION REACTIVITY 
FOLLOWING PHARMACOTHERAPY IN LATE-LIFE DEPRESSION: MARKERS 
OF REMISSION ................................................................................................................. 93 

7.1 ABSTRACT ............................................................................................................... 93 

7.2 INTRODUCTION ..................................................................................................... 94 

7.2.1 MDD: Disruption of Emotional Face Processing ........................................ 95 

7.2.2 High Emotion Reactivity ............................................................................... 96 

7.2.3 Impaired Emotion Regulation ...................................................................... 97 

7.2.4 Functional Changes Following Treatment .................................................. 99 

7.3 METHODS ............................................................................................................... 101 



 

  x 

7.3.1 Study Design and Participants .................................................................... 101 

7.3.2 MRI Data Collection .................................................................................... 102 

7.3.3 Functional Tasks .......................................................................................... 103 

7.3.4 Structural Processing ................................................................................... 105 

7.3.5 BOLD Pre-Processing .................................................................................. 107 

7.3.6 Modeling Task Activation: Face/Shapes and IAPS .................................. 108 

7.3.7 Resting State BOLD: Eigenvector Centrality (EVC) ............................... 109 

7.3.8 Pre-processing pCASL and Perfusion Calculation ................................... 109 

7.3.9 DTI Preprocessing and Mean Diffusivity .................................................. 110 

7.3.10 Statistical Analysis ....................................................................................... 110 

7.4 RESULTS ................................................................................................................. 112 

7.4.1 Clinical Group Differences .......................................................................... 112 

7.4.2 Faces-Shapes Task: Robust Activation of Emotional Circuits ................ 113 

7.4.3 Baseline Hyperactivation in Non-Remitters Relative to Remitters ......... 115 

7.4.4 Decreased Activation Following Ineffective Pharmacotherapy (Non-
Remitters)...................................................................................................... 117 

 
7.4.5 Increased Insula Activation Following Effective Pharmacotherapy 

(Remitters) .................................................................................................... 119 
 

7.4.6 Single Dose Engagement in Parahippocampus ......................................... 121 

7.5 DISCUSSION ........................................................................................................... 123 



xi 

7.5.1 Baseline Hyperactivation ............................................................................. 123 

7.5.2 Decreased Activation in Non-Remitters ..................................................... 124 

7.5.3 Increased Left Anterior Insula Activation ................................................. 124 

7.5.4 Acute Parahippocampal Engagement ........................................................ 125 

7.5.5 Chronic Behavioral Changes and Implicit Improvement ........................ 125 

7.5.6 Relevance to Late-Life and Limitations ..................................................... 126 

7.5.7 Conclusion ..................................................................................................... 127 

8.0 PREDICTING REMISSION IN LLD: MULTI-FACTOR KERNEL BASED 
MACHINE LEARNING .................................................................................................. 128 

8.1 INTRODUCTION ................................................................................................... 128 

8.2 METHODS ............................................................................................................... 130 

8.2.1 Single Feature Set: Principal Components Learning ............................... 130 

8.2.2 Multiple Feature Sets: Multi-Factor Learning.......................................... 134 

8.3 RESULTS ................................................................................................................. 136 

8.4 DISCUSSION ........................................................................................................... 145 

9.0 SUMMARY AND CONCLUSIONS ............................................................................... 147 

9.1 ACKNOWLEDGEMENTS .................................................................................... 148 

BIBLIOGRAPHY ..................................................................................................................... 149 



 

  xii 

LIST OF TABLES 

Table 1. Clinical/demographic differences between groups. ........................................................ 81 

Table 2. Resting state results summary table. ............................................................................... 82 

Table 3. Group differences in clinical/demographic features (full sample). .............................. 113 

Table 4. Results of all statistical analyses on emotion reactivity task. ....................................... 114 

Table 5. AUC of each of the single feature models. ................................................................... 138 

Table 6. Features predictive in model that utilized clinical/demographic features. ................... 139 

Table 7. AUC of each of the multiple feature models. ............................................................... 144 

 

 



xiii 

LIST OF FIGURES 

Figure 1. The study design protocol. ............................................................................................ 76 

Figure 2. Connectivity changes where the interaction (group x time) was significant. ................ 85 

Figure 3. Group differences in connectivity. ................................................................................ 87 

Figure 4. Group differences in emotion reactivity at baseline. ................................................... 117 

Figure 5. Baseline vs. end emotion reactivity in non-remitters. ................................................. 118 

Figure 6. Baseline vs. end emotion reactivity in remitters. ........................................................ 120 

Figure 7. Acute single-dose changes in activation of the emotion reactivity task. ..................... 122 

Figure 8. Model building procedure for single feature sets. ....................................................... 133 

Figure 9. Model building procedure for multiple feature sets. ................................................... 135 

Figure 10. ROC curves for the most accurate models. ............................................................... 140 

Figure 11. Most predictive voxels in emotion reactivity at baseline model. .............................. 141 

Figure 12. Most predictive voxels in mean diffusivity at baseline model. ................................. 142 



 

  xiv 

PREFACE 

Many people have contributed to the successful completion of this dissertation. My advisor, Dr. 

Howard Aizenstein, provided me with so much support, guidance, and wisdom. I am also 

grateful to my committee (Dr. Carmen Andreescu, Dr. George Stetten, and Dr. John Galeotti) for 

the support and advice they gave throughout this project, especially Dr. Carmen Andreescu for 

being so heavily involved in my projects and work. Howard and Carmen provided me with 

invaluable advice and wisdom, I am also grateful for their friendship – it is rare to have such 

great advisors and even more rare to have such great friends.  

I would also like to thank all the lab members of the Geriatric Psychiatry Neuroimaging 

(GPN) lab for all of their support and help. They have made the time in the lab unforgettable.  

Finally, I would like to express my gratitude to my friends and family for their love, 

unfailing encouragement, and support.  

 

 



 

  1 

1.0 INTRODUCTION AND SPECIFIC AIMS 

Major depressive disorder (MDD) is a complex neuropsychological disorder that has a second 

peak of incidence in late-life, known as late-life depression (LLD). LLD carries additional risk of 

suicide, worsening comorbidity, and care-giving burden (Katon et al, 2010; Mulsant et al, 2006; 

Nelson et al, 2013). While research has made significant strides in our understanding of 

depression and its treatment, its translation has lagged severely as currently there are not any 

accepted neural or genetic biomarkers to aid in the diagnosis, treatment, or management. This 

may be the result of the complex nature of the underlying etiology and pathophysiology (high 

heterogeneity) as well as the complexity of the available treatments. Currently, clinicians work to 

find an effective regimen (of antidepressants) or other treatment option using a prolonged trial 

and error process that delays overall improvement, increases risk of suicide, and may lead to 

patient dropping from care (Andreescu and Reynolds, 2011; Reynolds et al, 2006). In LLD, 

approximately 6-8 weeks are needed to identify whether the current regimen is effective (Patel et 

al, 2017), and if it is not then they will be tapered off and started on a new regimen. This period 

worsens risk of suicide especially in LLD (Katon et al, 2010; Mulsant et al, 2006; Nelson et al, 

2013), thus it is critical to find early treatment biomarkers. Previous work suggests that 

functional magnetic resonance imaging (fMRI) may be a potentially useful tool in finding such 

markers and by utilizing machine learning methods we may further improve this search. 
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  While markers pre-treatment are often an important predictor of overall improvement 

(remission), they may not be sufficient. Recent research has found that following single doses of 

antidepressants there are significant changes in brain activation and connectivity (Bruhl et al, 

2010; Loubinoux et al, 2002; Miskowiak et al, 2007; Murphy et al, 2009; Rawlings et al, 2010; 

Schaefer et al, 2014). These changes may be an important clinical predictor of remission. This 

may reflect an early engagement of functional networks but may have a significant latency 

period to translate to behavioral changes. This is further supported in studies using positron 

emission tomography (PET) that have found that antidepressant uptake occurs acutely (Meyer et 

al, 2001; Parsey et al, 2006). We collected fMRI data in an LLD sample during and after a full 

trial of pharmacotherapy. The fMRI data was collected pre-treatment and post-treatment, but also 

following acute periods (after a single dose and following a week). We investigated changes in 

functional brain connectivity and brain activation (during an emotion reactivity task) and 

whether any acute changes occurred and critically whether machine-learning approaches could 

be applied to predict remission (using only acute data).  

Thus, the goal of this dissertation is to: 

• Aim 1: Investigate changes in brain activation and connectivity in LLD. Determine acute 

and chronic changes in the brain.  

o Hypothesis 1a: We hypothesize that there will be acute and chronic changes in 

resting state connectivity, specifically increased executive control network 

connectivity paired with decreased default mode network connectivity.  

o Hypothesis 1b: Functional activation during an emotional reactivity task will 

show differentially acute and chronic changes in activation.  
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• Aim 2: Develop and test machine-learning models that utilize the multi-modal nature of 

the neuroimaging data that leverages clinical measures.   

o Hypothesis 2a: Certain features will be more predictive of remission, mainly that 

structural markers may not be great markers of state (since this is expected to 

change rapidly). Further, some pre-treatment markers will work well to predict 

remission, however acute changes may act as better markers since they reflect the 

acute pharmacological change.  

o Hypothesis 2b: Leveraging the multi-modal nature of neuroimaging data and 

clinical features will provide the best predictive capability.   
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2.0 MAGNETIC RESONANCE IMAGING (MRI) 

This chapter is intended to introduce the basic concepts of magnetic resonance imaging (MRI). It 

describes the hardware components, basic MR physics, and generation of the MR signal as well 

as details the different imaging modalities: structural imaging, diffusion weighted sequences, 

arterial spin labeling, and functional imaging. These sequences are utilized throughout to extract 

essential structural and functional measures. We also describe functional sequences used as well 

as functional tasks used throughout the study this dissertation utilized.      

2.1 MRI: NON-INVASIVE IMAGING OF THE BRAIN 

MRI is a non-invasive technique that has become one of the most commonly used methods to 

study the human body and brain. It is safe, non-invasive, and non-ionizing (no radiation or 

harmful contrast agents needed) and thus can be utilized heavily to study the structure and 

function of the human brain with low risk (Kanal et al, 2002). The technique utilizes several 

components to generate a signal based on the spin of protons in the body and has a wide range of 

imaging modalities that can be generated, including: structural (images that enhance gray/white 

matter contrast), diffusion weighted imaging (study of white matter tracts), arterial spin labeling 

(measuring perfusion), and functional activation (blood oxygen-level dependent response, 

BOLD).  
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2.2 MR SCANNER, PHYSICS, AND IMAGE ACQUISITION 

2.2.1 MR Components 

There are several critical components to the MR scanner: the magnet, gradient coils, and the 

(transmitter/receiver) radiofrequency (RF) coil. The magnet is used to generate a uniform 

magnetic field and is typically in the range of 0.5 Tesla (T or 5,000 Gauss) to 7T (for reference, 

earth’s magnetic field is ~0.5 Gauss). This aligns protons in the same direction as the magnetic 

field (i.e. this is the lowest energy state). The RF coil is used to force the protons into a high-

energy state and as they return to the lower energy state (equilibrium), they release RF energy 

that can be picked up the RF receiver. The gradient coils are used to localize the signal in three 

dimensions.  

2.2.1 MR Physics and Signal 

MRI takes advantage of precessing water in the body and their magnetic properties (mainly 

differences in relaxation times). Without the presence of a uniform magnetic field, water 

precesses randomly (direction and frequency) in the body with no net magnetic moment. 

However, a superconducting magnet can be used to generate a homogenous magnetic field that 

aligns the protons’ precession creating a net magnetic moment. The number of protons that align 

in that direction is proportional to the strength of the scanner, thus a stronger magnet is able to 

generate a stronger signal.  

The aligned protons are in a low-energy state that is then disrupted using a RF pulse that 

energizes them into a high-energy state (reverse direction of the net magnetic field and in-phase). 
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Protons then seek to return to an equilibrium (low-energy) state and relax. This relaxation is the 

basis of the MR signal, as they return they release RF energy that is then measured by an RF 

receiver coil. There are two types of relaxation: T1 and T2 relaxation. T1 (spin-lattice) relaxation 

is the recovery of the net magnetization in the direction of the net magnetic field. T2 (spin-spin) 

relaxation is due to the de-phasing of the protons as they precess out of phase. Critically, 

different tissues have differences in the T1 and T2 relaxation, thus allowing for a natural contrast 

between different tissue types.  

2.2.1 Image Acquisition and Parameters 

An MR image is usually a 3-dimensional (3D) image that is generated by collecting multiple 2D 

images that contain a value representing intensity at each volumetric element (voxel or 3D 

pixels). In neuroimaging, the individual’s head is placed in the scanner and RF coil. Typically, 

the Z-direction is along the direction of the scanner (head to toe) and the X-/Y- is left/right and 

bottom/top of the scanner, respectively. The following sections describe the general linear 

procedure that generates an image.  

 After, the magnet applies a net magnetic field (B0) that aligns protons along the Z-

direction (where they continue to precess); slice encoding is performed to choose which “slice” 

of the brain is going to be imaged. The Gz gradient coil applies a gradient magnetic field that 

causes protons to precess at different frequencies along the Z-direction. The transmitter RF coil 

applies an RF pulse at a pre-defined frequency that generates a magnetic field (B1) that excites 

only protons with the same frequency (thus choosing the slice to excite). These protons are now 

aligned along the B1 field. The Gz gradient coil is then turned off.  
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 Phase encoding is done to encode the location in the Y-direction by turning on the Gy 

gradient coil that applies a gradient magnetic field in the Y-direction. This causes protons to 

along the Y-direction to precess at differing frequencies and once the Gy gradient coil is turned 

off then the protons precess at the same frequencies however they are now out of phase. 

Similarly, this allows protons along the Y-direction to be precessing with different phases, which 

encodes the information along the Y-direction.  

 The Gx gradient is then turned on to apply a gradient in the X-direction causing protons 

along that direction to precess at different frequencies. At this point, the RF receiver coil is used 

to read the emitted RF energy of the relaxing protons. This signal however is complicated and is 

composed of differing frequencies, phases, and amplitudes. This process of slice, phase, and 

frequency encoding are conducted at different amplitudes of phase encoding gradients.  

 This data is best represented in a k-space image that represents the frequency and phase 

information for each slice (where the center represents zero frequency and phase). The most 

common way to fill this k-space image is known as echo-planar imaging (EPI) due to its speed 

where multiple phase encoding gradients are applied consecutively with the RF receiver coil 

collecting data after each consecutive excitation. Each 2D complex k-space image can be 

reconstructed into a corresponding image (from frequency domain into original space domain) 

using a 2D Fourier transform (which encodes the relationship between the original signal and 

frequency domain information) (Bracewell, 1989). The multiple 2D images are then stacked to 

create a single 3D image with intensities that reflect the emitted energy at each voxel.  

 The procedure involves several key parameters that control the size of the image, 

resolution, contrast, and modality (e.g., T1- vs. T2-weighted). The number of slices, field of 

view, and matrix size affect the resolution of the image. The greater the number of slices, the 
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greater the resolution in the Z-direction, while a greater matrix size and/or field of view has a 

similar effect in the X-/Y-direction.  

 Several other parameters affect the contrast of the image and can be used to create 

different images that weight different properties of the tissues. The repetition time (TR) is the 

time between each RF pulse. The longer the RF pulse, the greater the time allotted for the T1 

signal to relax. Conversely, the echo time (TE) is the time between the RF pulse and data 

acquisition, which affects the amount of time for T2 relaxation. Thus, different combinations of 

TR and TE can generate T1-weighted or T2-weighted images. When the RF pulse is applied, the 

B1 field is generated at an angle (which affects signal to noise, SNR) from the B0 field and is 

called the flip angle (FA).   

 There are several variations on this image acquisition process that are important to 

define: spin echo, gradient echo, and inversion recovery sequences. Spin echo involves applying 

an additional re-phasing RF pulse between the initial pulse and data acquisition. The FA of this 

excitation depends on the FA of the first (180o if initially 90o) and causes the de-phasing protons 

to re-phase that improves the signal and compensates for local field inhomogeneities (from 

several sources). The gradient echo sequence uses the frequency-encoding gradient to rephase 

the protons by applying a negative polarity and then a positive polarity (fast precessing protons 

take longer to rephase than slow precessing protons), which causes a rephasing of the protons 

and emits a stronger signal. While this sequence is faster than spin echo, it does not compensate 

for local inhomogeneities leading to greater artifacts in the image. The inversion recovery 

sequences are exactly the same as the spin echo, however there is an initial RF pulse (1800) 

before the sequence starts and allows for a long T1 relaxation period (no T2 relaxation). This 

allows for greater T1 contrast, however is much longer as the T1 relaxation is doubled.  
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2.3 STRUCTURAL NEUROIMAGING 

Utilizing differences in T1- and T2-relaxation between different tissues, we can generate T1-

weighted vs. T2-weighted images. Short TR sequences allow for greater tissue contrast in T1-

weighted images, while longer TR (longer T1 relaxation) measures the number of protons 

(proton density). Consequently, short TE (short T2 relaxation) does not allow for sufficient 

dephasing of protons thus tissues have similar intensities compared to longer TE that allow for 

greater differences between tissue intensities. T1-weighted images have short TR and TE and 

typically have the greatest tissue contrast. T2-weighted images have long TR and TE and allow 

for greater contrast between CSF and other brain tissue, but lower gray/white matter contrast. 

Consequently, T1-weighted images are used to study structure of the brain, while T2-weighted 

images are utilized for studying pathology. The magnetization prepared rapid gradient echo 

(MPRAGE) is a structural T1-weighted sequence that is heavily used due to the rapid acquisition 

(Mugler and Brookeman, 1990). These images are typically used to segment the gray matter and 

determine gray matter density within a voxel.  

 The fluid attenuated inversion recovery (FLAIR) is a T2-weighted image that improves 

the visualization of age-related tissue lesions, specifically white matter hyperintensities (WMH) 

(Hajnal et al, 1992). The sequence is used specifically as it suppresses signal from the CSF 

(appearing dark). WMH appear white (hyperintense) and can be used to segment these lesions 

more accurately. This can be used to measure global WMH burden.  
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2.4 DIFFUSION WEIGHTED IMAGING 

Diffusion weighted imaging is used to track the diffusion of water within the body specifically 

the white matter (Bammer, 2003). This is possible as free water diffuses randomly in most 

spaces, however within the white matter tracts it is constrained to diffuse along the tract, which 

can be detected and measured. Structural damage and pathological changes may alter the 

diffusion of water within the white matter but also the diffusion in the gray matter.  

 A pulsed gradient spin echo sequence is used to acquire diffusion-weighted images. This 

is very similar to the gradient spin echo sequence, however two gradient pulses with a defined 

direction are placed on both sides of the rephasing pulse. If water molecules do not move, then 

the phases induced by the two gradient pulses would cancel out resulting in greater signal. Due 

to this, greater diffusion would attenuate the signal. Usually multiple images of multiple 

directions are acquired, where a greater number of directions can resolve greater diffusion 

information. Using this acquired data, it is possible to identify the mean diffusivity and primary 

direction of tracts and can be used to measure tract integrity.  

2.5 ARTERIAL SPIN LABELING (ASL) 

Arterial spin labeling involves the labeling (or tagging) of proximally flowing blood, which after 

a transit time flows into a slice or area of interest and is paramagnetically labeled (Detre et al, 

1992). This inflowing tagged blood alters tissue magnetization, reducing the overall signal. An 

unlabeled (control) image is collected as well, where the difference in the unlabeled and labeled 
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image is the cerebral blood flow/perfusion of blood in that region. This requires no contrast as 

the labeled blood acts like a contrast agent altering local tissue magnetization.  

 Pulsed continuous ASL (pCASL) is the currently most preferred method to acquire 

perfusion imaging (Dai et al, 2008). A train of short RF pulses is used to first invert the blood 

proximally, followed by a full brain acquisition. The refocusing portion of the slice selection 

gradient (Gz) is not balanced, which causes an accumulation of additional phase after each RF 

pulse. The control sequence, however, uses a balanced gradient that removes this effect. 

Typically, tagged and untagged images are collected one after another. This process is repeated 

over an extended period of time (at rest) and generates a 3D perfusion image across time (4D) 

that is typically averaged to measure mean perfusion.  

2.6 FUNCTIONAL MRI (FMRI) 

This section introduces the blood oxygen level dependent (BOLD) response and how this is 

measured using fMRI. Similar to ASL, a 4D image is generated that measures activation across 

time – however it is divided into task-based and resting state fMRI.  

2.6.1 Blood Oxygen Level Dependent (BOLD) Response 

The BOLD response is measured using fMRI, which utilizes T2*-weighted imaging (Ogawa and 

Lee, 1990a; Ogawa et al, 1990b). The BOLD response is thought to be an indirect measure of 

neuronal activity. When an individual performs a task (e.g., tapping their right finger), neuronal 

activity within the left motor cortex increases and due to increased activation there is a change in 
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metabolism as well as an increase in deoxygenated blood in the venous capillaries (Attwell and 

Iadecola, 2002). This is typically followed by an increase in local cerebral blood flow (and 

possibly volume) that results in an overall increase in oxygenated hemoglobin (venous) and 

decrease in deoxygenated hemoglobin (known as ‘washout’) (Attwell et al, 2002). While 

oxygenated hemoglobin is diamagnetic, deoxygenated hemoglobin is paramagnetic, which 

creates magnetic field distortions (altering local magnetic susceptibility) thus reducing the MR 

signal. Specifically, the T2*-weighted signal is a combination of the T2-signal and 

inhomogeneities (hence T2*). As the deoxygenated hemoglobin decreases, the MR signal 

increases in amplitude. Thus the BOLD signal is an indirect and delayed measure of neuronal 

activity. Usually this delay is approximately 6-8 seconds, thus we can construct a canonical 

hemodynamic response function (HRF). Multiple of these images are acquired while participants 

perform tasks. Typically a task of interest and a control are performed (e.g. viewing faces vs. 

viewing houses).  

 By designing certain tasks (as well as sufficient control tasks), we can understand and 

map functional activation of the brain. This process has been used heavily in the past decade to 

map the human brain and more importantly understand how these are altered in certain disease 

states (e.g. depression). However, even without performing a task – the brain has intrinsic 

changes in brain activation. It is now well-known that this intrinsic activation can be used to 

better understand the connectivity of the brain (at rest) and is essential for understanding 

depression as it is thought that resting state activation represents introspective functioning. The 

next two sections describe in greater detail resting state and task-based designs (specifically the 

tasks used in this study).  
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2.6.2 Intrinsic Resting State Activation 

Even without an explicit task, the brain is intrinsically active and this spontaneously fluctuating 

signal can be measured using fMRI. Usually participants are asked to lie awake in the scanner 

viewing a fixed object (e.g., a cross-hair to prevent sleep). This has been used to measure the 

intrinsic connectivity of brain regions as well as define stable networks (Fox et al, 2005). This is 

especially important in MDD, as it is thought that a large change in the intrinsic activation in the 

brain is altered as the majority of intrinsic activation is thought to reflect an introspective aspect 

of human thought. MDD is associated with an alteration in this introspective thought process as 

it becomes ruminative in nature leading to changes in resting state activation (Hamilton et al, 

2011; Sheline et al, 2010b; Zhu et al, 2012). The data utilized acquired a resting state scan where 

participants were instructed to lie awake in the scanner viewing a white cross hair (black 

background) for five minutes.  

2.6.3 Task-Based Activation 

Task-based fMRI designs typically involve a task of interest and a control task (to control for 

unrelated effects). In this section we describe several of the tasks used throughout this study: 

emotion reactivity task (face/shapes), explicit emotion regulation task, and a memory-encoding 

task.   

 Emotion Reactivity Task (Face/Shapes): During functional scanning participants 

performed the face/shapes emotion reactivity task to study the effect of emotional reactivity to 

faces (Hariri et al, 2003). Participants were instructed to match either a face cue or a shapes cue. 

A cue was shown on the center of the screen and they were instructed to respond with an MR-
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compatible glove (left or right index finger) by matching to one of two simultaneously presented 

faces. The facial expressions shown were either angry or fearful. During the shapes, they 

matched a shape to one of two simultaneously presented shapes. The shapes task (5 blocks) was 

interleaved with the faces task (4 blocks) and each block lasted 24 seconds containing 6 trials (4 

seconds each). Before the beginning of each block participants are instructed visually to “match 

emotion” or “match form” (2 seconds). The faces images are presented from a set 12 different 

images (six per block, three of each gender) and are all derived from a standard set of pictures of 

facial affect. Stimulus presentation and responses were controlled using E-prime software 

(Psychology Software Tools, Inc., Pittsburgh). This task has been shown to robustly activate the 

human amygdala (generates emotional responses as part of the limbic system) even in healthy 

participants (Hariri et al, 2003). Critically, this is thought to have an implicit regulation aspect, 

where participants regulate their emotional responses automatically.  

