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Abstract

It has been suggested (Morris, Shin 2001) that co-ordination fail-
ure between holders of debt can affect the price of debt. In essence,
fear of premature foreclosure by other debtors can lead to preemptive
action, affecting the value of debt. Using a continuous-time frame-
work related to a Merton (1974)-type structural model, this paper
demonstrates how such co-ordination failures can affect the prices of
corporate bonds. As it turns out, the resulting model is version of a
structural model that allows default before maturity, a model feature
that has proven to be popular with practitioners.

1 Introduction

Morris and Shin (2001) (cf. also Morris and Shin 2000) argue that co-
ordination failure among creditors can have an effect on the price of debt.

∗An earlier version of this paper was published as Financial Markets Group Discussion
Paper No. 410.

†I would like to thank my supervisor Hyun Shin, as well as Olivier Renault, Jean-
Charles Rochet, Jukka Vesala, and Jean-Pierre Zigrand for some very helpful comments.
All errors are my own.
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The problem of co-ordination failure is akin to the problem faced by depos-
itors of a bank which is vulnerable to a run. Even if it is not efficient to
foreclose on a loan, e. g. when the debtor is fundamentally viable, fear that
other creditors may foreclose can lead to preemptive action and inefficient
foreclosure.

In general, co-ordination failures can arise among creditors in a context
where it is possible for individual creditors to improve their position vis-a-
vis the firm at the cost of other creditors (i.e. in a situation with strategic
complementarities between the different lenders). This is the case for example
if creditors can foreclose individually, leaving other creditors exposed to a
firm with lower liquidity, or for instance if some creditors will be able to grab
assets in the case of financial difficulties at the expense of other creditors.

For holders of bonds, it is not in general possible to foreclose on the loan
represented by their bond as and when they wish - i. e. it is not possible to
sell the bond back to the firm, and also it is not in general possible to grab
assets and net out claims. In most jurisdictions, separate deals of individual
bondholders with the firm to the detriment of other bondholders are expressly
forbidden, and the grabbing of assets is prohibited by bankruptcy codes. In
the US, for instance the Trust Indenture Act of 1939 specifies that holders of
public debt need to give unanimous consent before a firm can alter the prin-
cipal, interest or maturity of any part of its public debt, and requires that all
holders of the same class of debt receive the same treatment. Under Chapter
11, holders of a particular type of debt will receive the same treatment (cf.
e.g. Baird and Jackson 1990, Jackson 1986). The aim of these provisions
is of course precisely to mitigate co-ordination failures. The scope for co-
ordination failure to arise between holders of bonds themselves is therefore
limited, and the co-ordination failure argument is probably not applicable to
holders of corporate bonds directly (at least not for most jurisdictions with
a well-defined legal framework).

However, bonds are typically not the only form of debt for any particular
firm - in particular, almost all companies will depend on bank credit of some
form in a crucial way, even if they depend on markets to raise the bulk
of their funds. Firms that raise short term cash in the commercial paper
market, for instance, will almost always have commercial paper backup lines
of credit, to have an emergency supply of liquidity in situations where they
cannot raise money on the commercial paper markets (i. e. the kind of
situation we are interested in). Bank credit is almost always governed by
covenants which are meant to afford creditors a measure of protection, and
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give them the discretion to stop lending in some situations. This in fact
serves to create the strategic complementarities necessary for co-ordination
failure. Some recent examples have highlighted the role of bank credit and
covenants in financial distress, such as the demise of e. g. Vivendi, Kirch,
Enron, Energis, Worldcom and Hutchison 3G to name but a few of the more
high-profile cases.

For larger firms, any loan or line of credit is likely to be syndicated as
banks try to diversify their credit risks. Co-ordination failures and premature
inefficient foreclosure can arise between these banks. These co-ordination
failures will of course affect the price of bonds. It is in this setting that this
paper will model the effect of co-ordination failure on the price of bonds.

Morris and Shin (2001) model co-ordination failure as a function of a
fundamental variable, which can easily be interpreted as the asset value of a
firm. This naturally suggests using a structural model to price the bond: The
structural, or firm-value based approach pioneered by Merton (1974) explains
prices as a function of the process driving the asset value of a company: Bonds
are treated as a ‘bull spread’ on the asset value of a firm, and bankruptcy
occurs when the face value of debt exceeds the value of assets at some given
date.

Empirically, there is evidence that the simplest structural model (the orig-
inal (Merton 1974) model) seems to require implausibly high volatilities to
generate reasonable bond prices (cf. e.g. Jones, Mason, and Rosenfeld 1984,
Anderson and Sundaresan 2000, Eom, Helwege, and Huang 2001). Many
extensions have been proposed to make it more realistic: e. g. relating to
sub-ordination arrangements and indenture provisions (allowing for default
before maturity) (Black and Cox 1976), coupon bearing bonds (