 Explicit Emotion Regulation Task: Participants were shown emotionally neutral or 

negative images from the standardized International Affective Picture System (IAPS) and were 

instructed to either “Look” or “Decrease” (Lang et al, 2008). During the look instruction, 

participants were to view content naturally. During the decrease instruction, participants were 

instructed to reappraise the image to actively alter the elicited emotion. Reappraisal involves 

actively altering emotional responses to a viewed image (e.g., a picture of someone in the 

hospital may be reappraised as someone who is getting life-saving treatment). Participants were 

sufficiently trained in this process prior to scanning. After each image they were asked to rate 

how negatively they felt from 1 to 5. The neutral (11 events), negative (15 events), negative 

regulate (15 events) conditions were interleaved and each event lasted 6 seconds. The stimulus 

presentation and responses were controlled using E-prime software (Psychology Software Tools, 
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Inc., Pittsburgh). This task measures their ability to explicitly regulate their emotions and 

significantly activates explicit areas implicated in regulation (dorsolateral prefrontal cortex) 

(Gyurak et al, 2011; Ochsner et al, 2002).  

 Memory Encoding Task: This task has been used widely to measure memory encoding 

and significantly activates the hippocampus (Sperling et al, 2001). Participants first encoded two 

face-name pairs outside of the scanner (i.e., two faces were presented each with a name). 

Participants are shown face-name pairs in a block design. During the control blocks, the two 

already encoded face-name pairs are shown. During the novel blocks, new pairs of face-names 

are presented. They are instructed during both blocks to state whether the name “fits” and are 

told that this helps with encoding the face-name pairs. They are told that they will have to recall 

the name that was presented with each face at the end of the scan – thus they are instructed to 

encode these faces into memory. Each run contains four blocks alternating between the control 

and novel blocks (48-seconds each). Each block presents 8 faces for five seconds each (1 second 

fixation in between) that results in 32 novel and 2 familiar faces. Between each block is a 25 

second fixation. Stimulus presentation and responses were controlled using E-prime software 

(Psychology Software Tools, Inc., Pittsburgh).  
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3.0 PROCESSING NEUROIMAGING DATA 

This chapter introduces the basic concepts of processing neuroimaging data as well as details 

regarding spatial pre-processing, coregistration and motion correction, as well as segmentation 

and normalization (coregistration to a standard anatomical space). It also describes how to 

compute outputs that are relevant to this dissertation including: gray matter density (structural), 

white matter hyperintensity (WMH) burden, fractional anisotropy and mean diffusivity 

(diffusion weighted imaging), perfusion (arterial spin labeling, ASL), eigenvector centrality 

(resting state functional MRI), and task-based fMRI activation. 

3.1 PRE-PROCESSING NEUROIMAGING DATA 

There are several key pre-processing methods that are essential for processing neuroimaging 

data. Slice time correction of functional data involves accounting for differences in the timing of 

slice acquisition during data collection, because during the functional sequence the first slice 

collected is an entire TR away from the last slice collected. Coregistration is the process of 

aligning two images together and can refer to registering similar images within a sequence 

(typically called realignment or motion correction in fMRI), or images within a subject of 

different modalities (e.g., MPRAGE and FLAIR), or even images between several subjects or a 

template space (usually referred to as normalization). Segmentation involves the labeling of 
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neuroimaging data into separate tissue classes (e.g., gray vs. white matter). Smoothing is a 

process that blurs the image but reduces spurious noise. We describe these processes in greater 

detail in the following sections.  

3.1.1 Slice-Time Correction 

Functional MRI scans usually have multiple 2D images (slices) collected over a short period (a 

single TR) to generate a single 3D image that is collected over a certain period of time. If the TR 

is long, then the collection of the first slice is approximately one TR away from the last slice. 

Slice-time correction is a method to resolve this issue following data acquisition (Sladky et al, 

2011). If the TR is sufficiently short, or if the design of the task is presented in blocks rather than 

as single events, or if the data is not resting state – then this processing is not necessary. A short 

TR means that there are small differences in the timing of the acquisition and thus is not 

necessary in the described scenarios. The precise timing within a long block does not affect the 

determination of activation.  

 As we know the order of the collected slices, we can use this information to shift the 

signal in a certain direction. Critically, this process is performed using Fourier transforms. The 

Fourier transform represents any signal as a linear weighted combination of sinusoids. For each 

signal, depending on when they were collected – we can shift the sinusoid by adding some 

constant (dependent on slice order) to the phase of each frequency. This will have an effect of 

shifting the data in time (Sladky et al, 2011).  
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3.1.2 Coregistration and Motion Correction 

Registration is a process where a transformation that spatially aligns two images (usually based 

on intensity): the reference (image that does not move) and the source (image that is 

transformed). The intensities of the images are used to help align the two images, usually 

involving several key components: similarity metric, optimizer of the alignment, transformation 

matrix, and the interpolation method.  

 The similarity metric is used to minimize the difference between two images’ intensities. 

Thus, the similarity metric is the cost function that is to be minimized. The selection of the cost 

function is dependent on the image types of the reference and source image. If the reference and 

source are of a similar image type, then they have similar intensity distributions. Thus, we can 

compare their intensities directly using measures like least squares (sum of squared differences) 

or normalized correlation (correlation between each voxel intensity). However, if the images are 

of different types – then their intensities do not directly match. Normalized mutual information is 

a metric commonly used in neuroimaging methods. Mutual information determines how much 

uncertainty about the reference image’s intensity values is reduced by the knowledge of the 

source image’s intensity values (thus the image intensities do not need to match). This can 

assume a linear or non-linear relationship and is a robust measure of similarity. In this way, if 

two images are aligned well – then their intensities match (or are predictive) and its minimization 

will allow for a local minima that represents the coregistered images.  

 The optimizer is used to minimize the cost function (similarity metric). This process 

usually involves several key steps: initialization, iterative parameter optimization search 

involving assessment and modification, and finally convergence. In the first step, the similarity 

metric is calculated. The initial parameters are updated (both value and direction of change) and 
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are done using several possible methods (e.g., gradient descent, Quasi-Newton, Gauss-Newton, 

Levenberg-Marquardt). The similarity metric is thus calculated again and the process is iterated 

over several steps. Some convergence criteria determine when the algorithm should stop (e.g., 

difference of similarity metric between current and previous metric is sufficiently low).  

 The transformation is the matrix that is applied to the source image to coregister it to the 

reference image. However, depending on the type of transformation – a different number of 

degrees of freedom may be allotted. Linear transformations refer to those with lower degrees of 

freedom allowing for only small alterations. Transformations may have the following linear 

changes: 3 translations, rotations, and scaling (total 9 degrees of freedom) as well as 3 degrees of 

freedom for skewing along all three axes (3D space). Some well known combinations include: 

rigid body (6 translations/rotations but no scaling) and affine (12 degrees of freedom). A simple 

4x4 matrix can be used to represent such transformations. Non-linear transformations can have a 

much larger number of degrees of freedom – thus allowing for even small local changes. Linear 

transformations are well suited for coregistering images within an individual (as they have 

similar structural properties, e.g., gray matter folds), however non-linear transformations are 

better suited for coregistering across individuals with highly varying structural properties.  

 There are several types of interpolation methods that can be utilized during this process. 

Nearest-neighbor interpolation involves assigning each new voxel of the coregistered image the 

intensity value of the spatially closest voxel from the source image prior to the transformation. 

This is most commonly used when interpolating masks, which are binary images that represent 

some prior segmentation. B-spline interpolation is another common interpolation method that 

uses polynomial functions to weight the intensities of neighboring voxels from a large 

neighborhood of voxels. The degree of the B-spline is a reference to the size of the polynomial 
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function used. This is one of the most commonly used methods as it has high accuracy with low 

computation cost relative to other methods. The trade-off between accuracy and computational 

cost is an important consideration when determining the interpolation method.  

 Generally, in the processing of neuroimaging data we have several key types of 

coregistration that are performed: within session motion correction, within subject functional-

structural or structural-structural coregistration, or across subject coregistration. Across subject 

coregistration is a process called normalization that we cover in the next section along with 

segmentation (due to the unified nature of some algorithms).  

 Within session motion correction refers to coregistration between images collected within 

a single 4D image (e.g. BOLD or ASL data) (Ashburner et al, 1999). The 4D image is a set of 

3D images across time – and during this period the participant was likely to move their head. To 

correct for this we perform multiple coregistrations between each image and one of the images is 

used as a reference. Typically, the first image is chosen as the reference, the other images are 

coregistered to the reference, a mean image is computed and is now treated as the reference, then 

the true coregistration is performed between all images and the mean. This process corrects for 

the motion within a session and is usually done as a rigid body coregistration process (as the 

images are similar in type and size). This also outputs a six parameter matrix that represent the 

motion in each of the six directions that can be used to further remove residual motion.  

 Within subject coregistration (functional-structural or structural-structural) involves 

coregistering images that are different types (e.g., MPRAGE and FLAIR), however they are 

from the same participant thus they do not differ structurally (e.g., gray matter folds) (Ashburner 

et al, 1999). Typically, one of these images is chosen to be the reference and the other is 

coregistered using an affine transformation. 
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3.1.3 Unified Segmentation and Normalization 

Segmentation is a process in which a set of tissues are identified in an image and classified. In 

neuroimaging this process usually involves segmenting images into six tissue types: gray matter, 

white matter, cerebrospinal fluid, soft-tissue, skull, and air. There are many different processes 

that are used to segment neuroimaging data, however we will focus solely on the unified 

segmentation and normalization algorithm as it is utilized most throughout the dissertation 

(Ashburner and Friston, 2005).  

 The segmentation algorithm utilizes a Gaussian mixture model based approach with 

tissue priors. The basic concept is that if we consider segmenting gray vs. white matter, then 

their intensities (depending on the imaging type) could be represented using two Gaussian 

distributions (bimodal) with one representing gray matter tissue and another representing white 

matter tissue. Thus, we can fit a Gaussian mixture model and then segment the entire brain into 

several tissue classes. This considers all the brain voxels as a mixture of multiple Gaussian 

distributions and attempts to identify them. To further improve that, we can give an initial guess 

as to the location of these tissues using an average tissue prior (a probability map indicating the 

likelihood that some tissue is represented at any one voxel) generated from healthy neuroimaging 

data of a large cohort of participants (e.g., we can give probability maps of where we expect the 

gray and white matter should be) (Penny et al, 2011). This involves coregistering the 

neuroimaging data to a standard anatomic space (with tissue probability maps) and using the 

probability maps to weight the classification according to Bayes theorem (describing the 

probability of some occurrence based on knowledge of some other condition).  

 In the unified segmentation and normalization framework several processes are unified to 

improve the overall efficacy of each individual process. This process details how to classify 
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tissues in a structural image and then coregister it to a standard anatomical space. We first 

coregister (using linear methods) the structural image and a template structural image in a 

standard anatomic space (Montreal Neurological Institute or MNI space). We then perform an 

initial segmentation of the voxels into six tissue classes using a Gaussian mixture model 

weighted by a prior distribution. We can now iterate through this process to improve both and 

output a final segmentation (each voxel contains an individual probability for each tissue class) 

as well as a deformation field. The deformation field is a set of cosine bases that map each voxel 

into MNI space and is utilized to normalize most neuroimaging data by first coregistering an 

image to the native structural image and then applying the deformation field to warp it into MNI 

space (Penny et al, 2011).  

3.1.4 Effects Of White Matter Disease On The Accuracy Of Automated Segmentation 

This section describes previously published primary author work that investigated the effects of 

WMH on the accuracy of the automated segmentation in the statistical parametric mapping 

(SPM) toolbox (Karim et al, 2016b). We also investigated whether performing corrections 

resulted in any change in the segmentation. WMH are hyperintense regions (on T2-weighted 

images) that become more prevalent in late-life that are attributed to degenerative changes of 

long penetrating arteries, resulting in demyelination, gliosis, and axonal degeneration (Ovbiagele 

and Saver, 2006). It is associated with a wide variety of disorders (including depression) 

(Aizenstein et al, 2011; Sheline et al, 2010a; Taylor et al, 2003). WMH appear dark 

(hypointense) on the MPRAGE and typically look like gray matter intensities, thus using 

standard approaches the WMH are segmented as gray matter instead of white matter. This affects 

the overall accuracy of both the segmentation and normalization.  
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 Two common methods for performing a correction are WMH filling (Battaglini et al, 

2012; Eloyan et al, 2014) and multi-spectral segmentation (Ashburner et al, 2005). WMH filling 

involves first identifying voxels with WMH then filling them with normal appearing white 

matter values (NAWM). The WMH segmentation process is described later in section 3.5, but to 

fill them - all NAWM (white matter voxels that are not classified as WMH) are used to generate 

a distribution. Then each WMH voxel is filled with a random value from this distribution 

effectively disguising this region as not hyperintense thus correcting for the WMH (Eloyan et al, 

2014). However, the main issue is that this is a brute force method that forces WMH to appear 

like normal white matter.  

Multi-spectral segmentation methods instead rely on multiple tissue types (e.g., 

MPRAGE and FLAIR). The differences in distributions help better classify each tissue class. 

Consider that four separate tissues on the MPRAGE and FLAIR have differing properties. On 

the MPRAGE the increasing ordered rank of the mean intensities are: gray matter, WMH, 

caudate, and NAWM. Thus, WMH appear most like gray matter and caudate (a subcortical gray 

matter region). On the FLAIR, however, the increasing ordered rank of the mean intensities is: 

NAWM, gray matter, caudate, WMH. Thus, the properties of the intensities are altered in each 

image. Leveraging that information improves the Gaussian mixture model and helps better 

classify the tissues. Critically, we also set the number of Gaussians to fit for white matter to two 

instead of one, because there is a separate Gaussian distribution associated with the WMH.  

We computed intraclass correlation coefficients (ICC) between the original uncorrected 

segmentation and each of the correction methods segmentations (McGraw and Wong, 1996). We 

found that both significantly altered the segmentation globally and locally. We found that the 

multi-spectral segmentation more greatly affected the overall segmentation. Further, it seemed to 
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more greatly affected the local segmentation/normalization as well – affecting subcortical 

structures like the caudate and amygdala most. This highlights a need to correct for WMH in 

studies where they are prevalent. The results from this experiment only suggest that the multi-

spectral segmentation seems to more greatly affect the initial inaccurate segmentation – but not 

which is better. Multi-spectral segmentations utilize the full nature of multi-modal data 

acquisition in modern neuroimaging studies and seem to be an effective approach to perform 

correction without having to force WMH to appear like normal white matter.  

3.1.5 Smoothing 

Smoothing is a process where data is interpolated using some function to reduce the effects of 

large outliers by essentially blurring the data. Typically, a Gaussian smoothing kernel is used to 

interpolate the image that is described by its size or the full-width at half-maximum (FWHM). If 

for instance the FWHM is 8mm then the Gaussian distributions value at 4mm from the center is 

half the maximum value of the Gaussian distribution (e.g., if the max of the distribution is 1 then 

the value 4mm away from the center is 0.5). This describes the extent of the Gaussian 

distribution, and greater FWHM cause greater blurring/smoothing.  

 There are multiple reasons that this process is typically done, mainly: increased signal to 

noise ratio, to account for differences in structural anatomy, and finally this becomes critical for 

statistical group inference. Signal to noise increases because there can be (at the individual and 

group level) high amounts of noise (especially in ASL and fMRI) and smoothing removes large 

outliers (or noise). Further, as the structural coregistrations are not perfect there can be high 

variability between subjects structurally and functionally. Smoothing blurs functional/structural 

clusters – which increases the overlap between subjects (improving sensitivity). Finally, when 



 

  25 

performing group statistical inference – neuroimaging methods rely heavily on Gaussian random 

field theory (described in detail in section 3.8). Smoothing decreases the number of independent 

statistical tests (by blurring neighboring voxels), and this increases the overall sensitivity (Mikl 

et al, 2008). Briefly, imagine performing four independent statistical tests in four neighboring 

voxels that generates four p-values. Bonferonni correction is a method to control for multiple 

comparisons (joint inference on all four voxels), which states that dividing the acceptable false 

positive rate by the number of independent statistical tests sufficiently controls the false positive 

rate across multiple tests. Using Bonferonni correction, this means that to control the false 

positive rate (alpha) at 0.05 then we need to divide by four. However, consider that two voxels 

are highly correlated (or smoothed) then the number to divide by should actually be three (as 

only three of them are truly independent). Similarly, smoothing reduces the severity of the 

multiple comparisons problem (described in greater detail in section 3.8).  

3.2 LONGITUDINAL GRAY MATTER DENSITY ESTIMATION 

Structural imaging data can be used to estimate gray matter density. This is a common variable 

of interest in neuroimaging studies as these are often associated with a wide range of disorders 

like depression severity. Depending on the disease being investigated the healthy brain templates 

used when segmenting and coregistering the brain may not be good proxies for diseased or aging 

brains. Thus utilizing study specific templates help improve the overall estimation of gray matter 

density.  

 After performing segmentation, a single probability map is output in a standard anatomic 

space. The probability maps can be coregistered in an iterative process where the mean of all the 



 

  26 

probability maps is taken; they are then registered to the mean. The process is repeated, which 

increases the smoothness of the mean of each subsequent iteration. This generates a new study 

specific template in the same standard anatomical space that is better suited to the current sample 

(Ashburner, 2007). Consider that aging populations tend to have greater sized ventricles – 

however the template has much smaller ventricles affecting the overall normalization process. 

By creating a template, we circumvent to some degree as now we coregister to a template with 

larger ventricles. This normalizes each map into a standard anatomical space while relaxing the 

large deformations needed for certain structures (e.g., the ventricles).  

Along with the segmentation, this process outputs what is known as the Jacobian (or the 

matrix of all first order partial derivatives of the deformation field, i.e., the gradient or local 

changes in deformation) (Ashburner and Friston, 2000). Without the Jacobian, the current 

segmentations represent the probability at each voxel that it is gray matter – however because the 

local tissues have been warped, the probabilities do not truly represent the amount of gray 

matter. By multiplying by the Jacobian, we can compute the gray matter density (Ashburner et 

al, 2000). Consider, a region that has to be shrunk to fit as part of the template – it then follows 

that we are forcing a certain amount of gray matter into a smaller region, thus it should have 

greater gray matter density. Conversely, a region that is increased to fit onto the template should 

have lower gray matter density.  

We can improve this process even further longitudinally where we have multiple 

structural images for each participant across time. Similar to the previous process, we can 

generate a subject specific template prior to creating a study specific template. The subject 

specific template uses each of the tissue probability maps from each time point and creates a 

subject specific template. This subject specific template is then used to create a study specific 
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template. This further improves the overall estimation of gray matter density. Thus we compute a 

single gray matter density map for each time point.  

To further improve the initial segmentation, a multi-spectral segmentation that utilizes 

multiple spectra/image types (e.g., MPRAGE and FLAIR) can be used (Ashburner et al, 2005). 

The Gaussian mixture model can thus consider two sets of distributions when trying to fit the 

model. The FLAIR significantly improves the classification of WMH as white matter (Karim et 

al, 2016b).  

3.3 WMH SEGMENTATION 

WMH burden (amount of WMH in the brain) has been shown to be associated with a wide range 

of neurological disorders and is thought to be a good marker of cerebrovascular disease 

(Alexopoulos et al, 1997; Sheline et al, 2010a). We describe the vascular depression hypothesis 

in a later section, however it states that WMH may be a driving factor late-onset depression due 

decreased cerebral blood flow and impaired cognitive function (Alexopoulos et al, 1997). Thus, 

segmenting and quantifying WMH burden is important for understand late-life depression.  

 Segmentation of WMH has been performed using a wide variety of methods – however 

one effective method uses the FLAIR image and an automated approach to select seeds and then 

grow them using fuzzy connectedness (Wu et al, 2006). The images are first intensity 

normalized, by calculating the mean and standard deviation of the cerebellum white matter 

(which is relatively devoid of WMH) and calculating a Z-score of the whole brain using that 

mean and standard deviation. We then choose voxels that are 3.5 standard deviations (chosen 

based on previous data at improving the segmentation) above the mean as seeds. These seeds are 
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then grown using a fuzzy connectedness algorithm (on the original data and not the Z-score data) 

(Wu et al, 2006). In this region-growing algorithm, the fuzzy adjacency and affinity are 

calculated between a seed and all voxels, which measure how strongly the seed and each 

corresponding voxel associate in space and intensity, respectively. This image is then threshold 

to generate a fuzzy segmentation for that seed – which is iterated through each seed and then 

combined across seeds. This generates a single WMH segmentation. We can compute the 

volume of the WMH (number of voxels x resolution in mm3) and then divide by intracranial 

volume (ICV) to normalize the measure as a percentage of ICV (accounts for differences in head 

size).  

3.4 DIFFUSION TENSOR IMAGING: FA AND MD 

Diffusion weighted images are 4D and contain b0 images (no diffusion) as well as diffusion 

images in different directions. Using this data we can compute fractional anisotropy and mean 

diffusivity, which are important neural correlates. Diffusion data is first eddy corrected – 

misalignment of the images due to the presence of eddy currents in the scanner. This is typically 

resolved using image registration methods. We then perform multiple linear regression to 

calculate diffusion tensor components from the set of diffusion images with differing directions/ 

orientations with respect to water diffusion. A tensor is a three by three matrix representing the 

diffusion of water in all three directions (3D) in a single voxel. After diagonalization of each 

corresponding matrix, we compute the eigenvalues and eigenvectors (the primary, secondary, 

and tertiary diffusion directions) (Behrens et al, 2003).  
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 Two main measures are utilized commonly (although others exist): fractional anisotropy 

(FA) and mean diffusivity (MD) (Behrens et al, 2003). Consider the three eigenvalues and the 

mean eigenvalue then FA is computed as the square root of the sum of the squared difference 

between eigenvalues and the mean eigenvalue divided by the square root of the sum of squares 

of each eigenvalue multiplied by square root of 1.5. The higher FA translates to greater 

anisotropy or a more “oblong” shaped ellipsoid, and thus an FA of zero is perfectly spherical. 

This indicates the primary direction of diffusion. The MD is simply the mean of the eigenvalues, 

which represents the total diffusion within a voxel. FA is thought to be most sensitive to 

microstructural integrity in the white matter. MD is thought to be an inverse measure of 

membrane density sensitive to cellularity, edema, and necrosis. Thus, we compute a single 

voxel-wise FA and MD map. These maps can be coregistered to the structural image and then 

warped to MNI space using the deformation field.  

3.5 ASL: PERFUSION 

ASL data is first motion corrected and is performed as a two-stage process where tagged and 

untagged are motion corrected separately and then together. The images are then subsequently 

smoothed to improve estimation of perfusion. The perfusion is a measure of cerebral blood flow 

(CBF) normalized by volume of the each voxel (Detre et al, 1992). To calculate CBF we used an 

equation that is dependent on the following: difference between tagged/untagged images 

(deltaM), the blood/tissue water partition coefficient (lambda), longitudinal relaxation rate of 

blood (R), tagging efficiency (alpha), equilibrium magnetization of the brain (Mo usually 
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calculated from white matter), post-labeling delay (w), and duration of the labeling RF pulse 

train (tau). The following equation (Wang et al, 2008b) describes this relationship: 

Equation 1. . 

 This measure represents CBF at each voxel and can be used to estimate the perfusion. 

Typically, this is only calculated in voxels inside the brain. This measure is highly correlated 

with measures of metabolism in positron emission tomography as well as CBF as measured 

using actual contrast agents (gold standard for CBF measurements) (Chen et al, 2011). These 

maps can be coregistered to the structural image and then warped to MNI space using the 

deformation field. 

3.6 RESTING STATE FMRI: EIGENVECTOR CENTRALITY 

Resting state involves several stages of processing: slice-timing correction, motion correction, 

normalization to MNI space, smoothing, wavelet despiking, covariate regression and band-pass 

filtering, and then estimation of eigenvector centrality (Whitfield-Gabrieli and Nieto-Castanon, 

2012). After performing slice-timing correction, motion correction, normalization, and 

smoothing (described in previous sections) the data are despiked, which removes large motion 

artifacts. The wavelet-despiking algorithm used identifies non-stationarity events across multiple 

frequencies using the following generalized steps: time-series decomposition into wavelet 

domain, identification of non-stationarity events, removal of those events, and reconstruction to 

the time domain (Patel et al, 2014). Spike artifacts are prioritized, as they are most likely due to 

motion (Patel et al, 2014).  
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 In the next stage we removed several covariates that may corrupt our true resting state 

fluctuations, including: residual motion artifacts, low frequency noise, high frequency noise 

above a certain frequency, and global signal from the white matter and cerebrospinal fluid 

(Behzadi et al, 2007; Whitfield-Gabrieli et al, 2012). This is conducted by performing a mass-

univariate regression between our observed data and a set of covariates. We then subsequently 

can analyze the residuals, which are essentially not ‘corrupted’ by these factors. Removing the 

motion parameters removes the effect of any residual motion not accounted for in the motion 

correction. Band-pass filtering removes non-resting state fluctuations, as it has been shown that 

resting state fluctuations seem to occur at a certain frequency band and other frequencies 

‘corrupt’ this resting state signal. Finally, some regions are ‘corrupted’ by white matter of CSF 

signal, thus we can remove canonical signals from these tissues to account for their effects.  

To remove motion artifacts we use the six motion parameters from the motion correction 

stage. As the data is discrete and has a low sampling rate (high TR, usually around 2 seconds), 

we can use a set of cosines of varying frequency to remove low and high frequencies that are of 

no interest. Mainly, we remove frequencies not in the band 0.008 to 0.15 Hz (Whitfield-Gabrieli 

et al, 2012). Thus, we can generate a set of cosines for the discrete valued signal that represent 

signals with frequencies above and below these bands and regress them against the observed 

data.  

Previous studies included only two covariates: one for the mean white matter signal and 

one for the mean CSF signal, however current techniques utilize multiple signals to account for a 

larger proportion of the variance in signals in the each of these tissues. Segmentations of the 

white matter and CSF can be used to determine where to extract a matrix of time-series. 

Principal components analysis (PCA) can be conducted on these signals to generate several 
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principal (typically 5 components) time-series that represent a proportion of the variance within 

the matrix. Briefly, it is a method used to estimate a set of bases that are orthogonal (not 

correlated) and explain the variance in the data (i.e., it is a low dimensional feature space that the 

original data can be represented in). The observed matrix (‘t’ time points by ‘v’ voxels) can be 

represented as a set of scores (original data in the low dimensional space that is ‘t’ by ‘c’ 

components) times as set of loadings (‘c’ by ‘v’). The first five scores could then be used to 

represent the signals in the white matter and CSF and are regressed out.  

After regressing out six motion parameters, a set of cosines that represents frequencies of 

no interest, five components from the white matter and CSF combined, as well as the mean of 

the time series, we can compute eigenvector centrality. Centrality is a graph theoretical measure 

that represents how important a voxel as a node, where higher centrality represents voxels that 

have greater connectedness (Wink et al, 2012). One way to compute centrality at a voxel is to 

correlate that voxel’s time series with all other voxels and then compute an average. This is 

essentially mean centrality or the mean connectedness of a voxel, where if a voxel is highly 

correlated to most other voxels then its centrality will be greater (consider a region like dorsal 

anterior cingulate which has high involvement in many cognitive processes and enforces top-

down control on many other brain structures). While this method is sound, it is computationally 

inefficient, because to calculate it voxel-wise a voxel-to-voxel correlation matrix must be 

computed, which is highly inefficient. However, we can utilize PCA to compute the eigenvariate 

(i.e., the scores of the PCA on the matrix of all time series) using the fast eigenvector centrality 

mapping (fastECM) algorithm (Wink et al, 2012). This allows for a similar measure (EVC) that 

is computationally efficient.  
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3.7 TASK-BASED FMRI ACTIVATION 

Task-based fMRI is first slice-time corrected (if event related), motion corrected, normalized to 

MNI space, and spatially smoothed. A generalized linear model is used to estimate the effect of 

the tasks performed in the scanner (Wink et al, 2012). Similar to the resting state we remove 

several confounds, including: six motion parameters, a set of cosine terms that represent low 

frequency signals (effectively a high-pass filter, usually 1/128 Hz), and the mean. Note that we 

do not perform low-pass filtering or remove additional confounds from white matter or CSF. 

However, to model temporal auto-correlation due to aliased biorhythms and unmodelled signal 

an auto-regressive term with order one [AR(1)] is included, which includes a shifted (by one) 

signal of the time series. This models changes in heart rate and blood pressure from the previous 

time point to account for temporal auto-correlation, as an assumption of the regression is that the 

measurements (each time point) are independent.  

 To model the activation of the task performed in the scanner the onsets and durations are 

used to create boxcar functions (zero if not tasking and one if tasking) for each of the blocks. For 

example, in the face/shapes task there are two types of blocks (conditions): matching face 

emotions and matching shapes thus two boxcar functions would be generated representing the 

onsets and durations for those two tasks. Each boxcar for each condition is then convolved with a 

hemodynamic response function (HRF), which represents the canonical hemodynamic response 

in the BOLD response after a task. Convolution is a process where the HRF is translated in time 

along the boxcar and the integral of the element-wise multiplication is computed (i.e., sum of the 

multiplication). For each condition, an expected hemodynamic response is modeled for each 

task. We regress the expected hemodynamic responses of each condition against each voxel’s 

time series (mass univariate regression) to estimate two parameter estimates representing the 
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activation during each condition (e.g., activation during faces vs. activation during shapes) 

(Wink et al, 2012). The greater the parameter estimate translates to a greater observed 

association with the expected response, thus the greater the actual activation (Penny et al, 2011). 

A contrast is essentially a difference in parameter estimates and is usually used to estimate the 

relative activation of one task while adjusting for another (e.g., faces minus shapes indicates 

activation during the faces while controlling for visual, motor, and matching aspects of the 

shapes). The output is a contrast value (difference in parameter estimates) at each voxel (a map) 

(Penny et al, 2011).  

3.8 STATISTICAL GROUP INFERENCE 

Voxel-wise group inference relies on several core principles: regression and random field theory. 

Regression can be used to determine the voxel-wise association between voxel-wise maps (gray 

matter density, FA/MD, EVC, or activation during a task) and a variable of interest (e.g., group 

differences or association with depression severity). A voxel-wise mass-univariate regression 

(similar to the previous section) can be used to determine the group level association between a 

variable of interest and a voxel-wise map. Each voxel has a corresponding parameter estimate, a 

degree of freedom, a statistical test, and a p-value. If we set our acceptable rate of false positive 

at alpha less than 0.05, then it does not suffice to threshold voxels whose p-value is below this 

threshold as we inflate our true rate with each independent statistical test.  

 This is the core of the multiple comparisons problem. Consider performing two 

independent statistical tests and setting our acceptable false positive rate alpha at 0.05. Then to 

make joint inference on both of those findings, we need to account for the inflation in the false 
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positive rate with each additional statistical test (i.e., adding more statistical tests increases the 

overall likelihood of false positives). The Bonferroni correction (a type of family-wise error 

correction) is one method that adjusts the false positive rate by dividing alpha by the number of 

statistical tests (e.g., 0.05/2 or 0.025). However, this is far too conservative of a measure when 

correcting for multiple comparisons in a voxel-wise analysis due to the high number of voxel-

wise tests. Many voxel-wise data have statistical tests on the order of hundreds of thousands, 

thus for example if we adjust for multiple comparisons for 100,000 statistical tests we need a p-

value of 5x10-7 using this correction method. However, Bonferroni correction requires correction 

for the number of independent t-tests. As the voxels are highly spatially and structurally 

correlated, and were spatially smoothed (which introduces even greater correlation between 

voxels) then the voxels are not necessarily independent statistical tests.  

 Random field theory can be used to estimate the number of independent statistical tests 

based on spatial correlation (smoothness) of the voxel-wise data (Poline et al, 1995). A 

resolution element (resel) is a unit of measure that determines the number of independent tests. 

Assuming we know that data that was ‘x’ by ‘y’ by ‘z’ number of voxels had ‘V’ smoothness 

then the number of resels is computed as the product of the number of voxels divided by the 

cubed smoothness (Poline et al, 1995). Consider the example with 100,000 voxels then if we 

assume a smoothness of 12mm (typical for functional neuroimaging data) then the number of 

resels is approximately 58 thus only a p-value less than 8.6x10-4 is needed to correct for multiple 

comparisons.  
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4.0 MACHINE LEARNING 

This chapter introduces basic concepts of regression (logistic regression) and support vector 

machines (two commonly used algorithms), as well as introducing machine learning concepts, 

including: cross-validation, validation metrics (area under the curve, AUC), and permutation 

testing. After introducing core concepts, the common pitfalls and problems in machine learning 

are described: how high dimensionality causes over fitting and multi-collinearity issues; and then 

how these are overcome using kernel based machine learning methods. Finally, the keystone 

algorithm is described in the final two sections: multi-factor kernel based machine learning.  

4.1 REGRESSION 

Regression is the process of estimating a set of parameters that linearly model the association 

between an observed variable of interest and set of observed features. In the context of machine 

learning, we are often interested in how well the estimated parameters predict the observed 

variable of interest. Thus, after fitting a model we can predict new data and investigate how well 

the predicted variable matches the measured outcome. Consider the following problem: 

Equation 2a. , 
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where y is a vector that is length n subjects, X is a feature matrix that is n subjects by f features, 

and beta are the set of parameters that linearly model their association (vector length f) that we 

want to estimate. Then the following is the ordinary least squares solution: 

Equation 2b. . 

This solution has several key assumptions: (1) linearity which states that the observed variable is 

a linear combination of the features; (2) homoscedasticity which states that the variables have 

constant variance (i.e., they do not have skewed variance along the full set of values) as well as 

normality which states that features must be normally distributed; (3) independence of response 

variables (more specifically their errors) which states the each measurement is independently 

measured; and (4) no multi-collinearity which states that features should not be highly correlated. 

 The two most important assumptions to consider are linearity and multi-collinearity. 

When fitting models with low number of subjects, it is often best to assume linearity as non-

linear models may over-fit and not generalize well (i.e., model may be specific to the current data 

set and would not do well in a larger sample). Multi-collinearity occurs when features are highly 

correlated and thus there exists no unique solution to the parameter estimates. High dimensional 

data with large number of features tends to easily suffer from multi-collinearity as the probability 

that two features are highly correlated increases as the number of features increases.  

4.1.1 Logistic Regression 

Logistic regression is a scenario where the outcome variable is binary (or non-continuous). 

Unlike linear regression, logistic regression has no closed form solution for the parameter 

estimate, thus it is estimated through an iterative process. Parameters are usually estimated using 

maximum likelihood estimation where an initial solution is computed; it is updated using one of 
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several methods (e.g., Newton’s method); and repeats until the solution maximizes the likelihood 

function.  

 To understand the mathematical formulation, consider a simple example where we 

predict a variable y (vector with length n subjects) that is either zero or one with a single feature 

x (vector with length n subjects). In this scenario, we are estimating a probability that y equals 

one or zero given x, which can be written as: 

Equation 3a.  

Equation 3b.  

where the beta terms model the mean and contribution of x, respectively. As we are trying to 

estimate a probability, the solution for the probability should be bounded by zero and one – 

however the right hand side of the equation is unbounded (negative to positive infinity). Thus, 

we can use what is known as the logit function (defined here as F), which is one at positive 

infinity and zero at negative infinity. This can be written as: 

Equation 3c. , 

Equation 3d. , 

where these can be combined to a general form as: 

Equation 3e. . 

Note that if yi is one then equation 3e becomes 3c and if it is one it becomes 3d (thus the 

generalization, or equation 3e, works). The likelihood (which is what we would like to 

maximize) is the product of these probabilities for all individuals: 

Equation 3f. , 
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thus to estimate the probability, we should compute the derivative of the log-likelihood and solve 

for the parameters when it equals zero (as this maximizes the likelihood). However, the 

derivative of a set of products is not easily computed. However, we utilize a well-known 

property that the solution using the derivative of the log-likelihood is the same as the derivative 

of the likelihood. Thus we define the log-likelihood: 

Equation 3g. . 

Note that the log-likelihood reduces to a sum due to the property that the log of two products is 

the sum of the individual logs, and that the power terms are multiplicative due to the property 

that the log of a variable to a power is equal to the power times the log of the variable. At this 

moment, a derivative is computationally possible and we estimate the parameters such that the 

derivative with respect to each parameter of the log-likelihood is equal to zero. In reality, 

optimization algorithms that identify the maximum of the log likelihood function are able to 

estimate an initial approximation, then iteratively update the parameters (e.g., using Newton’s 

method, gradient descent, etc.), and then define some convergence criteria for the iteration to 

halt. This process can be scaled for more than one feature.  

We can fit a sparse logistic function (i.e. with fewer features included in the model) using 

step-wise regression. Step-wise regression is a model building approach that attempts to only 

include features that are highly predictive and generates the ‘best’ predictive model with the 

‘lowest’ number of features (attempts to generate the most parsimonious model). This process 

involves first starting with an initial model that only includes modeling the mean. The algorithm 

then iterates over multiple steps where each step it tests all possible features to include and 
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includes those that are most predictive (or none), but simultaneously also tests for which features 

should be removed. Once there are no more features to add or remove – the procedure stops. 

This generates a sparser model, which can be useful when considering high dimensional feature 

sets.  

4.2 SUPPORT VECTOR MACHINES (SVM) 

Support vector machines (SVM) are machine-learning algorithms that (similar to regression) 

generate a model that separates two groups by attempting to find a hyperplane that best separates 

the data with the largest margin between both groups. The basic concept is that there exist some 

boundaries that separate the data into several classes and these boundaries confidently predict 

classes on both extreme ends of the boundary. This section is divided into the following: 

notation, definition of margins, optimizing margins, define the Lagrangian, we define the 

optimization problem using the Lagrangian, introduce the concept of kernels, and briefly 

describe the optimization algorithm sequential minimal optimization (SMO).  

 Let y be one of two class labels (-1 and 1), while x is a feature. Then, a classifier can be 

defined with the intercept being defined as b and parameters as w:  

Equation 4a. . 
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4.2.1 Functional and Geometric Margins 

The functional margin represents the confidence of the accuracy of the prediction, where a large 

functional margin represents high confidence of a correct prediction. We can define the 

functional margin as the following: 

Equation 4b. , 

for a given training set [x(i),y(i)], where given a large set of training data then we would minimize 

across functional margins. The functional margin suffers as it does give you a measure of 

confidence but not how close it is to the decision boundary and this is due to the scalability of w 

and b. This allows for the functional margin to be arbitrarily large without meaning, thus we can 

constrain it using the L2-norm: 

Equation 4c. , 

where the magnitude of w is constrained.  

 Consider now the geometric margin, which is the distance between a training point (A) 

and the decision boundary. Let’s consider a point (B) that is orthogonal to A and lies on the 

decision boundary, while defining the distance between A and B as gamma. Thus, we can find 

the point B on the decision boundary using the following: 

Equation 4d. ,  

where the point A is by definition x, and gamma times the unit vector results in subtracting a 

value that is length gamma (distance from A to B) and direction orthogonal to the decision 

boundary. We can now use the value of B, which lies on the decision boundary, into the equation 

of the decision boundary: 
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Equation 4e. ,  

and then solving for gamma results in: 

Equation 4f. ,  

which can be generalized to the definition of the geometric margin: 

Equation 4g. . 

Given a large training set, we would then define the geometric margin as the smallest of the 

geometric margins across all the training data.  

4.2.2 Defining the Minimization Problem 

The goal is to find a decision boundary that maximizes the geometric margin, as this would 

reflect a high confidence set of predictions (results in a classifier or model that separates two 

classes with a margin or gap whose center is the decision boundary). This maximization problem 

can be written as: 

Equation 5a. . 

 While we could attempt to solve this problem – it is not well constrained, mainly the L2-

norm constraint is not convex (i.e., may have multiple local minima). However, we can alter this 
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problem using two ideas developed in section 4.2.1. The first is that the geometric margin is 

equal to the functional margin divided by the L2-norm: 

Equation 5b. ,  

and if we replace the geometric function in equation 5a then we get: 

Equation 5c. . 

From the previous section, we know that the functional margin can be scaled without changing 

the solution, which we know take advantage of and scale the functional margin such that: 

Equation 5d. , 

and further since the maximization problem in 5c is reduced by equation 5d, then we are now 

maximizing one over ||w|| then we can instead define the problem as a minimization like this: 

Equation 5e. . 

The current optimization problem is convex (squared term) and thus has an optimal solution. 

Note that minimizing the squared term is the same as maximizing the inverse term, and also that 

we have included a constant (1/2, which does not change the solution) but does simplify some of 

the computation in later stages. While this optimization problem is well constrained and 

solvable, we can define a better form (dual form) that performs much better and has some 

desirable properties regarding kernels (defined later).   
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4.2.3 Dual Form of the Minimization Problem 

Using the Lagrangian we can define the dual, and so if we consider a general form of an 

optimization problem: 

Equation 6a. . 

Then the Lagrangian is essentially the following: 

Equation 6b. , 

where beta are known as the Lagrangian multipliers, and we can calculate two partial derivatives 

to estimate the two parameters: 

Equation 6c. . 

This is a well-defined construct that we do not review (except for equation 6a-6c). We can thus 

input these into the original equation to get the dual form. However, applying this concept to 

equation 5e, we can further simplify the minimization problem. Thus, the Lagrangian for this 

problem is: 

Equation 7a. , 

where alpha are the Lagrangian multipliers. The partial derivatives are  

Equation 7b. ,  
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Equation 7c. . 

Inserting these into the original problem (equation 5e) and after rearranging, we reach the dual 

form of the problem: 

Equation 8a. . 

The dual form of this problem has several unique properties that can be utilized, and by utilizing 

kernels these algorithms can learn in high dimensional spaces.  

4.2.4 Kernels 

Consider that instead of learning using the feature set x, that it may be beneficial to learn using 

the squared and cubic terms as well. We can then define such a function: 

Equation 9a. , 

where phi is a mapping between an input feature and some new feature set that may be more 

informative than the original feature set. Equation 8a can be written entirely as dot products and 

so we can define a Kernel as: 

Equation 9b. . 
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The dot products can thus be replaced by K(x,z) or the Kernel. In practice, we never compute 

phi, but rather the Kernel is often inexpensive to calculate. A particularly useful Kernel is known 

as the radial basis function (rbf): 

Equation 9c. , 

where sigma is a parameter and “exp” refers to the exponential function. These functions can 

thus learn different boundaries (not just a straight line) using such an exponential function. The 

‘kernel trick’ is that we can use linear algorithms to learn non-linear kernels (e.g., rbf).  

4.2.5 Sequential Minimal Optimization (SMO) 

The SMO algorithm is one of the most frequently used algorithms to solve the maximization (of 

alpha) problem in equation 8a. In this algorithm two alphas are chosen (based on a heuristic that 

picks alphas that progresses towards global maximum maximally), they are updated, then W is 

optimized with respect two updated alphas, and then this is repeated until convergence. 

Critically, two alphas are chosen because the sum of all alphas must equal one – thus by 

changing one, another must be updated as well.  

 The major reason this optimization scheme works well is that the update for alpha is 

computationally very efficient. Thus, even though the first step (which chooses alpha based on 

some heuristic) is not an optimized step, we can update alpha quite easily. Further, any update is 

bound to go towards the maxima (albeit some may have smaller step sizes). Finally, this method 

is guaranteed to converge.  
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4.3 MACHINE LEARNING MODEL BUILDING PROCEDURE 

Several key concepts are needed to understand the basics of fitting machine learning models and 

testing their efficacy. Specifically, five core concepts are introduced: cross-validation, feature 

selection and parameter optimization, validation and the measures used, and permutation testing. 

The basic procedure for training and testing a model is: (1) divide data into a training set (used to 

fit the models) and a test set (used to validate its efficacy); (2) using only the training data choose 

features and optimize parameters of the machine learning model; (3) predict the testing set 

outcomes using the trained model; (4) compare the outcome of the test set to the predicted 

outcomes using validation measures.   

 Cross-Validation. The first step of most model building is determining which data will be 

used as training sets (i.e., data to fit the model) and subsequently which data will instead be the 

testing set (i.e., data to validate the final built model). If we fit the model and test it on the same 

dataset – we will inflate the accuracy thus it is critical to separate the data into training and test 

sets. If there are large samples, a good recommendation is to use approximately 70 percent of the 

data as training and 30 percent as testing. This is by far the most principled way of determining 

the accuracy and efficacy of the machine-learning model. However, if the sample size is small 

then this may not be possible, thus if the number of samples is very small then leave-one-out 

cross-validation may be a good option. In this approach, the model building process is repeated 

‘n’ times (number of subjects) where in each fold one subject is left out as the test and the others 

are used as training data. The model is built then we predict the outcome on the test holdout. If 

we repeat this process then we will have built ‘n’ models and predicted each point (where on 

each fold that individual was left out of the model training). However, this approach can be 

highly biased towards the sample and often it is better to use a larger number of folds. Thus, we 
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can perform a similar iterative holdout procedure however instead of leaving just one individual 

out on each fold, we instead leave out a higher number (e.g., if N=50 then a 10-fold cross-

validation would result in 10 folds with 5 individuals each, where the model training is done 10 

times and the data of 5 individuals is left out as the test set).  

 Feature Selection and Parameter Optimization. In high dimensional feature sets, it is 

important to select features prior to fitting the machine learning models. If there are too many 

features, the model may over-fit (described in section 4.4.1). The most principled way to select 

features is to use some percentage (e.g., 15 percent) of the training data set to determine a set of 

relevant features that are then used in the model training. Again if the number of samples is small 

then this may have to be cross-validated as well. Often this can mean using another cross-

validation inside the loop that performs the training. We can determine the best features inside 

this nested cross-validation. Similarly, we may want to optimize parameters of the machine 

learning models (e.g., box constraint in SVM) and we can allow for this to occur inside this 

nested cross-validation as well.  

 Notice that while allowing for a nested cross-validation allows for a good optimization of 

the parameters and good feature selection, it may be biased because the parameters chosen and 

the features selected may not be consistent for each fold of the original cross-validation. Thus, at 

best we can assume that the model training procedure is generalizable to a larger population – 

but not necessarily the specific model that we train.  

 Validation Metrics. For each fold of the cross-validation a model was fit and the outcome 

of the test set was predicted. Thus, after this procedure each subject has a single predicted 

outcome (ŷ), which is either a set of probabilities or a set of predicted labels, and a single actual 
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outcome (y). Two common measures to validate the efficacy of the trained model are: accuracy 

and area under the curve (AUC) of a receiver-operating characteristic (ROC) curve.  

 If a label is output, accuracy is a measure that determines percentage of accurately 

identified individuals. The following are needed to compute accuracy: true positives are the 

number of positives successfully identified and true negatives are the number of negatives 

successfully identified. Subsequently, false positives are the number of negatives identified as 

positives (type I error), and false negatives are the number of positives identified as negatives 

(type II error). Accuracy is the number of true positives and negatives combined divided by the 

total number of individuals. We can also identify two other important values: sensitivity or how 

accurately we identify positives (true positives divided by true positives plus false negatives) as 

well as specificity or how accurately we identify negatives (true negatives divided by true 

negatives plus false positives). While accuracy identifies how well we can identify labels, it does 

not identify how accurately we can identify positive and negative classes. In a scenario where 

there are a high number of negative classes, the model (for example) may just predict that all 

labels should be negative. This would result in a higher accuracy and specificity, but low 

sensitivity. A good model balances sensitivity and specificity.  

 If a probability is output (instead of a label), an ROC curve can be generated and AUC 

can be calculated. For a set of ‘m’ thresholds, we can threshold those probabilities and calculate 

the false positive rate (number of false positives divided by total negative) and plot it against the 

true positive rate (or sensitivity). This plot is known as the ROC curve, and the area under the 

ROC curve (the integral) is known as the AUC. An AUC of 1 indicates a perfect prediction, 

while an AUC of 0.5 indicates at chance prediction.  
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 Permutation Testing. While a model may have high accuracy, we may want to test 

whether this accuracy is significant. A possible concern is that the model building procedure is 

so good that given any training labels, it is still able to achieve a high accuracy. A basic 

procedure that can be done is known as permutation testing, which involves establishing a 

distribution for some measure of interest (whose distribution is unknown, e.g., accuracy) and 

determine a significance based on this distribution.  

 This process involves: (1) randomly permuting (mixing) the labels in the outcome 

measure; (2) performing the entire model training process; (3) calculating the validation measure 

(e.g., accuracy). This process is repeated a large number of times (e.g., 5,000 times). For each 

permutation a single accuracy measure has been computed, which establishes the distribution of 

this specific measure. We can then investigate whether the accuracy measure we computed lies 

on the tails of the distribution (indicating its significance). To calculate a p-value directly, we can 

add the number of times the permuted validation measures are greater than the actual accuracy 

measure then divide by the number of permutations. Thus, if the accuracy is significant (defined 

as alpha < 0.05) it should be greater than the randomly permuted accuracy 95% of the time (as 

alpha is 5%). If not, then it means that our model building procedure is able to predict any given 

set of labels and thus the current model may be accurate but would not generalize to another 

sample.  
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4.4 PRACTICAL PROBLEMS AND SOLUTIONS 

4.4.1 Common Machine Learning Problems 

There are several common problems that plague machine learning, however the core problem is 

high dimensionality of features and low number of samples (especially in neuroimaging 

literature). This tends to also be the underlying cause of many other issues including: over fitting 

and biased feature selection and another separate problem is multi-collinearity.  

 High dimensional data (i.e., too many features) often suffers from generalizability issues, 

and models built in high dimensional feature spaces tend to perform well on the training data but 

worse on the test data. Often this may be because there are too many semi-random features that 

do not accurately and reliably model the data. One example where this may occur is that a single 

individual may be an outlier on some feature, and that feature may be chosen as predictive – 

which may bias the entire model. High dimensional problems tend to also be more complicated 

to understand, as there may be multiple interacting features. This tends to lead to over-fitting of 

the model as a high number of features (even random features) are able to generate a single 

model, but these tend to do well only on the training data. This can complicate feature selection 

as well; mainly if there are a lot of features it may be difficult to either know which features to 

include a priori or even determine algorithmically. 

 The number of samples needed to fit generalizable machine learning models should be 

considerably greater than the number of features. Similar to high dimensional data, this results in 

over-fitting and high variance in accuracy. Further, a small sample size is more likely to suffer 

from selection bias (i.e., sample may represent only a small subsample of the entire population) – 

thus even if the model is stable it may not generalize to a larger more general population or just 
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generalizes to specific subsample. If we select features algorithmically, because this process is 

usually done in either a separate sample or a nested loop – the number of samples becomes 

severely limited when trying to select the best features.  

 Multi-collinearity refers to the association between features. If two or more features are 

highly correlated, it may be difficult for the model to differentiate between them and many 

models often involve assumptions regarding feature independence. High dimensional data is 

more likely to contain features that are linearly correlated (based on central limit theorem). 

Often, a feature selection procedure is needed to remove highly collinear features.  

 As a result of multiple of these problems, another issue is that often many of these 

problems do not have an idealized solution. For example, the ordinary least squares solution for 

regression (equation 2b) is not an ideal solution when the number of features is greater than the 

number of samples or if the features are highly collinear. Thus, often we have to regularize the 

solution to penalize highly over-fit models (e.g., usually a penalty term with a corresponding 

parameter is used to reduce the number of features contributing to the overall model).     

4.4.2 A Practical Solution: Principal Components Analysis 

A powerful tool that is often utilized is known as principal components analysis (PCA), and is 

potentially able to resolve each of the problems in section 4.4.1 in a single step. PCA is a 

deterministic process that identifies a low dimensional feature space that can be used to represent 

higher dimensional data. To understand PCA intuitively, several critical concepts are needed.  

Theoretically, it is a method that identifies an orthogonal (i.e., not correlated) basis set of 

the high dimensional feature space. Some examples of common orthogonal bases are the 

Cartesian coordinate system or the cosine basis. The Cartesian coordinate describes all points in 
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a 3D space by defining three points on three linear but orthogonal vectors (x, y, and z). Similarly, 

the cosine basis can define all signals in time as a set of cosine functions of varying frequency 

and amplitude. Thus the discrete cosine basis can define any signal as a linear combination of 

many cosines and so it forms a basis or a low dimensional feature space (cosines) that defines a 

very high dimensional feature space (all discrete signals). In the same way, PCA attempts to 

identify orthogonal vectors (called eigenvectors) that represent the entirety of the data in a low 

dimensional space.  

Another intuition important in PCA and basis sets is that of rank, which represents the 

nondegenerateness of the feature space. Consider the Cartesian coordinate system again, to 

define a 3D data set a minimum of three vectors are needed to identify all points in space, 

however if we added another vector it would be rank deficient. These four vectors are not 

orthogonal when defining a 3D space, as a maximum of 3 vectors is needed (i.e., only three 

numbers are needed to understand where in a 3D space a point is located while the fourth adds 

no new information). Similar to the high dimensionality issues described earlier, having a fourth 

dimension or vector is similar to having too many features. 

Singular value decomposition (SVD) is a method that can be used to decompose any 

matrix into a combination of three matrices: two unitary matrices (i.e., conjugate transpose is 

also its inverse) and a rectangular diagonal matrix. Using SVD, we can perform PCA on any 

given matrix. Given a matrix ‘X’ (‘n’ subjects by ‘f’ features) then SVD can be represented as: 

Equation 10a. , 

where U (n by n) and V (f by f) are square unitary (e.g., U*UT=I) matrices and Σ (n by f) is a 

diagonal matrix. Critically, U and V represent the left and right eigenvectors while Σ contains the 

eigenvalues along its diagonal. While PCA is usually described as decomposition on the 
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covariance matrix, SVD allows for a simpler decomposition (i.e., U and V of X are the same as 

the eigenvectors of X*XT). The UΣ is also known as the scores while V is known as the 

coefficients or loadings, where the scores represent the original data in the principal component 

bases while the coefficients are the transformation between the original and principal component 

bases.  

The scores is a square matrix that is n by n, where the n-rows represent each individual 

subject and the n-columns represent the n-bases (or principal components). Further, UΣ*(UΣ) is 

the identity matrix, thus the n-bases are not correlated. We have now constructed a feature space 

that is not collinear, has as many features as number of subjects (thus not rank deficient), and 

because of this has an idealized solution in regression problems. This is the basis of principal 

components regression or kernel (since the scores from PCA are a kernel) based machine 

learning. The basic approach is to first reduce the feature matrix using PCA to get scores, fit a 

machine-learning model between the scores and the outcome, and transform the parameters back 

to the original space using the coefficients. Section 4.4.3 describes the general process of kernel-

based regression.  

4.4.3 Kernel-Based Regression 

Consider a feature matrix X (n by f) and a vector of outcomes y (length n) then while we could 

solve the general regression problem (y=XB), it may suffer from some of the problems described 

previously. An alternative is to first perform PCA on X (which we first center by removing the 

mean of each column): 

Equation 11a. , 

where W is the scores and V is the coefficients. Then we can solve the following problem: 
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Equation 11b. , 

where we now instead solve for a new set of regression parameters (one for each component in 

the PCA), which does not suffer some of the typical pitfalls described in previous sections. We 

can then back-project these parameters into the original space (if we are interested in 

understanding the model) using the coefficients: 

Equation 11c. , 

which is an ideal solution for the original problem and has several unique properties, but most 

importantly it addresses the multi-collinearity problem and has a regularization effect. Thus, by 

utilizing this ‘kernel trick’ we are able to fit a well-defined and efficient model.  

Choosing Number of Principal Components: This model is improved further by choosing 

a set of principal components instead of utilizing the entire feature space. There are several 

methods for choosing the number of components, the most common being to investigate a scree 

plot (cumulative variance explained by number of components) and either choosing the number 

of components that explain a certain percentage of variance or by finding the ‘elbow’ of the scree 

plot (i.e., find the maximum of the second derivative of the scree plot also known as the 

inflection point). However, another method, which is one of the most recommended but most 

under utilized, is called Horn’s parallel analysis. This method utilizes permutation testing and 

permutes the data matrix into uncorrelated normal variables and performs PCA getting a set of 

eigenvalues over several permutations. For each eigenvalue we can compute a p-value by adding 

the number of times the random eigenvalue is greater than the actual eigenvalue and dividing by 

the total number of permutations. Eigenvalues with p-values less than some pre-determined 

alpha (e.g., alpha < 0.05) are considered significant and are retained.  
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4.4.4 Multi-Factor Analysis 

Multi-factor analysis (MFA) is an extension of PCA that seeks to balance several feature sets 

(Abdi et al, 2013). Consider an example where some outcome (e.g., depression severity) is 

dependent on two feature sets (e.g., clinical surveys and genetic data), where we assume that the 

number of clinical surveys (f) is much less than the number of genetic features (g). We could 

investigate the association between depression severity and each clinical survey or each genetic 

variable using principal components regression (PCR). While we could perform these analyses 

separately, it may be useful to understand their joint association with depression (i.e., the 

association between depression severity and both feature sets). We could combine these feature 

sets into one dataset (which has f plus g features) and then perform PCR. However, the surveys 

suffer greatly because the kernel that is generated using PCA is influenced by the genetic data 

solely due to its size (as it has a much larger number of features, g). 

 MFA extends upon this by performing PCA twice. We compute a set of scores for both 

feature sets (i.e., one kernel for the surveys and one for the genetic data) and then these scores 

(which are identical in size) are then input into another PCA where another set of scores is 

generated. This assumes that the genetic data and clinical surveys both serve an important role in 

understanding the depression severity and does not bias the kernel towards either feature set. 

This becomes essential as in neuroimaging studies we often collect multiple neuroimaging data 

(structural and functional that are very high dimensional on the order of hundreds of thousands 

of voxels), but also collect clinical measures (with much lower number of features) that may be 

just as important. Thus, MFA can be used to balance the predictive capabilities of each set of 

features without the loss of balance between features. Such an approach will enable a unique 

combination of multiple feature sets and will utilize the full set of features within a study.  
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4.5 MULTI-FACTOR KERNEL BASED MACHINE LEARNING 

Two major algorithms are used in this work: (1) single feature set learning and (2) multi-feature 

set learning. Single feature set learning uses kernel-based (PCA) learning while the multi-feature 

set uses an extension using another kernel based on the MFA instead of PCA.  

4.5.1 Single Feature: Kernel Based Learning 

Given a single feature set X (n subjects by f features, which can be images, surveys, or any other 

data) and a vector of outcomes (y, length n subjects) then the implemented algorithm (PCR) is as 

follows:  

1. Horn’s Parallel Analysis is conducted on X to determine the number of components (or c, 

where c < f) to keep in the PCA.  

2. Perform PCA on X to calculate scores (W, n by c) and coefficients (V, c by f).  

3. Conduct a 10-fold cross-validation dividing data into training and test sets. Then for each 

fold perform the following: 

a. Fit a model (using either SVM, Logistic Regression, or step-wise Logistic 

Regression) between the training scores (Wtrain) and the outcomes (y). 

i. Optimize the models using the training data (if needed). 

b. Using the model predict a set of outcomes (ŷ) using the test scores (Wtest). 

4. After we iterate through all 10 folds, the predicted outcomes (ŷ) are compared to the 

actual outcomes (y). We compute AUC and accuracy.  

5. As the cross-validation in step 3 is non-exhaustive (i.e., it does not learn and predict on 

all possible ways to divide the data into training and test sets), it benefits to generate a 
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large set of cross-validations. Thus, we repeat steps 3 and 4 several (50) times where on 

each repetition we generate another cross-validation scheme. This will output a 

distribution on the validation measure (i.e., 50 AUC and accuracy measures are 

generated).  

6. We fit a single model on all W and y to get a set of parameters (βpcr, length c) that are 

projected back into the original space using the coefficients (β=Vβpcr, length f). We 

perform permutation testing (step 7) to determine which parameters in the original space 

significantly contribute to the prediction model.  

7. Generate a set of 1,000 random permutations of y. For each permutation: 

a. Fit a single model between W and ypermuted to get a set of (βpcr_permuted) that are 

projected back into the original space using the coefficients 

(βpermuted=Vβpcr_permuted). 

8. For each parameter (β), add the number of times its absolute value is less than the 

absolute value of the permuted parameter (βpermuted) then divide by the number of 

permutations (1,000) to generate a single p-value for each parameter. This determines 

whether the parameter significantly contributes to the overall model.  

4.5.2 Multiple Features: Multi-Factor Kernel Based Learning 

Consider two feature sets X (n subjects by f features) and S (n subjects by g features) and a 

vector of outcomes (y, length n subjects). Note that this process extends the previous algorithm 

to have two instead of one PCA (hence multi-factor), thus fit parameters are projected twice. The 

implemented algorithm (MFA) is as follows:  
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1. PCA is conducted on both X and S to generate scores (W and S, both n by n matrices) 

and coefficients (V, length n by f; and N, length n by g). We generate a single scores 

matrix from all scores (R, n by 2n).  

2. Horn’s Parallel Analysis is conducted on R to determine the number of components (or c) 

to keep in the PCA.  

3. Perform PCA on R to calculate scores (Q which is n by c) and coefficients (P which is c 

by 2n).  

4. Conduct a 10-fold cross-validation dividing data into training and test sets. Then for each 

fold perform the following: 

a. Fit a model (using either SVM, Logistic Regression, or step-wise Logistic 

Regression) between the training scores (Qtrain) and the outcomes (y). 

i. Optimize the models using the training data (if needed). 

b. Using the model predict a set of outcomes (ŷ) using the test scores (Qtest). 

5. After we iterate through all 10 folds, the predicted outcomes (ŷ) are compared to the 

actual outcomes (y). We compute AUC and accuracy.  

6. As the cross-validation in step 3 is non-exhaustive (i.e., it does not learn and predict on 

all possible ways to divide the data into training and test sets), it benefits to generate a 

large set of cross-validations. Thus, we repeat steps 4 and 5 several (50) times where on 

each repetition we generate another cross-validation scheme. This will output a 

distribution on the validation measure (i.e., 50 AUC and accuracy measures are 

generated).  

7. We fit a single model on all R and y to get a set of parameters (βMFA, length c) that are 

projected back into the MFA space using the coefficients (βpcr=PβMFA, length 2n). 
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Another projection allows the parameters to be projected to the first PCA space 

(βX=Vβpcr, length f; or βS=Nβpcr, length g). We perform permutation testing (step 7) to 

determine which parameters in the original space significantly contribute to the 

prediction model.  

8. Generate a set of 1,000 random permutations of y. For each permutation: 

a. Fit a single model between Q and ypermuted to get a set of (βMFA_permuted) that are 

(twice) projected back into the original space using the coefficients (βpermuted). 

9. For each parameter (β), add the number of times its absolute value is less than the 

absolute value of the permuted parameter (βpermuted) then divide by the number of 

permutations (1,000) to generate a single p-value for each parameter. This determines 

whether the parameter significantly contributes to the overall model.  
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5.0 NEURAL CORRELATES OF LATE-LIFE DEPRESSION 

This chapter introduces major depressive disorder (MDD) and late-life depression (LLD) as well 

as the structural and functional neural correlates of pharmacotherapy. The neuroimaging 

prediction literature is also reviewed briefly. The introduction sections of chapters 6 to 8 cover 

the resting state, emotion reactivity, and prediction of response literature, respectively.  

5.1 MAJOR DEPRESSIVE DISORDER 

Depression is characterized by several core symptoms: low/depressed mood, anhedonia (inability 

to feel pleasure), low energy or fatigue as well as disturbed sleep, pessimism, feelings of guilt, 

loss/gain of weight, and suicidal tendencies. It is a complex disorder dependent on genetic, 

environmental, and neural factors. Depression has a high prevalence (16.6% of individuals will 

meet criteria for MDD at least once in the US (Kessler et al, 2005)) and is associated with high 

medical comorbidity and mortality resulting in more years lived with disability than any other 

disease (Alexopoulos and Kelly, 2009; Moussavi et al, 2007). Depression ranks fourth in 

disability-adjusted life years (Moussavi et al, 2007). It is projected (by 2020) that it will only be 

second to heart disease in its contribution to global disease burden (Hinrichsen and Hernandez, 

1993). Further, individuals with MDD have worse cognitive functioning, greater prevalence and 

severity of chronic medical conditions such as arthritis, hypertension, and diabetes, as well as 
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increased utilization of medical services and greater health care costs (Bruce et al, 2004; 

Charney et al, 2003; Stevens et al, 1999). Despite significant strides in our understanding of 

MDD etiology, pathophysiology, and mechanisms for treatment, it has proven challenging to 

prevent, diagnose, and treat depression effectively. 

 While MDD has a strong genetic susceptibility component (first-degree relatives carry a 

threefold increase in risk compared to the general population (Sullivan et al, 2000)) it is also 

associated with a wide variety of neurobiological factors. The most well-known and well-

characterized hypothesis is the dysfunction of monoamine systems, specifically serotonin, 

dopamine, or norepinephrine (Bunney and Davis, 1965; Schildkraut et al, 1965). This was 

largely supported in studies that showed that decreased synaptic concentrations of these 

neurotransmitters could cause depression symptoms (Bunney et al, 1965; Schildkraut et al, 

1965). Further, treatment with drugs that increased synaptic serotonin and norepinephrine would 

ameliorate depressive symptoms (Charney, 1998; Delgado et al, 1990; Miller et al, 1996). Other 

systems are also affected such as the corticotropin-releasing hormone, which affects the 

hypothalamus-pituitary-adrenal axis, and substance P, which is involved in the response to stress 

(Gold et al, 1984; Holsboer et al, 1984; Kramer et al, 1998; Nemeroff et al, 1984). Circadian 

dysregulation are also described in MDD (Kupfer et al, 1982), where sleep deprivation can result 

in a short-lived remission to depression.  

 Other environmental and demographic factors are also associated with the susceptibility 

to depression (reviewed in (Vink et al, 2008; Wong and Licinio, 2001)). Women and older 

individuals are more susceptible to depression. Prior depression is also a significant predictor, 

though it is unclear whether this is due to genetic susceptibility or chronicity. Social aspects like 

marital status (unmarried), lower socio-economic status, living alone or without a support 
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structure, and recent bereavement are also associated with greater risk. Current or past health is 

also strongly associated with depression, including disability, current poor health, new medical 

illness, and a history of medical illness. Cognitive impairment is also a strong predictor of risk 

for depression. Thus, a variety of factors increase the risk of depression and likely remission as 

well.   

5.2 LATE-LIFE DEPRESSION (LLD) 

There is a second peak of incidence of depression in late-life (first peak in youth) that is 

associated with greater risk of suicide, medical comorbidity, disability, and family caregiving 

burden (Katon et al, 2010; Mulsant et al, 2006; Nelson et al, 2013). In late-life, there are several 

age-related factors that may further influence symptoms. For example, comorbid anxious-

depression is more prevalent in late-life (Chou, 2009). Aging individuals have greater illness 

burden as well cognitive decline or dementia - both of which increase susceptibility to 

depression.  

Additionally, in late-life a novel mechanism may drive some subtypes of depression. The 

‘vascular depression hypothesis’ states that cerebrovascular disease may further predispose, 

precipitate, or perpetuate depressive symptoms (Taylor et al, 2013). Cerebral perfusion deficits 

induce microbleeds and infarcts in the white matter tracts, and consequently result in the 

dysconnectivity of various brain regions, thus worsening both cognitive function and mood 

symptoms (Taylor et al, 2013). The white matter lesions are noticed as hyperintense regions on 

T2-weighted MRI images.  
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5.2.1 Treatment of LLD 

The most common treatment of LLD is antidepressant pharmacotherapy. Treatment of 

depression often involves a trial and error process of multiple antidepressants before an effective 

regimen is found. Approximately 40-50% of patients fail to respond to initial pharmacologic 

treatments (Andreescu et al, 2011). Typically, for midlife MDD, a clinician needs 3-4 weeks to 

determine whether the current regimen will be effective, an interval which increases in LLD to 

approximately 6-8 weeks (Andreescu et al, 2011; Reynolds et al, 2006). This interval is 

associated with increased risk of suicide and dropping from care. This is one of the most 

challenging features of treatment in LLD, thus it is particularly important to detect early 

treatment markers (prior to the behavioral response period) that indicate future clinical 

improvement (Aizenstein et al, 2014).  

 While current treatments often improve symptom severity, achieving full remission and 

maintaining remission is more difficult and likely explains why depression has more years lived 

with disability than other disorders. Although approximately two-thirds of patients eventually 

respond to some antidepressant therapy, relapse rates are high (especially in late-life) (Andreescu 

et al, 2011). This is further complicated by increased side effects from antidepressants, which 

reduces compliance with treatment and thus likelihood to achieve remission of symptoms 

(Andreescu et al, 2011).  

Previous studies have identified several biomarkers of treatment response (reviewed in 

(Aizenstein et al, 2014; Breitenstein et al, 2014)). Two biological predictors include the 

serotonin transporter gene (S allele) and the decreased rapid eye movement sleep latency which 

are both associated with poor response. Further, glucose metabolism in the subgenual and the 

dorsal anterior cingulate is associated with better response. There are a host of clinical variables 
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that are predictive of better response such as low medical burden, early symptom improvement, 

early age of onset, no sleep disturbance, lower pre-treatment depression and anxiety severity, low 

suicidal ideation, and previous response to antidepressants. Thus, a broad category of social, 

genetic, and neural markers are associated with remission. In the next section, we describe in 

greater detail the neural changes associated with treatment response in LLD.  

5.3 NEURAL PREDICTORS OF RESPONSE TO PHARMACOTHERAPY 

Currently, MRI is only used clinically to screen whether depression symptoms are related to 

structural atrophy or cerebrovascular disease (Botteron et al, 2012; Gelenberg et al, 2010). 

However, several studies have investigated the pre-treatment structural and functional MRI 

predictors of response to antidepressants in LLD or the MRI changes associated with successful 

pharmacotherapy.  

 There are several common structural neuroimaging features associated with resistance to 

treatment. The most common is the white matter hyperintensities (WMH) burden, which 

correlates with the overall vascular burden described in the vascular depression hypothesis 

(Taylor et al, 2013; Taylor et al, 2003). High pre-treatment WMH burden has been associated 

with poor response to antidepressant pharmacotherapy. This is one of the most consistent 

findings in the neuroimaging literature in LLD and further supports the notion that LLD, 

especially the vascular subtype, may have a different mechanism to remission. To further support 

this, some studies have also reported a trend increase in WMH burden in non-responders during 

the course of a trial (Sheline et al, 2010a). These results have been interpreted as a product of the 
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vicious pathophysiologic circle (vascular lesions trigger depression which increases 

inflammation and worsens the vascular burden).  

 A smaller literature implicates several other pre-treatment structural markers (reviewed in 

(Aizenstein et al, 2014; Breitenstein et al, 2014)). Low pre-treatment dorsal and rostral anterior 

cingulate volumes predict poor response to antidepressants, which have been functionally 

implicated in depression and are related to emotion reactivity and regulation. Similarly, lower 

dorsolateral prefrontal cortex volumes also correlate with poor response to pharmacotherapy and 

are thought to be associated with lowered cognitive control over emotions. Lower hippocampus 

volumes have also been shown to be associated with poor response, however its relation to 

depressive symptoms is less clear. While amygdala (emotion reactivity and memory) volume and 

activity has also been shown to be associated with depressive symptoms and response to 

antidepressants, this result is less robust in LLD. Fractional anisotropy (FA, which measures 

microstructural integrity of the white matter) has also been implicated in response, mainly that 

low FA in the frontal cortex and anterior cingulate predicts poor response – however it is unclear 

whether this is driven by WMH (since WMH burden tends to accumulate in the anterior and 

posterior cingulum). Further, much of the literature regarding pre-treatment structural predictors 

of response in LLD is mixed and it is unclear how specific these predictors are to individual 

antidepressants (since each of these studies varied in the course and antidepressant used).  

 The literature directly investigating LLD and functional neural markers is more limited, 

however some of the functional changes in mid-life may be important in understanding the 

context of changes in late-life. Resting state studies indicated that high pre-treatment amygdala-

cingulate and insula-cingulate connectivity was predictive of poor response (Lui et al, 2011). 

Mainly limbic structures are strongly implicated. High pre-treatment default mode network and 
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low executive control network connectivity was associated with better response to 

antidepressants (McGrath et al, 2013). While presenting visual images of sadness, previous 

studies found that high anterior cingulate activation was predictive of better response and that 

during presentation of happy images, higher hippocampal activation was predictive of better 

response (Chen et al, 2007; Fu et al, 2008; Fu et al, 2007; Langenecker et al, 2007; Lemogne et 

al, 2010; Lisiecka et al, 2011). Limbic reactivity during emotional face matching has also been 

shown to predict response to antidepressants and greater orbitofrontal-cerebellar connectivity 

was predictive of better response during this task (Lisiecka et al, 2011). A meta-analysis of 

positron emission tomography using fluorodeoxyglucose further implicated the following: high 

subgenual cingulate and medial prefrontal cortex metabolism and low putamen as well as 

insula/inferior frontal gyrus metabolism were associated with better response (Fu et al, 2013). 

The amygdala however showed high heterogeneity – some showing high and others showing low 

reactivity in responders (Fu et al, 2013). These changes reflect altered resting state default mode 

network and executive control network connectivity (hypothetically related to ruminative aspects 

of depressive symptoms), altered limbic reactivity (high emotional response), and low activation 

in cognitive regions (low emotional control). 

 LLD studies have shown a similar pattern of altered cognitive and limbic networks. LLD 

studies showed alterations in pre-treatment resting state executive control network connectivity 

and default mode network connectivity (Aizenstein et al, 2009; Alexopoulos et al, 2012; 

Andreescu et al, 2013; Brassen et al, 2008; Wang et al, 2008a). One study reported decreased 

posterior cingulate-striatum connectivity following treatment response (Andreescu et al, 2013). 

Several studies during a wide set of tasks reported low prefrontal cortex activation that 

normalized after treatment.  
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The treatment of depression and depressive symptoms is complicated by individual 

differences in etiology, pathophysiology, and treatment response. Machine learning approaches 

use high volume data to create a computational model that considers a large number of features 

outside of what is typically considered. A clinician typically considers a host of features, 

including time of onset, single vs. recurrent vs. chronic depressive symptoms, severity of 

symptoms, whether the individual is in partial or full remission, presents with/without psychotic, 

catatonic or melancholic features, seasonal patterns, and whether the symptoms are associated 

with other medical illnesses. However, even the most experienced clinicians may draw from past 

and learned experiences but may not be able to interpolate from the most current research. A 

machine-learning model may be able to help identify and summarize a much larger host of 

features (including genetic, neuroimaging, surveys, as well as exercise and diet information) 

from a large dataset. These models can also incorporate new technological advances and their 

use in modern society (e.g., internet usage as a predictor). Producing such summaries may help 

further guide clinicians when making decisions on the best course of treatment. However, most 

models fail to produce highly desirable and/or reproducible effects, as they were not designed for 

use in prediction models.  

We can design studies that are biased to high number of samples instead of towards non-

useful markers. While structural MR markers are useful and may be predictive – they are not 

cost-effective, as it would require an MRI, which is expensive. However, functional 

measurements can be made using a wide variety of techniques that are more cost-effective (e.g., 

electroencephalogram or EEG). Surveys are a cheap and effective method to determine the 

current depressive state as well as a host of important variables (e.g., age, gender, socioeconomic 

status, education, etc.). Genetic sampling can be done and is cost-effective mainly as it need only 
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be done once, while other clinical measures can be performed easily (e.g., blood pressure as well 

as blood biomarkers). Thus using such designs, it may be possible to generate sophisticated 

models of response. In the next sections we present results of a large multi-modal LLD cohort.  
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6.0 INTRINSIC FUNCTIONAL CONNECTIVITY IN LATE-LIFE DEPRESSION 

(LLD): TRAJECTORIES OVER THE COURSE OF PHARMACOTHERAPY IN 

REMITTERS AND NON-REMITTERS 

This chapter is a modified version of work that has been previously published in Molecular 

Psychiatry (Karim et al, 2016a). This work (including only a subset of the full data as this is 

what was available) was intended to fulfill the first half of aim 1 to investigate resting state 

connectivity changes in the brain following antidepressant treatment, how this differed between 

remitters and non-remitters, and if any acute changes (e.g., following a single dose of 

antidepressants) was observed. The paper is reprinted here (with permission from Nature 

Publishing Group).  

6.1 ABSTRACT 

Previous studies in late-life depression (LLD) have found that patients have altered intrinsic 

functional connectivity in the dorsal default mode network (DMN) and executive control 

network (ECN). We aimed to detect connectivity differences across a treatment trial among LLD 

patients as a function of remission status. LLD patients (N=37) were enrolled into a 12-week trial 

of venlafaxine and underwent five functional magnetic resonance imaging (fMRI) resting state 

scans during treatment. Patients had no history of drug abuse, psychosis, 
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dementia/neurodegenerative diseases, or medical conditions with known effects on mood. We 

investigated whether there were differences in three networks: DMN, ECN, and ASN (anterior 

salience network) connectivity as well as a whole brain centrality measure (eigenvector 

centrality, EVC). We found that remitters showed increases in ECN connectivity in the right 

precentral gyrus as well as decreases in DMN connectivity in the right inferior frontal gyrus and 

supramarginal gyrus. The ECN and DMN had regions (middle temporal gyrus and bilateral 

middle/inferior temporal/fusiform gyrus, respectively) that showed reversed effects (decreased 

ECN and increased DMN, respectively). Early changes in functional connectivity can occur after 

initial medication exposure. This study offers new data indicating that functional connectivity 

changes differ depending on treatment response and can occur shortly after exposure to anti-

depressant medication. 

6.2 INTRODUCTION 

Treatment of major depression often requires multiple trials of medications before identifying an 

effective regimen. Forty percent of patients drop from care within the first month of treatment 

(Gaynes et al, 2009; Holtzheimer and Mayberg, 2011) (an important risk of incomplete response 

(Warden et al, 2007)), and for those who remain in treatment; over half do not respond (Trivedi 

et al, 2006). Although conventional methods of increasing dose and using augmentation 

strategies increase overall response rates (Trivedi et al, 2006), these trials require patients to 

endure prolonged episodes of depression. Failure to respond to treatment can increase suicide 

risk, contribute to worsening of medical co-morbidities, disability, cognitive impairment, and 

death (Katon et al, 2010; Mulsant et al, 2006; Nelson et al, 2013). Because depressed older 
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adults are at increased risk for all of these negative heath consequences, shortening the window 

from clinical presentation to effective treatment is particularly important. 

Several prior functional MRI (fMRI) studies have identified potential biological 

correlates, or markers of mid- and late-life depression (Aizenstein et al, 2014). They suggest that 

depression is associated with changes spanning multiple resting state networks. Specifically, 

depression has been linked to changes within the executive control network (ECN), default mode 

network (DMN), and anterior salience network (ASN) (Aizenstein et al, 2014). We have defined 

these networks based on previous work by Greicius (Shirer et al, 2012). We utilized a region of 

interest (ROI) based connectivity approach.   

Late-life depression (LLD) has been associated with decreased functional connectivity in 

the ECN (Alexopoulos et al, 2012). The left dorsolateral prefrontal cortex (dlPFC) is highly 

correlated with emotion regulation and often used as the ROI for ECN (Banks et al, 2007; 

Ochsner et al, 2012). The ECN is important for goal-directed behaviors and complex cognitive 

tasks such as working memory, cognitive control, and decision-making (Menon and Uddin, 

2010). In LLD, poor cognitive control is often reported (Aizenstein et al, 2009; Alexopoulos, 

2002) and ECN connectivity has been associated with certain features of executive dysfunction, 

including rigidity in processing information/learning (Aizenstein et al, 2006; Aizenstein et al, 

2005), deficits in working memory, and attention and cognitive inhibition (Alexopoulos et al, 

2012; Carter and van Veen, 2007).  

Several studies in mid-life depression and LLD suggest that depression is associated with 

greater connectivity in the DMN (Andreescu et al, 2013; Lui et al, 2011). The midline posterior 

cingulate cortex (PCC) has been used extensively as a central node of the DMN (Damoiseaux et 

al, 2008; Fransson and Marrelec, 2008; Leech et al, 2012). Previous studies have shown that 
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greater DMN activity is associated with negative bias, increased self-referential thoughts, and 

rumination (Alexopoulos et al, 2012; Greicius et al, 2007; Gusnard et al, 2001; Hamilton et al, 

2011; Marchetti et al, 2012; Sheline et al, 2010b). In mid-life depression it has been shown that 

PCC and ventro-medial prefrontal cortex (vmPFC) connectivity predicted rumination severity 

(Berman et al, 2011). Further, therapeutic effects of antidepressants are associated with 

decreased neural response to negative self-referential stimuli (Nejad et al, 2013). 

Finally, greater functional connectivity in the ASN is associated with increased anxiety 

and somatization (Andreescu et al, 2015; Paulus and Stein, 2006). The right anterior insula 

(RAI) is a central node of the ASN, and has been shown to be more greatly activated (relative to 

the left) in studies of emotion reactivity and regulation (Feinstein et al, 2006; Klumpp et al, 

2012; Paulus et al, 2003). The ASN is extensively connected with regions involved in 

motivation, reward, as well as salience (cognitive, homeostatic, or emotional) (Craig, 2009; 

Menon et al, 2010). Increased ASN connectivity has also been associated with interoceptive 

hijacking, which may represent the neural basis of increased anxiety and somatization described 

in LLD (Paulus et al, 2006; Simmons et al, 2013).  

Whole brain networks were examined using eigenvector centrality (EVC), which 

identifies important nodes that are densely connected (Zuo et al, 2012). These nodes may play an 

important compensatory role in damaged networks (Binnewijzend et al, 2014), and they provide 

a measure of how central a node is within the brain (summarizing the number of connections and 

their relative strength). This metric is particularly responsive to acute exposure to selective 

serotonin reuptake inhibitor (SSRI) (Schaefer et al, 2014). Early changes in these networks 

might signal whether a treatment is likely to succeed.  
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By pairing fMRI scans with a pharmacological challenge, it is now possible to track 

whether/how brain activity changes in response to particular medications by looking at changes 

in functional connectivity after a single dose (Bourke and Wall, 2015). It is possible that early 

markers of circuit engagement, in response to LLD treatment, will help identify remitters with 

greater accuracy than pre-treatment imaging alone. This dynamic fMRI approach that can help 

refine current hypotheses regarding the correlation between treatment response and activity in 

functional circuits. Furthermore, by using early changes in brain activity, this early change can 

help predict clinical outcomes for individual patients.  

The feasibility of fMRI markers is supported by recent studies showing functional 

imaging changes as early as 1–7 days after starting a new medication (Godlewska et al, 2012; 

Takahashi et al, 2005). Positron emission tomography (PET) studies have indicated similar 

potential: increases in monoaminergic occupancy rates are detectable after a single dose of an 

SSRI (Meyer et al, 2001; Parsey et al, 2006). However, no longitudinal study has examined 

dynamic functional connectivity changes that occur during an LLD treatment trial. 

We investigated how changes in functional brain connectivity over a 12-week trial of 

venlafaxine differed between remitters and non-remitters. Patients underwent five resting state 

fMRI scans. We would expect that early in the treatment trial that the DMN and ASN would 

decrease in connectivity, while the ECN would increase (decreased rumination and anxiety, and 

increased cognitive control, respectively). We hypothesized that these early changes would be 

sustained until the end of the treatment trial. 
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6.3 METHODS 

6.3.1 Study Design and Subjects 

This project was part of a five-year multi-site study of treatment of LLD, which used venlafaxine 

in the first phase and then followed up with aripiprazole in non-remitters in the second phase. 

This was based on a study that found that augmentation of venlafaxine with aripiprazole 

improved treatment outcomes in treatment resistant patients (Rutherford et al, 2007). It was also 

chosen due to its dual mechanism of action (at low versus high doses). Participants were 

included if they were >65 years of age, meeting DSM-IV criteria for major depressive episode 

(non-bipolar, non-psychotic), with Montgomery-Asberg Depression Rating Scale (MADRS)>15 

(Montgomery and Asberg, 1979). Exclusion criteria: history of mania/psychosis, 

alcohol/substance abuse within the last 3 months, dementia/neurodegenerative disease, and 

conditions with known effects on mood (e.g. stroke, multiple sclerosis, vasculitis, significant 

head trauma, and unstable hypertension and hypothyroidism). After informed consent, five MRI 

scans were performed: baseline, following the placebo lead-in (placebo), after first exposure to 

venlafaxine (day one), a week after beginning treatment (week one), and at the end (figure 1).  

A total of 37 participants signed consent, but four were excluded due to venlafaxine side 

effects (N=2), non-adherence to protocol (N=1), and an inaccurate diagnosis of major depressive 

disorder (N=1). Thus 33 subjects were included in this analysis. All subjects completed the first 

four scans, but six failed to complete the fifth scan (but were included). Nine participants were 

on benzodiazepines (12 hour exclusion period prior to scanning) during the study (mean 

lorazepam dose=0.61 mg). There were no significant differences (p=0.19) of lorazepam dose 
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between remitters (N=4, 0.5mg) and non-remitters (N=5, 0.7mg). Four participants were on anti-

hypertensive medications throughout the study.  

Detailed dosage information has been published (Joel et al, 2014) and are available in the 

supplement. Patients were designated as remitters at 12 weeks if they had a MADRS≤10 for 2 

consecutive weeks during the trial (Joel et al, 2014; Riso et al, 1997).  

Figure 1. The study design protocol. Functional and structural MRI (fMRI and sMRI, 

respectively) was performed throughout the treatment period. All scanning was done in the 

morning. On day one, participants came in for an fMRI scan (Baseline) and then were given a 

placebo following the scan. On day two (~12 hours after placebo) they returned for another fMRI 

scan (Placebo) and then were started on venlafaxine following the scan. They returned the next 

day (~12 hours later) for another fMRI scan (Day One, i.e. day one of treatment). They 

continued on their medication as normal and came in for scans on week one (Week One) and at 

the end of the trial (End). 
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6.3.2 MRI Data Collection 

Scanning was conducted using a 3T Siemens Trio TIM scanner located at the MR Research 

Center at the University of Pittsburgh. A high-resolution T1-weighted sequence was collected 

(TR=2300ms, TI=900ms, FA=9°) with a field of view 256x224 with 176 slices. T2*-weighted 

BOLD acquisition using gradient-echo echoplanar imaging (EPI) was also collected 

(TR=2000ms, TE=34ms, in-plane resolution=128x128, 28 slices, voxel size=2x2x4mm3). 

During resting scans, subjects (while awake, eyes open) observed a cross-hair.  

6.3.3 Preprocessing 

Data were preprocessed using statistical parametric mapping software (SPM12) (Penny et al, 

2007). Functional volumes were first slice-time corrected then motion corrected. There were no 

significant differences between groups/time in mean relative motion and max absolute motion 

(see Supplement for descriptive statistics). Manual skull stripping was done, using ITK-SNAP 

(Yushkevich et al, 2006), to improve functional to structural coregistration. The stripped 

structural image was then co-registered to the mean functional volume.  

The structural image was segmented using six spatial priors (including gray/white 

matter). This generated a deformation field that was applied to the functional images (Ashburner 

et al, 2005). Smoothing was applied using a Gaussian kernel with full-width half-maximum 

(FWHM) of 8mm.  
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6.3.4 Eigen-Vector Centrality (EVC) and ROI to Voxel Maps 

Analyses were performed using in-house MatLab code. 

Processing in both EVC and ROI to voxel analyses 

We extracted a principal time-series from the white matter (WM) and cerebrospinal fluid 

(CSF) using singular value decomposition (SVD). We used these two signals and the motion 

parameters from the preprocessing in a multiple linear regression at each voxel. We extracted the 

residual time-series from each voxel, which represents the time-series not accounted for by WM, 

CSF, or motion. A band-pass filter (0.01-0.1Hz Butterworth) was applied. This pipeline was 

adapted from Whitfield-Gabrieli et al (Whitfield-Gabrieli et al, 2012).  

Eigen-Vector Centrality (EVC) 

A whole brain connectivity measure was calculated (EVC) (Binnewijzend et al, 2014; 

Joyce et al, 2010; Lohmann et al, 2010; Wink et al, 2012; Zuo et al, 2012). The matrix of 

covariate removed, band-pass filtered residuals across all voxels was put through an SVD. The 

principal Eigen-vector is the EVC measure. The matrix was centered then weighted by the 

inverse of the variance of each signal. In doing so, the SVD is done on the correlation rather than 

the covariance matrix. Z-scores were generated (mean zero and standard deviation one), 

smoothed, then masked for only gray matter.  
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ROI to Voxel 

The signal within the ROI was correlated to each voxel. An SVD was performed to 

generate a principal time-series for the ROI. We computed the correlation between the ROI and 

all other voxels.  

The Z-score map for these correlations was smoothed, then masked for only gray matter. 

This analysis was done for three separate ROI’s. The PCC seed (DMN) was extracted from the 

posterior cingulate (eroded by hand in ITK-SNAP) from the Automated Anatomical Labeling 

(AAL) (Wu et al, 2011). The RAI seed (ASN) is extracted from the right insular cortex defined 

in the Automated Anatomical Labeling (AAL) atlas in the WFU Pick-Atlas. The left dlPFC 

(ECN) is defined as the left Brodmann area (BA) 46 in the Talairach Daemon database from the 

WFU Pick-Atlas. The network terminology used will reflect the terminology used in another 

study that performed an independent components analysis (ICA) (Shirer et al, 2012).  

6.3.5 Statistical and Cluster Analysis 

Statistical analyses were performed using SPM12 for each ROI connectivity and EVC maps. A 

repeated-measures ANOVA was performed containing the factors: group (response to treatment, 

2 levels), time (5 levels, during treatment), an interaction between group and time, and a subject 

effect (models variability due to differences in average response of each subject). 

In this study we assessed the significance of group, time, and group by time interaction 

effects. Permutation methods for peak-cluster level error correction (AlphaSim, 

http://afni.nimh.nih.gov/afni/) were applied for this whole-brain analysis by taking into account 

the significance of the peak voxel (p-value<0.005), thereby controlling for multiple comparisons 

(returning a minimum of 195 voxels). If the F-test was significant, we extracted the mean of each 

http://afni.nimh.nih.gov/afni/
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significant cluster (as well as 99% confidence intervals, CI) and plotted that across the five time 

points for each group to examine trends within these significant clusters.  

To show regional changes in connectivity, we performed four change score analyses for 

each of the significant interactions. We subtracted baseline connectivity from placebo, day one, 

week one, and end connectivity and performed a regression with two coefficients: a constant, and 

a grouping variable. Parameter estimate means (tests whether there is a significant difference in 

group) and 99%CI were extracted for each significant ROI and plotted.  

6.4 RESULTS 

Table 1 shows the clinical and demographic characteristics by group (remitters [N=20 (16F)] and 

non-remitters [N=13 (7F)]). We found no significant differences in any of the demographic or 

clinical measures (in the table) except for follow-up MADRS. We found no differences in white-

matter hyperintensity (WMH) burden by group either at baseline or follow-up (see supplement 

for information on WMH segmentation/quantification(Wu et al, 2006)). The average venlafaxine 

dose (mean, 99%CI) in non-remitters was 263mg (227.3, 298.7), which was significantly greater 

(as expected; see supplement for titration information) than in remitters, which was 181.3mg 

(153.9, 208.7). There were no significant group/time or interaction effects in duration of 

depression and anxiety as measured by a single item in MADRS (see supplement).  
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Table 1. Clinical/demographic differences between groups. As designed, MADRS at end of trial 

differed between remitters and non-remitters. If the number of subjects is fewer in the analysis 

then the total, it is listed in parentheses. NOTE: MDE-Major Depressive Episode, CIRSG-

Cumulative Illness Rating Scale for Geriatrics, MMSE-Mini-Mental State Examination, 

MADRS-Montgomery-Asberg Depression Rating Scale, WMH-White Matter Hyperintensity 

Non-Remitters 
(N = 13) 

Remitters 
(N = 20) Group Comparison (X/W,p) 

Age (median, IQR) 65,6 66, 11 W = 126.5, p = 0.906 

Gender (F) 7 16 Fisher’s exact p= 0.139 

Education (median, IQR) 15, 4 14, 5.25 W = 130.5, p = 0.992 

Age at first MDE (median, IQR) 29, 15.25 
(N=12) 29.5, 33.50 (N=18) W = 109, p = 0.975 

CIRSG Heart (0/1/2/3) 9/2/1/1 14/2/0/4 Fisher's exact p= 0.518 

CIRSG Vascular (0/1/2) 4/0/9 4/1/15 Fisher's exact p= 0.810 

MMSE Baseline (median, IQR) 29, 1 30, 2 W = 101, p = 0.273 

MADRS Baseline (median, IQR) 26, 9 22, 8.75 W = 181.5, p = 0.058 

MADRS End (median, IQR) 19.5, 10.5 
(N = 12) 

3, 5.5 
(N = 19) W = 211, p < 0.05 ** 

WMH Baseline (median, IQR) 0.0008, 0.0006 0.0011, 0.0015 W = 133, p = 0.9277 

WMH End (median, IQR) 0.0011, 0.0012 
(N = 12) 

0.0013, 0.0017 
(N = 19) W = 100, p = 0.589 

Only the ECN and DMN had significant group-by-time interaction effects. ASN and 

EVC had only significant group effects (remitters vs. non-remitters). All neuroimaging results 

are summarized in table 2. These results are robust to Benzodiazepine use and baseline MADRS. 

We demonstrate the associations of connectivity and features of clinical response and 

medication. There were group differences independent of time (excluding areas with significant 

interactions) in DMN and ECN connectivity.  
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Table 2. Resting state results summary table. X, Y, Z are the locations in MNI space. F is the 

maximum F-statistic within the cluster. Voxels is the size of the cluster. NS refers to Non-

Significant results. If the Group x Time interaction is significant, then the main effects cannot be 

interpreted by themselves regardless of their significance. Since an interaction term is present 

(reaching statistical significance) that means that the relationship between the outcome variable 

and time is not the same for both groups. NOTE: ECN-Executive Control Network, DMN-

Default Mode Network, ASN-Anterior Salience Network, EVC-EigenVector Centrality, NS-Not 

significant, NA-Not Applicable, BA-Brodmann Area 

Network GroupxTime Interactions Time Group X Y Z F Voxels 

ECN Right Precentral/ 
Postcentral  NA NA 63 0 12 16.5 251 

Right Middle 
Temporal/Occipital NA NA 48 -80 24 16.3 246 

DMN Right Inferior/Middle 
Frontal  NA NA 44 24 18 16.3 670 

Left inferior/middle 
temporal gyrus/fusiform NA NA -52 -62 -10 19.8 392 

Right inferior/middle 
temporal gyrus/fusiform NA NA 48 -36 -16 22 1407 

Right Supramarginal  NA NA 60 -58 36 22.3 297 

ASN NS NS Left Inferior 
Frontal Gyrus -38 6 24 15.9 240 

NS NS Left Middle 
Frontal Gyrus -32 54 20 12.6 240 

EVC NS NS Left Inferior 
Frontal Gyrus -56 6 28 13.2 221 

NS NS Right Inferior 
Frontal Gyrus 52 34 -12 16.1 203 

NS NS Medial Frontal 
Gyrus/BA 10 2 64 -8 15.5 713 
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6.4.1 Executive Control Network (ECN) 

The regions with a significant group-by-time interaction (after multiple comparison correction) 

were the right precentral/postcentral gyrii (PCG) and the right middle temporal/occipital gyrii 

(rMTG/MOG), p<0.05 (corrected), see table 2 and figure 2A. The 99%CIs suggest no 

differences between remitters/non-remitters (figure 2A). The change score analysis (figure 2C, 

left) illustrates, relative to baseline, a larger change in connectivity following treatment than 

placebo. Across time rPCG increased in connectivity while rMTG/MOG decreased.   

6.4.2 Default Mode Network (DMN) 

Four clusters had significant interactions, they were the right inferior/middle frontal gyrus 

(rIFG/MFG), bilateral inferior/middle temporal gyrus/fusiform gyrii (bITG/MTG), and right 

supramarginal gyrus (rSMG), p<0.05 (corrected), see table 2 and figure 2B. Much like the ECN, 

the 99%CI suggests no differences between remitters and non-remitters at any time point. The 

99%CI suggests that, relative to baseline, there is a larger change in connectivity following 

treatment than placebo (figure 2C, right). Across time bITG/MTG increased in connectivity 

while rIFG and rSMG decreased in connectivity in remitters.   

6.4.3 Anterior Salience Network (ASN) 

After applying the multiple comparison correction, no regions had significant group-by-time 

interaction effects. We then ran a model without the interaction effect and tested whether there 

were significant group and time effects. There was no significant time effect, but there were 
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significant group effects in the left inferior frontal gyrus (lIFG) and left middle frontal gyrus 

(lMFG), p<0.05 (corrected), table 2 and figure 3A.Non-remitters had greater ASN connectivity 

in both regions.  
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Figure 2. Connectivity changes where the interaction (group x time) was significant. (A) ECN 

connectivity changes that were significant. (B) DMN connectivity changes that were significant. 

For parts A and B, Non-remitters are shown in red and remitters are shown in blue. The color bar 

indicates the value of the F-statistic. Error bars represent the 99%CI. (C) Change score analysis 

results. Different regions are shown as different colors. The values represent mean and 99%CI 

for the parameter estimate that tested whether there was a significant difference between 

remitters/non-remitters in the change scores (placebo/day one/week one/end – baseline). Dotted 

line represents beta estimate of zero.  
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6.4.4 Eigen-Vector Centrality (EVC) 

Eigen-vector centrality is a summary measure of the influence of a node (voxel) in a network. No 

interaction between group and time was found for the EVC. However, there was a significant 

effect of group (but not time) in the bilateral inferior frontal gyrus (bIFG) and the medial frontal 

gyrus (MeFG), p<0.05 (corrected), table 2 and figure 3B. Non-remitters had greater EVC in the 

bIFG but lower EVC in the MeFG compared to remitters.  
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Figure 3. Group differences in connectivity. Analyses where the interaction (group x time) was 

not significant, but where the group effect alone (not the time effect) was significant. (A) 

Regions where the ASN connectivity differed between remitters (blue) and non-remitters (red).  

(B) Regions where the EVC measure differed between groups. The color bar indicates the value

of the F-statistic. Error bars represent the 99%CI. 
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6.5 DISCUSSION 

This is the first study reporting early dynamic fMRI markers of treatment response variability in 

LLD. We evaluated changes in three functional networks and in EVC at five time-points. Two 

networks (ECN and DMN) showed significant group-by-time effects (increased ECN-rPCG and 

DMN-bMTG/ITG as well as decreased ECN-rMTG and DMN-rIFG and rSMG in remitters 

across the trial compared to non-remitters). Only significant group (but not time) effects were 

found in the ASN (left IFG and MFG greater in non-remitters compared to remitters) and EVC 

(MeFG greater in remitters compared to non-remitters but lower in the bIFG).  

 Previous LLD research suggests patients, compared with controls, have a hyperactive 

DMN and a hypoactive ECN (Aizenstein et al, 2014; Alexopoulos et al, 2012; Andreescu et al, 

2013). These may reflect clinical features of LLD such as increased rumination (hyperactive 

DMN) and cognitive impairment indicating low cognitive control of limbic regions associated 

with emotional response (hypoactive ECN). A meta-analysis in mid-life depression found that 

DMN connectivity was predictive of treatment response (Nejad et al, 2013; Pizzagalli, 2011). 

Another study found that DMN connectivity was positively associated with treatment response 

while dlPFC connectivity was negatively correlated (Aizenstein et al, 2014). Other studies have 

found a normalization of task-based response following successful treatment (Aizenstein et al, 

2014). Our novel findings demonstrate, for the first time, that these effects are seen early 

following treatment, and appeared larger in magnitude than placebo. 

 In remitters we observed increased ECN-rPCG connectivity and decreased ECN- rMTG 

connectivity relative to non-remitters. While there is an effect of placebo, there appears to be an 

even greater effect following administration and continued treatment with venlafaxine. This 

suggests that the change in connectivity is related to the administration of venlafaxine and not to 
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placebo.  ECN-rPCG increases in remitters may reflect an improvement in cognitive control as a 

predictor of successful treatment. ECN-rMTG decreases did not show a large change following 

first exposure (day one) to venlafaxine; rather this change is seen at week one. ECN-MTG 

(outside the ECN) connectivity changes may indicate increased and dispersed effort in the non-

remitters.  

 In remitters we observed decreased DMN-rSMG and rIFG connectivity and an increase 

DMN-rMTG/lITG/MTG and left fusiform gyrii connectivity relative to non-remitters. Like the 

ECN, the magnitude of the connectivity change appeared to be greater following treatment than 

following placebo. Decreased DMN-rSMG/rIFG connectivity may reflect an improvement in 

future ruminative thought processes in remitters, as suggested previously (Aizenstein et al, 2014; 

Alexopoulos et al, 2012). Increased DMN-rMTG/lMTG connectivity suggests that clinical 

correlates of neural changes (rumination–hyperactive DMN) are actually related to connectivity 

changes between specific nodes (PCC-prefrontal cortex). Thus, we may witness a “rebalance” of 

the DMN in remitters, with a decrease in the “damaged” PCC-prefrontal connectivity and an 

increase in the connectivity between the other nodes. 

 Of note, the supramarginal gyrus has been involved (together with other sensory 

processing/associative brain regions, such as the fusiform gyrus), in the disrupted DMN 

connectivity in mid-life depression (Chen et al, 2015; Peng et al, 2015). This may reflect 

disruptions in social interaction processes such as empathy (Shamay-Tsoory, 2011) and social 

engagement (Li et al, 2014), which may ameliorate with improvement in depression symptoms. 

With regard to changes in PCC-IFG connectivity, we may speculate that given the recent reports 

regarding the role of right IFG in cognitive control but also in emotional appraisal and 

alexithymia and verbalization of emotional responses/states (Khalaf et al, 2016), we may infer 
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IFG, as a key region in the emotion-cognition interplay (Okon-Singer et al, 2015) becomes less 

involved during resting state, once depressive symptoms remits. 

 Alternatively, these results could be interpreted as increased intra-network coupling 

(increased ECN-rPCG and DMN-bMTG/ITG) and decreased inter-network coupling (decreased 

ECN-rMTG and DMN-rIFG and rSMG). In healthy individuals, ECN and DMN have inverse 

activations during tasks and this is disrupted in depression (Chen et al, 2013; Menon et al, 2010; 

Sridharan et al, 2008). This may reflect an important rebalancing of this association in remitters. 

These temporal regions are not nodes of the dorsal but rather ventral DMN and rSMG is part of 

the right ECN.  

 Recent evidence that shows that changes in DMN/ECN connectivity as well as other 

functional brain activation can be achieved through meditation, trans-cranial magnetic 

stimulation (TMS), cognitive behavioral therapy, and psychotherapy (Brewer et al, 2011; Farb et 

al, 2012; Goldapple et al, 2004; Jang et al, 2011; Linden, 2006; Liston et al, 2014). These 

different therapies target different symptoms of depression and by targeting affected symptoms 

(e.g., high rumination) then it might be possible to achieve these changes through alternative 

means.  

 The early interaction may reflect a network engagement due to the increase in synaptic 

serotonin that seems to be consistently engaged (relative to the end scan). Thus, it seems that the 

network changes occur at a much earlier stage and these may be correlated with future changes 

in depression severity, rumination, and cognitive control (though we do not demonstrate that 

here).  

 ASN-left IFG and MFG connectivity was higher in non-remitters than remitters. Previous 

studies reported higher ASN connectivity in LLD participants compared with non-depressed 
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elderly (Aizenstein et al, 2014), a possible marker of increased anxiety and somatization 

(Andreescu et al, 2015). Given the lack of time differences, this may represent a trait, rather than 

a state marker in LLD.  

 Using EVC (measures node importance), we found only group effects where EVC was 

higher in remitters than non-remitters in the MeFG, but lower in the bIFG. These findings 

suggest a potential neurobiological profile indicating positive response to treatment. Thus, 

participants who start with high connectivity in the DMN (and increased EVC in the MeFG) are 

more likely to respond to treatment. This will require further empirical testing.  

 Several limitations should be noted. This study had a relatively small sample size, 

unequal group sizes, and tested treatment response using only one medication. This result may 

not generalize well to other patient groups, including mid-life depression. Our definition of 

remitter, while established, has important limitations especially in borderline cases. A well-

known observation in LLD is that white-matter hyperintensity burden differs between remitters 

and non-remitters (Taylor et al, 2013), which we failed to replicate, possibly due to the clinical 

and neurobiological heterogeneity of LLD (Taylor et al, 2013). This study utilized ROI based 

connectivity whereas others have utilized data-driven approaches. Importantly, there is a strong 

correspondence between the two methods (Rosazza et al, 2012). We limited our analyses to three 

ROI’s that represented core nodes of the default mode, executive control, and salience networks-

however each of these networks has multiple nodes that we did not explore. All participants had 

similar dosages of venlafaxine at all measurements except the final, where non-remitters had 

significantly greater mean dose than remitters. This was not controlled for in this analysis, and 

may account for some differences at the final time-point between remitters/non-remitters. 

Importantly, the dosage was equivalent over the course of the early changes (early interactions). 
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While there exists a literature that associates DMN/ECN connectivity with rumination/cognitive 

control measures, we did not specifically test this, and so future studies should perform these 

direct associations to validate these interpretations.  

 These group differences in trajectory of treatment may be important in predicting changes 

in depression symptoms, however group differences do not necessarily give the ability to 

distinguish individual subjects.  

 Despite these limitations, we validate previous findings of pre- and post- treatment 

effects. Further, we found that there were early changes in the DMN and ECN, but not ASN 

during the treatment trial and that the treatment was associated with greater magnitude of change 

than placebo. Future studies should test if an inter-network interaction between ECN and DMN 

exists, and investigate other nodes of each of these networks, as well as investigate the structural 

changes that may occur during the entire treatment trial. 
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7.0 FUNCTIONAL BRAIN ACTIVATION DURING EMOTION REACTIVITY 

FOLLOWING PHARMACOTHERAPY IN LATE-LIFE DEPRESSION: MARKERS OF 

REMISSION 

This chapter reports unpublished results using the full cohort of the same study described earlier. 

This chapter is intended to fulfill the second half of Aim 1 to characterize the changes in emotion 

reactivity in the brain following pharmacotherapy in remitters/non-remitters to depression, 

whether any acute changes (e.g., following a single dose) occur. To better understand the results 

in this chapter, we also investigated how these results related to other neuroimaging data 

collected in the same sample (structural and functional changes).  

7.1 ABSTRACT 

Major depressive disorder has a second peak of incidence in late-life (LLD), which is associated 

with an additional host of negative health outcomes. Despite the vast number of studies on 

depression, there is currently no accepted biomarker for the diagnosis, prevention, or treatment 

of depression. Neuroimaging data has shown that there exist small changes in functional 

activation/connectivity following acute pharmacotherapy, which may be associated with eventual 

response. We investigated changes in functional activation during an emotion reactivity task 

following acute pharmacotherapy as well as over the entire course of a treatment trial. We 
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recruited LLD (N=51) participants into a treatment trial and collected functional magnetic 

resonance imaging (fMRI) data at five time points: baseline, following a placebo lead-in, 

following a single dose of venlafaxine, following a week of pharmacotherapy, and the end of the 

trial (12 weeks). We found that there existed baseline differences in activation, but more 

importantly that there existed acute increases following only a single dose in the left insula in 

remitters while non-remitters showed only decreases in activation. Further, we found that the 

parahippocampus increased in activation following a single dose in remitters, but decreased in 

non-remitters and this pattern persisted through the entire trial. We found similar changes during 

an explicit emotion regulation task – thus these changes may reflect an early change in implicit 

processing and regulation during the emotion reactivity task, but a chronic change in explicit 

regulation. Emotion regulation may represent a mechanism for remission in LLD.  

7.2 INTRODUCTION 

Major depressive disorder (MDD) is a leading cause of disability and global disease burden 

(Alexopoulos et al, 2009; Moussavi et al, 2007). Depression has a second peak of incidence in 

late-life, which carries additional risk of suicide, medical comorbidity, disability, and caregiver 

burden (Katon et al, 2010; Mulsant et al, 2006; Nelson et al, 2013). Despite significant 

improvements in our understanding of course, prognosis, and the neurobiology of depression, 

new biomarkers and treatment developments have lagged. There are currently no widely 

accepted neural or genetic biomarkers to aid in the diagnosis, treatment, or its long-term 

management. This likely reflects the notable heterogeneity underlying both depression 

pathophysiology and remission mechanisms. Currently, clinicians match patients with specific 
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treatments through a prolonged trial and error process that delays improvement, and significantly 

increases the overall burden of illness. This delay is even longer in late-life depression (LLD) 

and is further associated with a host of negative health outcomes, including higher risk of 

suicide, cardiovascular disease and cognitive deterioration (Andreescu et al, 2011). Previous 

work using functional magnetic resonance imaging (fMRI) has identified some possible 

biomarkers that act as predictors of treatment response. To better understand this process, 

researchers have investigated different neural circuitry related to MDD.  

7.2.1 MDD: Disruption of Emotional Face Processing 

Some of the core neural changes in depression are associated with the emotion-reactivity and 

regulation neural circuitry. Low mood and high anxiety have been consistently associated with 

emotion dysregulation. The processing of emotional faces in MDD has been often used to 

explore different aspects of emotion dysregulation. This general process involves three major 

stages, each subserved by fairly distinct neural structures: visual processing [primary (visual area 

1/2) and secondary (fusiform, superior temporal gyrus)], emotion encoding and recognition 

[amygdala, insula] and response/appraisal [insula, orbitofrontal cortex, ventral striatum] as well 

as integration [insula and anterior cingulate], and finally monitoring affective state and emotion 

regulation [anterior cingulate, dorsomedial prefrontal cortex, dorsolateral prefrontal cortex] 

(Leppanen, 2006).  
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7.2.2 High Emotion Reactivity 

Previous studies have identified changes in emotional face processing in MDD, including a bias 

towards negative stimuli in the initial appraisal stage. However, a meta-analysis that included 44 

studies (with a total of 795 MDD and 792 never-depressed individuals) revealed hyperactivation 

beyond the amygdala and the insula, in regions like the parahippocampus, putamen, insula, and 

fusiform gyrus, while the dorsolateral prefrontal cortex has been consistently hypoactive 

(Groenewold et al, 2013).  

Each of these regions may have a distinct role in further amplifying the neural 

dysfunction. The amygdala’s role is to direct attention at emotional information, facilitate 

emotional memory, and generate responses to emotionally salient information. The fusiform’s 

early role in the visual processing stream and its hyperactivation indicates that the negative bias 

may be encoded semi-automatically (i.e. biased visual-limbic feedback loop). Anterior cingulate 

and anterior insula may be involved in working alongside the amygdala to generate the 

relationship between external/internal stimuli and the self, where the anterior cingulate 

specifically is part of the dorsal default mode network which is involved in the ruminative aspect 

in MDD. Generally, they could be involved in the attendance to negative stimuli (as opposed to 

neutral stimuli). Insula lesions following stroke have been shown to be consistently associated 

with post-stroke depression implicating them even further (Sprengelmeyer et al, 2011). The 

putamen, however, may be related to the automaticity of the learned emotional response to the 

visual stimuli. Parahippocampus may be involved in the contextual information related to the 

stimuli as past studies have identified that the amygdala’s activation can be modulated by 

presenting contextual information alongside an emotional face (e.g. decreased activation 

achieved by presenting an angry face with the sentence “they just had a bad day and are not upset 
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at you”) (Bar and Aminoff, 2003; Groenewold et al, 2013). This may be also be related to 

inaccurately contextualizing non-salient information (e.g. picture of an angry face in the MR 

scanning environment).  

7.2.3 Impaired Emotion Regulation 

Another aspect that is disrupted in MDD is the monitoring and regulation of the emotional 

response, a feature associated with changes in the insula, anterior cingulate and dorsolateral 

prefrontal cortex activation. These changes are implicated in the inability to detect and then 

down-regulate the amygdala’s response. Emotion regulation is thought to have two basic forms 

(though there is no clear boundary): explicit (or effortful) and implicit (or automatic) regulation 

(Etkin et al, 2015; Gyurak et al, 2011). Regulation is a goal-directed process that influences the 

intensity, duration, or type of experienced emotion and this can be done with conscious effort or 

without monitoring, insight, and awareness (Etkin et al, 2015). Explicit regulation involves the 

activation of dorso-/ventro-lateral prefrontal cortex as well as supramarginal gyrus, insula, 

supplemental motor, and pre-supplemental motor areas (Etkin et al, 2015). While behaviorally, it 

has been shown that MDD individuals are able to explicitly regulate their emotional response 

(i.e. feeling less negative after regulation); there is a clear difference in the neural response. 

Mainly, while both groups have decreased amygdala activation following regulation – the level 

of dorsolateral prefrontal cortex activation is severely reduced in MDD (Erk et al, 2010). 

Critically, amygdala down-regulation was associated with lower depression severity (i.e. severity 

of depression influences the intensity of the down-regulation in amygdala activation, which may 

be due to greater emotional reactivity or decreased cognitive regulation) (Erk et al, 2010). This 

may reflect this notion that individuals with MDD are still able to explicitly regulate.  
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More recently, implicit emotion regulation has been implicated in MDD. Even without 

instructing someone to explicitly and actively regulate emotions – there is an automatic 

underlying process that occurs with the presentation of any new stimuli (Gyurak et al, 2011). 

Several studies have shown that when presenting a Stroop like emotional face viewing paradigm 

(e.g. matching expressions when an angry face with either the word “angry” or “happy” 

presented simultaneously) showed that there is increased ventral anterior cingulate and 

dorsolateral prefrontal cortex activity and lower amygdala activation on incongruently presented 

faces (e.g. angry face with the word “happy” written over it) – suggesting an implicit regulation 

of emotional responses (Etkin et al, 2006; Etkin et al, 2010). To further strengthen this, when 

matching genders of neutral faces (with conflicting gender text written over the face) – there is 

an increase in dorsolateral prefrontal cortex activation coupled with fusiform activation, but no 

change in ventral anterior cingulate or amygdala (Egner et al, 2008). This suggests a dissociable 

neural pathway for implicit emotion regulation. 

Habitual emotion regulation is a form of implicit regulation that is performed daily and 

involves regulating small aspects of daily life (Gyurak et al, 2011). This has been demonstrated 

in studies that found that individuals with higher reappraisal tendencies (ability to reimagine a 

scenario in a more positive way) were able to better regulate negative emotions during anger 

provocation (Mauss et al, 2007). The ventral anterior cingulate has also been implicated in 

implicit regulation – however the anterior insula is thought to play a major role. Previous studies 

have found that during a task where participants are presented with fair or unfair offers the 

insula’s activation is associated with the degree to which individuals apply reappraisal strategies 

daily (Gross and John, 2003). This type of regulation is likely to be associated with greater 

affect, better interpersonal and social functioning, and overall better well-being (Gyurak et al, 
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2011). This is a possible mechanism through which individuals with MDD are impaired and a 

possible mechanism of remission in MDD. 

7.2.4 Functional Changes Following Treatment 

Past studies have shown that a variety of regions are normalized during emotional face 

processing following successful remission. Following successful remission, there is reduced 

activation of the amygdala (normalization) (Arce et al, 2008; Bigos et al, 2008; Godlewska et al, 

2012). Elevated baseline anterior cingulate activity has been associated with greater response to 

antidepressant medications (Davidson et al, 2003; Wang et al, 2012). One study showed an 

increase in activation of the middle frontal gyrus following fluoxetine treatment (Wang et al, 

2012). Another study showed that there was an increased insula activation following treatment 

with venlafaxine during a negative image viewing task and further replicated the anterior 

cingulate finding at baseline (Davidson et al, 2003). They showed that the change in insula 

activation occurred after only two weeks of treatment and sustained the activation – however the 

anterior cingulate changes occurred at a later stage (8 weeks) (Davidson et al, 2003). Another 

study showed normalization of amygdala reactivity following escitalopram treatment after only 7 

days (Godlewska et al, 2012).  

In this study we sought to investigate whether this change could be detected as early as 

following a single dose of medication. Positron emission tomography has shown that there is an 

increase in monoaminergic occupancy in the brain following a single dose of selective serotonin 

reuptake inhibitors (SSRI) (Meyer et al, 2001; Parsey et al, 2006). Several studies have indicated 

the early functional changes occurring following acute drug administration, including our recent 

work that showed single dose connectivity changes at rest following a single dose of venlafaxine 
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(Karim et al, 2016a). This study indicated a possible early engagement effect that is either 

sustained or diluted. In a previous study in never-depressed individuals using a double blind 

balanced crossover design, single dose or acute administration of citalopram (following a 30 

minute injection) compared to saline resulted in increased activation of the amygdala during 

emotional face viewing (Bigos et al, 2008). While studies investigating the more chronic effects 

in never-depressed individuals showed a clear decrease in activation in the amygdala and insula, 

this may reflect an early engagement effect that is down regulated chronically. 

We investigated early effects of venlafaxine in LLD as well as long-term changes in 

remitters (N=26) and non-remitters (N=25) to depression. We used an emotional face-viewing 

paradigm, and investigated activation differences at baseline (between remitters and non-

remitters), the early changes following a single dose as well as after just a week of treatment, and 

then at the end of the trial. The face/shapes task is an emotion reactivity task, which likely has an 

implicit regulation component that involves regulating to some degree the negative faces 

presented. We investigated activation differences between remitters and non-remitters at five 

time-points: at baseline, following a placebo lead-in, following a single dose of venlafaxine, after 

a week of treatment, and at the end of the trial. We hypothesize that the depression-specific 

changes in activation during emotion reactivity have correspondence in changes associated with 

emotion regulation as well as with regional structural and CBF changes in the same regions 

involved in emotional face processing.  
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7.3 METHODS 

7.3.1 Study Design and Participants 

We collected data as part of a larger 5-year multi-site study of treatment in LLD that collected 

neuroimaging data at one site (Pittsburgh, USA). Participants were recruited and were given 

Venlafaxine due to its dual mechanism of action (at high doses it is both a serotonin and 

norepinephrine reuptake inhibitor). Participants were included if they were at least 55 years old, 

met Diagnostic and Statistical Manual of Mental Disorders IV criteria for MDD and had a 

Montgomery-Asberg depression rating scale (MADRS) score of 15 or higher at baseline. 

Participants were excluded if they had a history of mania or psychosis, alcohol or substance 

abuse (within last 3 months), dementia or neurodegenerative disease as well as conditions with 

known effects on mood (e.g. stroke, multiple sclerosis, vasculitis, significant head trauma, and/or 

unstable hypertension). After informed consent approved by the University of Pittsburgh 

institutional review board, five MRI scans during the treatment trial were collected.  

All MRI scanning was conducted in the morning. Participants came in on the first day for 

a baseline scan (no medication). In the evening of that scan they were given a placebo, after 

which they returned the next day for another scan (placebo scan). The evening of that scan, they 

were given their first dose of Venlafaxine (35 mg), after which they returned the next day for 

another scan (single dose scan). They continued their medication for approximately one week 

and returned for another scan (week one scan). They returned a final time after the end of the 

treatment trial (12 weeks, end scan).  

During the trial, participants returned for weekly or bi-weekly clinical visits and the 

Venlafaxine dosage was increased as necessary (up to a maximum of 175 mg). Participants who 
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did not show signs of response by week 6 had venlafaxine increased up to a maximum of 350 

mg. At the end of the study, participants were classified as remitters if they had a MADRS less 

than 10 for at least two weeks during the trial (and remained so until the end of the trial).  

A total of 62 participants signed consent. Eleven were excluded due to: side effects of 

medication (N=2), non-adherence to protocol (N=2), inaccurate diagnosis of MDD (N=1), and 

inability to determine remission status due to lost/missing data (N=6). Among the remaining data 

(N=51), two participants did not complete all MRI scanning but did complete the treatment trial. 

Wherever possible we included the data from these two participants.  

7.3.2 MRI Data Collection 

All scanning was conducted at the University of Pittsburgh Medical Research Center on a 3T 

Siemens Trio TIM scanner (Munich, Germany) on a 12-channel head coil. Baseline and end 

scans collected both a structural and functional image, while other scans collected only 

functional sequences. While this analysis focuses solely on the emotion reactivity task 

(face/shapes), our hypothesis involves understanding the structural as well as other functional 

changes that occur concurrently in those regions. Thus we also describe the collection and 

processing of the following: resting state as well as explicit emotion regulation task (IAPS) 

BOLD sequences, a resting pseudo-continuous arterial spin labeling (pCASL) sequence, and a 

diffusion weighted imaging (DTI) sequence.  

An axial, whole brain 3D magnetization prepared rapid gradient echo (MPRAGE) was 

collected with repetition time (TR)=2300ms, echo time (TE)=3.43ms, flip angle (FA)=9 degrees, 

inversion time (TI)=900ms, field of view (FOV)=256x224, 176 slices, 1mm isotropic resolution 

and with GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) factor=2. An 
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axial, whole brain 2D fluid attenuated inversion recovery (FLAIR) was collected with 

TR=9160ms, TE=90ms, FA=150 degrees, TI=2500ms, FOV=256x212, 48 slices, and 1x1x3 mm 

resolution.  

An axial, whole brain (excluding cerebellum) echo planar (EPI) T2*-weighted functional 

image was collected to measure the blood oxygen level dependent (BOLD) response with 

TR=2000ms, TE=34ms, FA=90 degrees, FOV=128x128, 28 slices, 2x2x4 mm resolution. The 

face/shapes task had 117 volumes, the explicit emotion regulation task had 270 volumes, and the 

resting state had 150 volumes. Due to variability in placement by MR technicians the coverage 

of the functional scan was in general limited to above the cerebellum and below the top aspect of 

the motor cortex (though this varied slightly between functional sequences).  

An axial, whole brain (excluding cerebellum) pCASL sequence was collected at rest to 

measure perfusion in the brain with TR=4ms, TE=13ms, FA=90degrees, FOV=64x64, 32 slice, 

4mm isotropic resolution, and 80 volumes. Finally an axial, whole brain DTI sequence was 

collected with TR=5300ms, TE=88ms, FA=90degrees, FOV=128x128, 40 slices, 2x2x3mm 

resolution, 12 directions, and 4 b0 images.  

7.3.3 Functional Tasks 

Emotion Reactivity (Faces-Shapes Task) 

This task is widely used and has been tested to robustly activate the amygdala (Hariri et al, 

2002). Participants were instructed to match either a face cue or a shapes cue. A cue was shown 

on the center of the screen and they were instructed to respond with an MR-compatible glove 

(left or right index finger) by matching to one of two simultaneously presented faces. The facial 

expressions shown were either angry or fearful. During the shapes, they match a shape to one of 
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two simultaneously presented shapes. The shapes task (5 blocks) was interleaved with the faces 

task (4 blocks) and each block lasted 24 seconds containing 6 trials (4 seconds each). Before the 

beginning of each block participants are instructed visually to “match emotion” or “match form” 

(2 seconds). The faces images are presented from a set 12 different images (six per block, three 

of each gender) and are all derived from a standard set of pictures of facial affect. Stimulus 

presentation and responses were controlled using E-prime software (Psychology Software Tools, 

Inc., Pittsburgh).  

 

Explicit Emotion Regulation Task (IAPS) 

The main results of this task have been previously published in a smaller subset. Participants 

were shown emotionally neutral or negative images from the standardized International 

Affective Picture System (IAPS) and were instructed to either “Look” or “Decrease.” During the 

look instruction, participants were to view content naturally. During the decrease instruction, 

participants were instructed to reappraise the image to actively alter the elicited emotion. After 

each image they were asked to rate how negatively they felt from 1 to 5. The neutral (11 events), 

negative (15 events), negative regulate (15 events) conditions were interleaved and each event 

lasted 6 seconds. The images are presented from a set of images and stimulus presentation and 

responses were controlled using E-prime software (Psychology Software Tools, Inc., Pittsburgh). 

A master level instructor instructed participants on how to reappraise prior to entering the 

scanner.  
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Instructions for Resting State during pCASL and BOLD  

The following data was used to further understand the changes occurring during the emotional 

reactivity task. The results of these data have been previously published in a smaller subset. 

During resting state perfusion and BOLD, participants were instructed to lie awake in the 

scanner while viewing a white cross hair.  

7.3.4 Structural Processing 

All processing was conducted using statistical parametric mapping (SPM12) (Penny et al, 2011). 

Interpolation was conducted using 4th degree B-spline interpolation, normalized mutual 

information similarity metric for coregistration between images of different types, and mutual 

information similarity metric for motion correction unless otherwise stated. The FLAIR was 

coregistered to the MPRAGE (affine transform). Both images were input into a multi-spectral 

segmentation, which (after bias correction) segmented them into gray, white matter, 

cerebrospinal fluid, air, soft-tissue, and air. Due to high white matter hyperintensity burden the 

number of Gaussians used to identify white matter was two (which improved the segmentation) 

(Karim et al, 2016c). This process generates a deformation field that can be used to normalize 

other images to a standard anatomic space (Montreal Neurological Institute, MNI). An automatic 

mask for the intracranial volume was generated by thresholding the intracranial tissues with a 

probability of 0.1, filling the mask (imfill), and then performing a morphological closing 

operation (imclose, sphere of one voxel) in MatLab (MATLAB2016b, The MathWorks Inc., 

Natick, MA, 2000). This mask (intracranial volume, ICV) was applied to the MPRAGE to 

remove non-brain tissues (which improves functional-structural coregistration). The skull-
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stripped MPRAGE was normalized to MNI space. An average of all baseline structural images 

was generated to overlay all functional imaging results.  

To generate gray matter density images, we used DARTEL (Diffeomorphic Anatomical 

Registration using Exponentiated Lie algebra) (Ashburner, 2007). This leveraged the 

longitudinal data by first creating a subject specific template and then a study specific template 

and has been previously described in detail. After segmentation, we created a single template for 

each subject using DARTEL, which improved the coregistration between baseline and end 

structural data within a single subject. Those templates were then used to generate a study 

specific template across subjects. Briefly, this method iteratively creates averaged templates that 

slightly improve the coregistration process. This is thought to be important when calculating gray 

matter density maps especially in late-life studies that have greater gray/white matter 

deformations. The Jacobian of the transformations is multiplied by the final probability to 

generate a gray matter density image (instead of a probability). This is because the warping of 

tissue increases or decreases the actual density and needs to be adjusted for (e.g. thin cortical 

regions that are expanded to a larger template will have lower density as the gray matter was 

stretched) (Ashburner, 2007). The gray matter density images were smoothed using a Gaussian 

kernel of full-width at half-maximum (FWHM) of 6mm. The mean gray matter density was 

extracted from regions that we found in voxel-wise analyses of the face/shapes task– no voxel-

wise analyses of this data was conducted. This was used to demonstrate structural differences 

between groups in certain regions. 
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7.3.5 BOLD Pre-Processing 

The IAPS task and the resting state data were slice time corrected (temporally middle slice was 

used as reference) prior to performing motion correction. All functional BOLD data was motion 

corrected (rigid coregistration to the mean), coregistered to the skull-stripped MPRAGE (mean 

functional image used to calculate affine transformation), normalized to MNI space using the 

deformation field calculated previously (2mm isotropic resolution), and smoothed using a 

Gaussian kernel with FWHM of 8mm. All images were investigated by human eye to confirm 

that coregistration and normalization steps were accurate. Functional data from the first four 

scans utilized the baseline MPRAGE, while the end scan utilized its MPRAGE.  

Motion was evaluated using ArtRepair toolbox (Mazaika et al, 2007). During the 

emotional faces reactivity task, participants had low maximum translations [mean=1.26mm 

(std=1.21)], low root mean squared (RMS) [1.11mm (0.81)], and low percentage of volumes 

displaying head jerks above 0.5mm [6.2% (10.7%)]. During the resting state, participants had 

low maximum translations [1.27mm (1.26)], low root mean squared (RMS) [1.04mm (0.85)], 

and slightly higher percentage of volumes displaying head jerks above 0.5mm [10.9% (19.9%)] 

that were corrected for using wavelet-despiking in later stages. During the explicit emotion 

regulation task, participants had low maximum translations [1.87mm (1.91)], low root mean 

squared (RMS) [1.40mm (1.08)], and low percentage of volumes displaying head jerks above 

0.5mm [9.4% (30.8%)], except for a few particularly bad cases that were removed. 

For resting state BOLD, spike artifacts were removed using a previously established 

method that uses wavelets to filter spike artifacts (Patel et al, 2014). Five principal components 

of white matter and cerebrospinal fluid were extracted as well as 6 motion parameters and a 

vector to model the mean of the time series. Band-pass filtering was conducted by including 
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several regressors that represented cosines with all discrete frequencies except those within the 

standard expected resting state frequencies (0.008 to 0.15 Hz).  

7.3.6 Modeling Task Activation: Face/Shapes and IAPS 

Mass-univariate general linear modeling (i.e. each voxel is independently modeled) was 

performed to model the mean of each signal, faces task, shapes task, and six parameters of 

motion (from motion correction). The canonical hemodynamic response function was used to 

convolve the faces and shapes tasks to expected hemodynamic responses. A high-pass filter of 

1/128 Hz was utilized to account for low frequency noise. An autoregressive [AR(1)] filter was 

used to account for serial correlations due to aliased biorhythms and unmodelled activation. The 

contrast faces minus shapes was used to perform all voxel-wise group level analyses (i.e. regions 

that are active during faces relative to shapes and vice versa). Our voxel-wise analyses utilized 

only data from this contrast.  

Similarly, the IAPS task included similar parameters however it modeled the activation 

during the neutral and negative viewing tasks as well as the reappraisal task (during viewing of 

some negative images). The contrast of interest was negative reappraise minus negative viewing, 

which modeled the activation during reappraisal adjusting for activation during the negative 

viewing task. The activation of specific regions during explicit emotion regulation were 

extracted from regions that we found in voxel-wise analyses of the face/shapes task– no voxel-

wise analyses of this contrast was conducted. This was used to show how activation during 

explicit emotion regulation changed across the treatment trial. 
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7.3.7 Resting State BOLD: Eigenvector Centrality (EVC) 

Eigenvector centrality was calculated using the fastECM toolbox (Lohmann et al, 2010). Briefly, 

centrality is a measure of connectedness of a voxel or region. FastECM uses singular value 

decomposition to circumvent the calculation of large correlation matrices. The centrality at rest 

was extracted from regions that we found in voxel-wise analyses of the face/shapes task– no 

voxel-wise analyses of this data was conducted. This was used to show how centrality changed 

across the treatment trial. 

7.3.8 Pre-processing pCASL and Perfusion Calculation 

After performing motion correction and spatial smoothing of the pCASL data, we coregistered 

the skull-stripped MPRAGE to the mean ASL image and applied the transformation to the ICV 

mask and white matter segmentation. White matter segmentation was used to calculate the M0 

magnetization in the white matter while the ICV allowed for calculation only within the brain. 

The following parameters were used to calculate perfusion using ASL toolbox (Wang et al, 

2008b): label time = 1.1, delay time = 3.6x10-4, slice time = 37.25, and labeling efficiency = 

0.85. The mean perfusion image was calculated across the entire time series for each voxel then 

coregistered to the skull-stripped MPRAGE and normalized to MNI space using the standard 

deformation field (4 mm isotropic resolution). The perfusion at rest was extracted from regions 

that we found in voxel-wise analyses of the face/shapes task– no voxel-wise analyses of this data 

was conducted. This was used to show how perfusion changed across the treatment trial. 
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7.3.9 DTI Preprocessing and Mean Diffusivity 

After performing eddy correction via FSL, we coregistered the skull-stripped MPRAGE to the 

first b0 image and applied the transformation to the ICV mask (used to calculate mean diffusivity 

only in the brain). FSL (Jenkinson et al, 2012) was used to calculate mean diffusivity (an inverse 

measure of membrane density) and is calculated by adding the first three eigenvalues and 

dividing by three. The MD image was coregistered to the skull-stripped MPRAGE and 

normalized to MNI space (2 mm isotropic resolution). The mean diffusivity was extracted from 

regions that we found in voxel-wise analyses of the face/shapes task– no voxel-wise analyses of 

this data was conducted. This was used to demonstrate structural differences between groups in 

certain regions.  

7.3.10 Statistical Analysis 

Group differences in demographic and clinical variables were tested using the Statistical Package 

for Social Science (IBM Corp. Released 2013. IBM SPSS Statistics for Mac, Version 24.0. 

Armonk, NY: IBM Corp.). Independent t-tests (continuous data) or Fischer’s exact p-value 

(categorical data) was conducted where appropriate.  

Statistical non-parametric toolbox (SnPM12) was used to perform all voxel-wise 

statistical analyses, which computes non-parametric p-values which are then corrected using a 

cluster-wise inference method (cluster forming threshold of p<0.001) that controls the family 

wise error rate (FWE) at α=0.05 (Nichols and Holmes, 2002).  
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We conducted a one-sample t-test to test for the main effect of the task (areas activated 

more during faces than during shapes independent of group) to show that this task robustly 

activated the amygdala.  

We investigated whether group differences (independent t-test) existed at baseline, 

following a placebo, and at the end of the trial during the face/shapes task. As we sought to 

understand baseline differences in emotional reactivity, in regions that were significantly 

different between groups we extracted baseline gray matter density, mean diffusivity, perfusion, 

EVC, and activation during emotion reappraisal. We then tested (via SPSS) whether there 

existed group differences in any of these regions within each measure and controlled the false 

discovery rate (FDR) at alpha less than 0.05 using the Benjamini-Hochberg procedure.  

We conducted paired t-tests to investigate within group differences between baseline and 

end (as well as following a placebo and end). This reveals total changes across the entire 

treatment trial (i.e. effect of the medication).   

In the next set of analyses, we wanted to investigate whether any acute changes depended 

on group (interaction: independent t-test on the difference). We investigated whether groups 

differed on how activation changed acutely (between placebo and a single dose) as well as sub-

acutely (between placebo and following a week of treatment).  

We subsequently also extracted mean perfusion, EVC, and activation during emotion 

reappraisal in the clusters that showed significant change during the faces-shapes task across the 

entire treatment trial and those that showed early changes during faces-shapes after a single dose 

of anti-depressant. In these analyses, we tested whether there were significant differences 

between baseline and end as well as whether there existed associations between the acute 

changes in the emotional reactivity (face/shapes baseline minus single does) and total changes 
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(baseline minus end) in each of the other measures. We extracted mean diffusivity and gray 

matter density in these regions to test whether the changes were dependent on baseline structural 

measures.  

Functional imaging results were generated using xjview (Cui et al, 2011). Table 2 was 

generated by dividing significant clusters into regions in the automatic anatomic labeling (AAL) 

template (Tzourio-Mazoyer et al, 2002) and Brodmann areas were reported if they overlap with 

at least 30 percent of the cluster. The same principal was used to determine if a network 

[predetermined from an established set of resting state networks (Smith et al, 2009)] label should 

be assigned to that cluster. 

7.4 RESULTS 

7.4.1 Clinical Group Differences 

Remitters had significantly lower baseline depression severity, which we adjusted for in several 

analyses (see table 3). As expected, remitters had even lower depression severity by the end of 

the study as well as lower serum venla/des-venla levels (by design as non-responders had dosage 

increased). We found no differences at baseline between remitters/non-remitters in WMH 

burden.  
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Table 3. Group differences in clinical/demographic features (full sample). NOTE: CIRSG-

Cumulative illness rating scale for geriatrics; MMSE-Mini-mental state examination; MDD-

major depressive disorder; MADRS-Montgomery-Asberg Depression rating scale; WMH-white 

matter hyperintensities. 

 
Non-Remitter (N = 25) Remitter (N = 26) 

t-statistic, p-value 
Mean (Standard Deviation) or Number of Subjects 

Age 65 (6) 67 (7) t(49)=-1.1, p=0.297 

Gender 11 F 7 F p=0.249 

Race 21 CC 22 CC p=1.000 

Education 15 (3) 15 (3) t(49)=1.2, p=0.255 

Depression Type (Single/Recurrent) 10 single [N=24] 8 single [N=24] p=0.565 

CIRSG 9 (5) [N=24] 10 (4) t(48)=-0.7, p=0.494 

MMSE 29 (1) [N=24] 29 (2) t(48)=-0.01, p=0.987 

Serum Venla/Des-Venla End 333.5 (122.9) [N=22] 238.3 (101.4) [N=24] t(42)=2.8, p<0.01* 

MADRS Baseline 27 (5) 23 (8) t(49)=2.2, p<0.05* 

MADRS End 18 (7) 5 (4) t(47)=8.0, p<0.0001** 

WMH 3.04 (1.59) 2.56 (1.42) t(49)=1.2, p=0.256 

 
 
 

7.4.2 Faces-Shapes Task: Robust Activation of Emotional Circuits 

Independent of group, the task significantly activated the bilateral amygdala, visual cortex and 

secondary visual processing areas (including parietal cortex, precuneus, fusiform gyrus), 

hippocampus, parahippocampus, insula, as well as inferior and middle frontal.  
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Table 4. Results of all statistical analyses on emotion reactivity task. The analysis conducted and 

effect tested are reported as well as the significant regions (including hemisphere and 

BA/network, if applicable), number of voxels, the max value of the statistical test, and x, y, and z 

coordinates in MNI space. Regions are labeled with a BA or network if at least 30 percent of that 

cluster overlaps with the structural BA or functional network definitions. 

Analysis Effect Region Side Network BA 
# 

Voxel
s 

Max x, y, z 

In
te

ra
ct

io
n:

  
Ti

m
e 

by
 G

ro
up

 Baseline/Placebo by Group Not Significant 
Placebo/Single Dose by 

Group Parahippocampus L vDMN   191 5.5 -20, -38, -8 

Placebo/Week One by 
Group Not Significant 

Placebo/End by Group Not Significant 

Gr
ou

p 
Di

ffe
re

nc
es

 (I
nd

ep
en

de
nt

 T
-t

es
t)

 a
t B

as
el

in
e,

 P
la

ce
bo

, a
nd

 E
nd

 

Baseline                                  
Non-Remitter > Remitter                       

(Adjusting for Baseline 
Depression Severity) 

Caudate 
L     67 4.3 -18, 22, 0 

R     99 3.9 22, 24, 4 

Cerebellum Declive R   37 105 4.8 28, -56, -20 

Anterior Cingulate 
L dDMN, RECN 32 111 4.0 -2, 42, 16 

R   32 92 4.2 14, 50, 20 

Inferior Frontal (Orb) 
L RECN 47 269 4.8 -26, 34, -12 

R   47 106 4.0 34, 38, -6 

Inferior Frontal (Tri) L RECN 45, 47 271 4.1 -44, 28, 0 

Inferior Frontal (Orb) L   11, 47 74 4.9 -26, 36, -12 

Middle Frontal L ASN, RECN 46 547 4.8 -28, 44, 30 

Superior Frontal L   9 135 4.3 -18, 44, 30 

Superior Medial Frontal L   10 79 3.8 -10, 56, 26 

Heschl Gyrus R   48 50 4.4 40, -24, 18 

Hippocampus R   20 100 4.2 40, -22, -8 

Insula 
L ASN 48 104 4.1 -42, 8, -2 

R   48 226 4.5 38, 12, -12 

Rolandic Operculum R   48 120 5.3 44, -24, 20 

Inferior Temporal R   20 68 4.6 54, -4, -28 

Middle Temporal L   20, 21 226 5.4 58, -4, -22 

Superior Temporal Pole L ASN 38 82 5.1 -50, 12, -12 

Superior Temporal 
L   48 98 4.1 -50, 6, -12 

R   48 568 4.8 58, -8, 2 

Thalamus L     79 4.0 -2, -14, 6 

Placebo Group Differences Not Significant 

End Group Differences Not Significant 
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Table 4 (continued) 
Ti

m
e 

Di
ffe

re
nc

es
 (P
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d 
T-
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) 
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on
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s a
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Non-Remitters:  
Baseline > End 

Calcarine 
L   17, 18 194 4.4 2, -96, 8 

R   18 79 4.4 22, -94, -4 

Cerebellum Culmen R vDMN 37 60 4.4 20, -46, -14 

Cerebellum Declive R   18, 19 385 6.0 24, -78, -18 

Cerebellum Declive R   18 98 5.6 34, -76, -22 

Cuneus 
L   18 161 4.6 -10, -96, 18 

R   18 144 5.3 8, -92, 26 

Fusiform R   18, 19 159 5.6 24, -82, -16 

 

 

Insula 
L   48 85 4.6 -46, 2, 2 

L   19 122 5.0 -18, -52, -8 

Lingual R   18 275 5.1 22, -84, -14 

Inferior Occipital R   18, 19 106 4.4 30, -82, -16 

Middle Occipital 
L   18 129 4.6 -28, -94, 12 

R   18 88 4.8 26, -92, 12 

Superior Occipital 
L   17, 18 158 4.9 -12, -96, 20 

R   18 163 5.3 22, -92, 20 

Inferior Parietal L RECN 2, 3 76 4.8 -56, -22, 46 

Rolandic Operculum L   48 101 4.8 -50, 2, 4 

Thalamus 
L     76 4.9 -6, -8, 6 

R     50 4.7 6, -12, 6 

Remitters: End > Baseline Insula L ASN 13 132 5.4 -40, 14, -4 
Non-Remitters:  
Placebo > End Parahippocampus L vDMN   136 4.8 -16, -24, -

10 
Remitters: Placebo = End Not Significant 

 
 
 

7.4.3 Baseline Hyperactivation in Non-Remitters Relative to Remitters 

We found that non-remitters had greater activation than remitters (even after adjusting for 

baseline depression severity) in the: bilateral caudate, anterior cingulate, inferior frontal (orbital), 

superior temporal, and insula; as well as the left thalamus, inferior, middle, and superior frontal; 

and the right hippocampus, rolandic operculum, and inferior temporal gyrus (figure 4 and table 

4). We found no group differences at placebo or the end of the treatment trial.   
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In each of these regions, we extracted mean gray matter density, mean diffusivity, resting 

perfusion, resting EVC, and activation during explicit emotion regulation and tested for group 

differences at baseline (adjusted for multiple comparisons by controlling the FDR). We found 

that in the right inferior orbital gyrus, remitters had lower mean diffusivity [t(55)=-2.9, 

punc=0.0056, FDR=0.028] than non-remitters. Thus, the group differences in activation may be 

partially driven by group differences in diffusivity in the right inferior orbital gyrus.  

 

 

 

 

 

 

 

 

 

 



 

  117 

 

Figure 4. Group differences in emotion reactivity at baseline. Regions that were significantly 

more active during face/shapes task in non-remitters relative to remitters at baseline (adjusting 

for baseline depression severity). Colors indicate the value of the t-statistic (independent t-test), 

where lighter values indicate regions where non-remitters have greater activation than remitters 

(no regions in reverse direction). Non-remitters also showed group differences in right inferior 

frontal gyrus (orbital) mean diffusivity, but showed no other group differences in structural (gray 

matter density and mean diffusivity) or functional (resting perfusion, resting EVC, and activation 

during IAPS) measures in these regions.  

 
 
 

7.4.4 Decreased Activation Following Ineffective Pharmacotherapy (Non-Remitters) 

Non-remitters showed significant decreases in activation between baseline and the end of the 

trial in visual cortex and secondary visual processing areas (fusiform, inferior parietal), thalamus, 
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and bilateral insula (figure 5 and table 4). However, we only found that the left parahippocampus 

significantly decreased between placebo and the end of the trial in the non-remitters (table 4).  

 
 
 

 

 

Figure 5. Baseline vs. end emotion reactivity in non-remitters. Several clusters showed 

significant decreases from baseline to end (but no increases) in activation in non-remitters. 

Colors on the brain show the t-statistic for the paired t-test between baseline and the end of the 

trial.  
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7.4.5 Increased Insula Activation Following Effective Pharmacotherapy (Remitters) 

Remitters showed a significant increase in the left anterior insula between baseline and the end 

of the trial (figure 6 and table 4). To better understand this finding in the remitters we extracted 

resting perfusion, resting EVC, and activation during explicit emotion regulation in the left AI. 

We tested for total changes across the entire trial as well as whether total changes associated with 

acute changes in emotion reactivity.  

In the remitters, we found that the left anterior insula EVC significantly increased from 

baseline [t(23)=-2.3, p=0.0325], while the acute increase (following single dose relative to 

baseline) in activation was associated with total increase (end relative to baseline) in perfusion 

[r(23)=0.42, p=0.0385]. Of note, we found that the IAPS activation increased during the long-

term treatment period (end relative to a week after beginning treatment), but not significantly 

[t(23)=-1.83, p=0.0804]. We did not find any associations between structural features at baseline 

and either the acute or long-term changes in activation. Thus, the increase in left anterior insula 

activation during the emotion reactivity task was coupled with a more chronic change in explicit 

regulation, activation was associated with change in perfusion, and changes were independent of 

structural influence.  
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Figure 6. Baseline vs. end emotion reactivity in remitters. The left anterior insula showed 

significant increases in activation during face/shapes task in remitters. Colors on the brain show 

the t-statistic for the paired t-test between baseline and the end of the trial. While the entire 

course is plotted, the test was only done on two scans (baseline and end) in remitters and while 

we plotted the non-remitter data there was no test done (only plotted for reference). Violin plots 

show the voxel-wise variance for this cluster by plotting a mirrored histogram (i.e. a vertically 

mirrored histogram for the voxel-wise data in the cluster). We plot average changes in dotted 

lines. We found that the acute change in activation during face/shapes was associated with 

increased total perfusion and that the EVC of this region also significantly increased. While we 

found no significant baseline to end differences during IAPS, we did find a marginal effect 

showing differences between the end of the trial and a week after beginning treatment.  
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7.4.6 Single Dose Engagement in Parahippocampus 

We found that following a single dose of Venlafaxine relative to placebo there was an increase in 

activation in remitters that significantly differed than the decrease in activation in non-remitters. 

This increase was detected in the left parahippocampus (figure 7 and table 4). While we found no 

such changes (that depended on group) between placebo and after a week of treatment or at the 

end of the trial, we did find that the left parahippocampus qualitatively showed some effect in 

both analyses (i.e. a cluster appeared that did not pass multiple comparisons correction, p<0.001 

uncorrected).  

To better understand this effect in the remitters we extracted mean resting perfusion, 

resting EVC, and activation during IAPS in the parahippocampus and tested for significant 

changes across the entire trial. We found that only the IAPS task significantly increased from 

baseline in the remitters [t(23)=-3.9, p=0.0008]. We did not find any associations between 

structural features at baseline and either the acute or long-term changes in activation. Thus, the 

acute increase in activation in the left parahippocampus was coupled with a more chronic change 

in explicit regulation, but was independent of structural influence. 
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Figure 7. Acute single-dose changes in activation of the emotion reactivity task. The left 

parahippocampus showed a significant interaction between group (remitters and non-remitters) 

and time (after placebo and after single dose). While remitters and non-remitters showed a slight 

decrease following a placebo, they showed opposite changes following the initial dose (which 

seems to remain). Colors on the brain show the t-statistic for the independent t-test between the 

difference (placebo minus initial dose). While the entire course is plotted, the test was only done 

on two scans (placebo and single dose). Violin plots show the voxel-wise variance for this cluster 

by plotting a mirrored histogram (i.e. a vertically mirrored histogram for the voxel-wise data in 

the cluster). We plot average changes in dotted lines. We also found that the left 

parahippocampus showed a significant increase from baseline (relative to end) in this region.  
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7.5 DISCUSSION 

As expected, the face/shapes task robustly activated the amygdala as well as supporting 

structures during the emotion reactivity task, including structures such as the parahippocampus, 

insula, and executive structures (Groenewold et al, 2013). 

7.5.1 Baseline Hyperactivation 

At baseline, we found that non-remitters exhibited a heightened reactivity (as measured by the 

level of activation that was independent of their baseline depression severity) in a wide set of 

regions that did not include the amygdala. As hyperactivation of the amygdala is seen in MDD 

relative to never-depressed individuals, this may reflect a similar level of automatic reactivity – 

but a possible difference in either appraisal and/or regulation. Regions such as the caudate, 

insula, anterior cingulate, and frontal structures were hyperactive. Thus, this may reflect a greater 

level of the secondary appraisal processing that follows the initial amygdala reactivity (hence 

hyperactivation of the insula, caudate, anterior cingulate). Frontal structures (including 

orbitofrontral) and the anterior cingulate may reflect a greater need for emotional regulation as a 

result of hyperactivation in these other limbic structures. Interestingly, we found a lower mean 

diffusivity in the right inferior orbital gyrus in the remitters compared to non-remitters, and as 

this region is critical for both implicit and explicit aspects of regulation may reflect a difference 

in ability to regulate, but also a difference in remission capacity (at least to this regimen). 

Interestingly, there was no detected difference at placebo – which may reflect a difference in 

reactivity that is quickly tempered.  
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7.5.2 Decreased Activation in Non-Remitters 

Interestingly, non-remitters displayed a decrease in activation in visual processing areas (primary 

and fusiform/parahippocampus), insula, inferior parietal lobe, and thalamus. Notably, all 

participants in the study improved to some degree following treatment. Thus, non-remitters do 

display improvement to some degree in symptom severity and this decrease in limbic reactivity 

may be a possible mechanism of these changes. Several of these changes (including the insula 

and parahippocampus) occur early as well, which suggests that a decrease in these limbic 

structures may provide relief possibly through a change in reactivity. However, it does not allow 

for total remission of symptoms.  

7.5.3 Increased Left Anterior Insula Activation 

In contrast to non-remitters, remitters showed only a significant (steady) increase in the left 

anterior insula activation. This suggests that remission (at least to venlafaxine) has a specific 

neural signature and replicates similar previous findings but extends the changes to activation 

over a more acute period (Arce et al, 2008; Davidson et al, 2003; Wang et al, 2012). While there 

was not a significant change in perfusion, the increased activation was associated with an 

increase in perfusion. This supports the notion that there are meaningful changes occurring 

within this region in those who experience improvement in symptom severity. We argue that 

these changes reflect an improvement in the insula’s core function to relate external and internal 

stimuli to the self. Specifically, as this region has been associated with the amount of daily 

habitual implicit regulation there may be greater implicit regulation of emotional responses 

(Gross et al, 2003). This is further supported by significant changes in centrality (EVC) that 
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reflects a greater whole brain connectedness within this region, which may be involved in overall 

improvement even at rest. Notably, we did not find any changes in amygdala activation 

throughout the study in remitters. Thus, we can conclude that there is no change in reactivity but 

rather a change in the processes that follow. To further implicate these changes, we also found 

that there is a total change in explicit emotion regulation in a separate task that occurs over a later 

period (no early changes). As these changes were not related to baseline structural features, we 

can thus conclude that while there were no changes in reactivity there were important changes in 

how those emotions were regulated (implicit regulation acutely and explicit regulation 

chronically).  

7.5.4 Acute Parahippocampal Engagement 

Unlike the left anterior insula that showed a steady increase in activation, the left 

parahippocampus exhibited a strong acute (single dose) increase in the remitters (decrease in 

non-remitters) that remained for the entirety of the trial. The change occurred following only a 

single dose, thus it is a strong candidate as an early biomarker. As with the left anterior insula, 

this region also showed a significant increase in activation during the explicit regulation task in 

the remitters. Again, this supports a change in regulatory strategies and may reflect a change in 

how the stimuli are perceived contextually.  

7.5.5 Chronic Behavioral Changes and Implicit Improvement 

A well-known aspect of the treatment process is that while the anti-depressants are known to 

modulate (increase) serotonin levels acutely (within hours), the behavioral changes do not 
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present until a much later period (3-5 weeks in mid-life and 6-8 weeks in late-life) (Andreescu et 

al, 2011). These results may provide some insight, specifically that while there is a change in 

processing (neural processing of implicit regulation) there are no changes behaviorally after a 

single dose. Similarly, the changes in explicit emotion regulation, which requires conscious 

continuous effort, do not change either at the neural or behavioral level until a much later period. 

These results provide a possible mechanistic explanation (as these changes occur following one 

dose) of the changes occurring following treatment: modulation of serotonin changes the neural 

processing involved in implicit emotion regulation that is a marker of eventual changes in 

explicit emotion regulation (which may actually be an effect of remission).  

7.5.6 Relevance to Late-Life and Limitations 

We recruited a late-life sample thus while it is not clear whether these results would generalize to 

a mid-life sample there exists previous studies in mid-life that showed similar changes in the 

anterior insula. Further in this sample, we did not find any differences in white-matter 

hyperintensity burden between remitters and non-remitters even though we have in the past. 

Non-remitters displayed lower mean diffusivity than remitters in the right inferior orbital gyrus, 

which may reflect differences in remission capacity to this particular anti-depressant. While 

compared to other neuroimaging studies we have a good sample size, a larger study would help 

us better understand the generalizability of these results and more importantly their reliability. 

These changes may reflect changes following therapy to only this particular anti-depressant and 

may not generalize to other anti-depressants.  

Several mid-life studies have shown changes in amygdala reactivity following successful 

pharmacotherapy, but there are fewer studies that have shown a change in amygdala reactivity in 
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LLD. We could speculate that this is related to the difference in etiology – many older 

individuals have not (as youth or in mid-life) experienced any depressive symptoms, thus it may 

that older individuals have impairments in another process of the fearful/angry viewing 

paradigm, mainly the appraisal or implicit regulation steps. A lower ability to regulate implicitly 

could explain the worsened mood as well as hyperactivity of the amygdala. This is supported by 

studies that have found (in never depressed individuals) similar amygdala activation in young 

and elderly individuals but altered fusiform and insula activation (Wright et al, 2006). 

As the amount of time needed to determine whether patients are responding to a 

particular therapy is longer in late-life (6-8 weeks) and is associated with an increased risk of 

suicide, finding biomarkers of remission is of utmost importance. These changes may be an 

important step towards this goal.  

7.5.7 Conclusion 

We have identified two possible regions of interest: the left parahippocampus and the left 

anterior insula. We argue that these changes occur and are specific to the implicit emotion 

regulation neural circuitry that translates to eventual changes in the explicit emotion regulation 

neural circuitry. The left anterior insula in particular could be a target for transcranial magnetic 

stimulation (TMS) as with deep TMS we are now able to reach deeper and deeper structures. 

Overall, these may explain the chronic behavioral changes that occur overall a longer time scale 

compared to the acute neural changes in implicit regulation.  
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8.0 PREDICTING REMISSION IN LLD: MULTI-FACTOR KERNEL BASED 

MACHINE LEARNING 

This chapter focuses on the results of several models that attempt to predict remission. The 

models utilize the same dataset described in the last two chapters. Several parameters of the 

model fitting process are explored, including: single vs. multiple features, PCA vs. MFA for 

feature reduction (or kernel), and different combinations of feature sets (mainly demographic and 

clinical data, baseline structural imaging, baseline functional imaging, pharmacological change 

in functional imaging).  

8.1 INTRODUCTION 

Increased interest in machine learning approaches have resulted in many studies that have 

attempted to generate a model for predicting remission to depression. This has proven to be 

complicated with many models suffering from over-fitting and low generalizability due to high-

dimensional features and low sample sizes. A common problem is combining several feature sets 

in an intuitive fashion (e.g., neuroimaging and clinical data). One approach that has been widely 

utilized uses kernel-based machine learning models. These approaches typically reduce the 

feature set into a single kernel that can be used to model the observed outcomes.  
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 Principal components analysis (PCA) reduces high-dimensional features into low-

dimensional vectors (or eigenvectors), which explain a certain proportion of variance within the 

data (related to the eigenvalue). PCA reduces the matrix of features into a set of scores (which 

represent the original data in the low-dimensional feature space). These scores are then used to 

fit a model with the observed outcome. These models have several desirable properties. Consider 

a linear regression model that is either solved using the standard approach (ordinary least 

squares, OLS) or using the PCA approach. The first property is that any linear form of the 

principal components method has a lower variance than the OLS solution. The covariance matrix 

of the scores (from PCA) is identity, which means that none of the features are collinear. This 

completely resolves the multi-collinearity problem in regression. This method can be considered 

a regularized solution and is also an optimal regularized solution.  

 While the PCA kernel can be used to reduce a single feature, the problem of multiple 

feature sets is not resolved. Multi-factor analysis is an extension of this approach. Combining all 

the data into a single matrix then performing PCA is undesirable, as the components will be 

dominated by the matrices with the greatest number of features (e.g., including neuroimaging 

data will introduce a large number of voxels). By first performing a PCA on each individual data 

set (clinical/demographic and neuroimaging data separately) then using the scores to perform 

another PCA, the scores will be equally weighted on each individual data set rather than by the 

number of features within each individual set.  

 In this study, a cohort (N=51) of LLD individuals was recruited into an open-label trial of 

venlafaxine (a serotonin-norepinephrine reuptake inhibitor). Neuroimaging data was collected at 

baseline and following a single dose of venlafaxine (among 3 other time points – however they 
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are not utilized in this analysis). We used kernel-based machine learning approaches to predict 

treatment outcomes (remitters/non-remitters) at 12 weeks.  

8.2 METHODS 

The following sections have already been described in the previous chapter (7.3.1-7.3.9): Study 

Design and Participants, MRI Data Collection, Functional Tasks, Structural Processing, BOLD 

Pre-Processing, Modeling Task Activation: Face/Shapes and IAPS, Resting State BOLD: 

Eigenvector Centrality (EVC), Pre-processing pCASL and Perfusion Calculation, DTI 

Preprocessing and Mean Diffusivity. The only exception is in 7.3.9, where both mean diffusivity 

(MD) and fractional anisotropy (FA) are calculated. The following sections are split into: single 

feature set and multiple features set learning (mainly PCA vs. MFA as a feature reduction 

method). The theory behind these models is detailed in chapter 4.  

8.2.1 Single Feature Set: Principal Components Learning 

This method utilizes principal components analysis to reduce features and works well with 

‘single feature sets.’ The following single feature sets were evaluated: (1) demographic and 

clinical data (e.g., age, gender, education, MADRS, WMH burden, etc.); (2) baseline functional 

neuroimaging (each of the following was independently used: emotion reactivity, emotion 

regulation, EVC, and perfusion); (3) baseline structural imaging (each of the following was 

independently used: gray matter density, MD, FA); (4) difference in functional neuroimaging 

between baseline and placebo or first dose in each of the functional tasks.  
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 These models assume that a single feature matrix exists (X, n subjects by f features where 

f can be the number of clinical/demographic variables or the number of voxels depending on the 

feature set) and this is used to predict the outcomes (y, binary vector length n subjects). The 

model building process is reviewed graphically in figure 8. After determining the number of 

principal components (using Horn’s parallel analysis, HPA), then we perform PCA on the 

feature matrix to get a set of scores (U, n subjects by c components) and a set of coefficients (λ, c 

components by f features).  

 First we fit a single model between the outcomes (y) and the scores (U) using either 

logistic regression, step-wise logistic regression, or support vector machines. Support vector 

machines optimize the box constraint and the kernel scale using a random 25 percent of the 

samples. This step outputs a set of parameter estimates (β, length c components) that are 

projected back into the original space using the coefficients (B, length f features). The next two 

steps test the generalizability of the model (by computing area under the curve, AUC) and which 

features are most significantly predictive (using permutation testing).  

 A 10-fold cross-validation was utilized, where for each fold a set of training data (Utrain 

and ytrain) was used to fit a single model, which was used to predict on the test data (Utest) to fit a 

set of predicted outcomes (yhattest). After the cross-validation, a set of predicted outcomes (yhat) 

are output that can be compared to the actual outcomes (y) by calculating AUC of a receiver 

operating characteristic curve. However, it is possible that the cross-validation we have utilized 

is negatively/positively biased, thus we repeat this cross-validation a total of 50 times to get a 

range on the AUC statistic. This statistic tests for the generalizability of the full model, i.e., how 

well this model will perform given entirely new data.  
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 Permutation testing is performed (1000) to determine the significance of the parameters 

in original model (i.e., which features significantly contribute to the final model). For each 

permutation, the outcomes are permuted or shuffled (yp) then a model is fit (using U) to get a set 

of parameters (βp) that are projected into the original feature space (Bp). This is repeated for each 

permutation to get a set of 1000 values for each feature (Bp is f by 1000) that represents a 

distribution for each feature that can be used to compute a p-value. The p-value is the number of 

times the absolute value of the actual parameter estimates (B) are less than the absolute value of 

the permuted parameter estimates (Bp) divided by 1000.  
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Figure 8. Model building procedure for single feature sets.  
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8.2.2 Multiple Feature Sets: Multi-Factor Learning 

This method utilizes multiple factor analysis (MFA) to reduce features and works well with 

‘multiple feature sets.’ Consider two sets of predictive features (e.g., demographic data and 

genetics data) where one feature set is particularly larger than the other (genetics data has a high 

number of features). Combining these two sets together will ‘wash out’ the effect of the 

demographic data – though that feature set may be highly predictive. MFA attempts to 

ameliorate this by performing a PCA on each set of data independently then using the scores 

from each to perform another PCA (hence the name “multi”-factor). This allows for each feature 

set to weight the scores matrix equally. The following multiple feature sets were evaluated: the 

demographic and clinical data along with (1) each of the functional neuroimaging features 

(independently then all together); (2) each of the structural neuroimaging features (independently 

then all together); (3) each of the functional neuroimaging features along with the 

pharmacological difference in the neuroimaging data; and (4) each of the functional 

neuroimaging features along with the pharmacological difference in the neuroimaging data as 

well as all the structural neuroimaging data.  

 These models assume greater than one feature matrix exists (e.g., X, n by f and S, n by v) 

and this is used to predict the outcomes (y, binary vector length n subjects). The model building 

process is reviewed graphically in figure 9. The process is identical to the previous algorithm, 

with a few important changes. Most importantly the first step is to perform PCA on both feature 

sets independently to extract a set of scores (U and V) as well as coefficients (λ and δ).  
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Figure 9. Model building procedure for multiple feature sets.  
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 The next step uses the scores from each feature set (U and V), combines them into a 

single matrix and performs yet another HPA analysis to determine the number of necessary 

components then a PCA on that matrix to get a set of scores (W) and coefficients (μ). Next, the 

model building procedure is exactly the same as before, however the new scores are used to fit 

the models. Another change is that the transformation back into the original feature space 

requires two transformations (using μ first then λ and δ to transform into X and S feature space, 

respectively).  

8.3 RESULTS 

The single feature models produced several models with sufficiently high AUC (reported in table 

5), specifically the demographic/clinical features with a step-wise logistic model resulted in the 

highest AUC (median 0.735). Two other features that performed well were: baseline emotion 

reactivity using a step-wise logistic model (median AUC of 0.766) and baseline MD using a 

step-wise logistic model (median AUC of 0.658). The ROC curves for each of these models are 

plotted in figure 10. The most significant predictors in the demographic and clinical model are 

reported in table 6 (ordered by most predictive to least). The voxels that were most predictive in 

the emotion reactivity model are reported in figure 11, while the voxels that were most predictive 

in the MD model are reported in figure 12. The emotion reactivity task showed the following 

regions to be predictive: bilateral visual cortex (angular, calcarine, cuneus, middle occipital), 

fusiform, precentral, supramarginal, middle and superior temporal, caudate, thalamus, putamen, 

insula, anterior and middle cingulate, inferior orbital and inferior triangular gyrii, middle and 

superior frontal, and superior medial frontal gyrii; as well as right amygdala, heschl gyrus, 
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hippocampus, precuneus, inferior temporal; and left parahippocampus, and inferior and superior 

parietal as well as parts of the cerebellum. The MD showed the following regions to be 

predictive: bilateral middle cingulate, superior orbital, insula, inferior parietal, pre-/post-central, 

and middle temporal; as well as right angular, inferior frontal, middle frontal, superior parietal, 

supplemental motor, and superior temporal; and left calcarine, anterior cingulate, hippocampus, 

lingual, precuneus, and supramarginal.  
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Table 5. AUC of each of the single feature models. NOTE: SVM=support vector machine; 

swLogistic=step-wise logistic model; AUC=area under the ROC curve; Hypothesize Mean=T-

test tests the null hypothesis that the AUC is greater than the hypothesized mean.  

Feature Model AUC median (IQR) One Sample  
T-test (df=49) 

Hypothesized  
Mean p-value 

Demographic and 
Clinical Features 

SVM 0.655 (0.079) 7.2 0.6 1.60E-09 

Logistic 0.682 (0.029) 26.9 0.6 0 

swLogistic 0.735 (0.018) 15.6 0.7 0 

Baseline Emotion 
Reactivity 

SVM 0.618 (0.079) 1.8 0.6 0.0850 

Logistic 0.655 (0.040) 14.9 0.6 0 

swLogistic 0.766 (0.040) 17.1 0.7 0 

Baseline Emotion 
Regulation 

SVM 0.517 (0.045)       

Logistic 0.530 (0.046)       

swLogistic 0.575 (0.066)       

Baseline EVC 

SVM 0.426 (0.078)       

Logistic 0.325 (0.065)       

swLogistic 0.354 (0.062)       

Baseline Perfusion 

SVM 0.347 (0.058)       

Logistic 0.530 (0.058)       

swLogistic 0.547 (0.074)       

Baseline Gray Matter 
Density 

SVM 0.531 (0.063)       

Logistic 0.431 (0.060)       

swLogistic 0.263 (0.063)       

Baseline FA 

SVM 0.332 (0.062)       

Logistic 0.495 (0.043)       

swLogistic 0.442 (0.085)       

Baseline MD 

SVM 0.510 (0.058)       

Logistic 0.578 (0.045)       

swLogistic 0.658 (0.055) 11.8 0.6 2.77E-16 

phMRI Emotion 
Reactivity 

SVM 0.583 (0.063)       

Logistic 0.411 (0.052)       

swLogistic 0.275 (0.075)       

phMRI Emotion 
Regulation 

SVM 0.331 (0.069)       

Logistic 0.503 (0.071)       

swLogistic 0.297 (0.088)       

phMRI EVC 

SVM 0.501 (0.041)       

Logistic 0.571 (0.038)       

swLogistic 0.586 (0.088)       
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Table 5 (continued) 

phMRI Perfusion 

SVM 0.323 (0.0610)       

Logistic 0.313 (0.032)       

swLogistic 0.281 (0.066)       

 

 
 
 

Table 6. Features predictive in model that utilized clinical/demographic features. Features of the 

model that utilized demographic and clinical features and a step-wise logistic regression ordered 

by contribution to overall model. 

Feature Parameter Estimate (Z) p-value 

Negative Affect -2.936 0.004 

MADRS8 -0.280 0.004 

MADRS9 -0.268 0.004 

Education -0.266 0.004 

Gender 0.076 0.004 

MADRS1 -0.192 0.005 

MMSE -0.045 0.005 

MADRS -1.959 0.008 

MADRS2 -0.125 0.008 

Positive Affect 2.651 0.009 

MADRS3 -0.268 0.017 

MADRS7 -0.185 0.031 

MADRS4 -0.170 0.042 

CIRSG 0.284 0.047 

MADRS6 -0.190 0.047 

MADRS5 -0.183 0.047 

Age 0.695 0.048 

MADRS10 -0.098 0.048 

WMH 0.072 0.048 

Race -0.016 0.048 

Depression Type -0.004 0.048 
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Figure 10. ROC curves for the most accurate models.  
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Figure 11. Most predictive voxels in emotion reactivity at baseline model. Regions during 

emotion reactivity (baseline) significantly contributing to the prediction of remission. Colorbar 

indicates value of the parameter estimate (Z-score).  
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Figure 12. Most predictive voxels in mean diffusivity at baseline model. MD (at baseline) of 

regions significantly contributing to the prediction of remission. Colorbar indicates value of the 

parameter estimate (Z-score). 

 
 
 

While some of the multiple feature models performed similarly (reported in table 7), they 

performed worse than their single feature counterparts. The best performing model amongst 

them combined the demographic/clinical features and the baseline emotion reactivity (median 

AUC of 0.661), however this is worse than either of the models separately. Similarly, the model 

that combined the demographic/clinical features and the baseline MD (median AUC of 0.602) 
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also performed worse than either model separately. We investigated the AUC of the full models 

(i.e., fitting a model on the full set of data and then predicting on that set as well) to understand 

whether this was possible due to over-fitting. We found that the AUC was highest for the MFA 

model combining demographic/clinical features and baseline emotion reactivity (AUC=1), but 

was much lower for both demographic/clinical features (AUC=0.785) and the emotion reactivity 

(AUC=0.834). This suggests that the models may have over-fit, which can occur when too many 

features are entered into the model.  
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Table 7. AUC of each of the multiple feature models. SVM=support vector machine; 

swLogistic=step-wise logistic model; AUC=area under the ROC curve. 

Feature Model AUC median (IQR) 

Demographic/Clinical and Baseline 
Emotion Reactivity 

SVM 0.609 (0.79) 

Logistic 0.661 (0.058) 

swLogistic 0.581 (0.082) 

Demographic/Clinical and Baseline 
Emotion Regulation 

SVM 0.500 (0.096) 

Logistic 0.483 (0.056) 

swLogistic 0.582 (0.077) 

Demographic/Clinical and Baseline 
EVC 

SVM 0.490 (0.096) 

Logistic 0.495 (0.076) 

swLogistic 0.510 (0.088) 

Demographic/Clinical and Baseline 
Perfusion 

SVM 0.489 (0.042) 

Logistic 0.510 (0.075) 

swLogistic 0.471 (0.082) 

Demographic/Clinical and Baseline 
Gray Matter Density 

SVM 0.343 (0.061) 

Logistic 0.439 (0.051) 

swLogistic 0.602 (0.080) 

Demographic/Clinical and Baseline 
FA 

SVM 0.386 (0.095) 

Logistic 0.500 (0.064) 

swLogistic 0.543 (0.091) 

Demographic/Clinical and Baseline 
MD 

SVM 0.430 (0.058) 

Logistic 0.464 (0.063) 

swLogistic 0.564 (0.083) 

Demographic/Clinical and Baseline 
Functional Neuroimaging 

SVM 0.342 (0.059) 

Logistic 0.465 (0.074) 

swLogistic 0.423 (0.093) 

Demographic/Clinical and Baseline 
and phMRI Emotion Reactivity 

SVM 0.447 (0.102) 

Logistic 0.568 (0.072) 

swLogistic 0.573 (0.082) 

Demographic/Clinical and Baseline 
and phMRI Emotion Regulation 

SVM 0.500 (0.000) 

Logistic 0.495 (0.058) 

swLogistic 0.517 (0.092) 

Demographic/Clinical and Baseline 
and phMRI EVC 

SVM 0.380 (0.060) 

Logistic 0.458 (0.070) 

swLogistic 0.262 (0.067) 

Demographic/Clinical and Baseline 
and phMRI Perfusion 

SVM 0.320 (0.060) 

Logistic 0.530 (0.066) 

swLogistic 0.540 (0.054) 
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8.4 DISCUSSION 

Kernel-based regression approaches are a promising approach to fitting models with a high 

number of features and limited sample size. These approaches reduce the feature space into a 

low-dimensional vector space (kernel), perform a model fitting approach, and then project back 

into the original space. Due to the ‘kernel’ trick, this fits models that behave non-linearly and by 

constraining the number of principal components used – only the vectors that explain the highest 

variance are used (which improves the overall generalizability of the models).  

 The single feature kernels performed well on both neuroimaging and demographic and 

clinical data, where a step-wise logistic regression model on the scores of the demographic and 

clinical data resulted in the best performing model (median AUC 0.735). The emotion reactivity 

task (at baseline) also performed well (median AUC 0.766). While some of the multiple feature 

sets performed well – they did not perform as well as either of their individual parts. This may 

either indicate a core flaw in the multi-factor based kernels or may be a result of the limited 

sample size. It is possible that the effectiveness of these kernels improves with a greater sample 

size as we can more robustly estimate the MFA kernel. A simulation-based study may help in 

better understanding the characteristics of such a machine learning approach and some of the 

possible assumptions.  

 Surprisingly, while the statistical results (chapter 6 and 7) suggested acute changes 

following a single dose of venlafaxine (i.e., the pharmacological effect), the models that utilized 

these neuroimaging data did not perform as well. This presents a clear difference between some 

of the statistical results and the models used to predict remission. While this may be a result of 

the poor performance of the MFA models, it is unclear why these features alone (using the single 

feature models) did not perform well. The difference between baseline and following single dose 
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neuroimaging was calculated and it is possible that a better measure relating these two imaging 

data can be computed (e.g., slope between baseline and single dose). Another limiting factor is 

that the kernel used may be diluted by non-specific (to the treatment effect) voxels as only a few 

regions indicated a specific response (i.e., insula or parahippocampus). A priori feature selection 

can help improve the specificity of the model.   

 Some of the most predictive clinical features were negative affect, MADRS items 8 

(inability to feel) and 9 (pessimistic thoughts), and education (among others). The model 

suggests that non-remitters have worse negative affect, inability to feel, or pessimistic thoughts. 

Further, non-remitters tended to have higher education. In figure 11 and 12, negative parameter 

estimates suggest that greater activation or MD at baseline (in those regions) is predictive of 

worse outcome. Subsequently, positive parameter estimates suggest that greater activation or 

MD (in these regions) at baseline is predictive of better outcome.  

 While kernel based approaches offer a promising approach to fitting high-dimensional 

models, combining multiple feature sets may require greater samples to sufficiently estimate the 

MFA kernels and to avoid over-fitting. Simulation-based studies may help elucidate the 

assumptions and characteristics of such models. Several promising models utilized 

clinical/demographic data or baseline emotion reactivity activation, and leveraging the 

predictability of both models as well as managing to efficiently use the phMRI effects may result 

in the best models.  
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9.0 SUMMARY AND CONCLUSIONS 

The current approach to treatment is an often-prolonged trial and error process that matches 

patients to a working regimen. A single trial may take several weeks before any sign or 

indication that the current regimen is working, and even then if the regimen is not working – 

patients are taken off that medication (which may take some time) and then another medication 

is used. This process is often lengthy and associated with patient worsening in a host of negative 

health outcomes (even sometimes their severity of depression). In LLD, this window is much 

longer and is associated with a greater risk of suicide. Thus, identifying useful biomarkers and 

generating machine learning models is critical for the future of personalized psychiatry.  

We have identified a unique pattern of resting state connectivity and emotion reactivity 

changes that occur following only a single dose of medication. These changes reflect the future 

change in functional connectivity and reactivity and thus may reflect an early engagement of the 

implicit networks via increased synaptic monoamine occupancy. It is well-known that there 

monoamine occupancy increases within hours of receiving medication – and while the 

behavioral change may occur much later, the change in functional connectivity and activation 

changes acutely. This may serve as an important biomarker for remission.  

Machine learning models have the unique capability of learning high dimensional ‘rules’ 

that are predictive of remission by using complex non-linear kernels. Our models have identified 

several key predictors of remission (in this sample), and future work can aim to increase the 
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sample sizes to properly fit more complex models. Ultimately, non-linear models can be 

generated with appropriately sized studies and these models are likely to be far better at 

predicting remission.  

Future studies should aim to collect: genetic, demographic, behavioral and psychological 

assessments, cognitive batteries, past history of treatment, actigraphy (sleep and activity 

assessment), as well as neuroimaging data. A true multi-modal approach can be used to fit more 

complex and robust models of remission.   
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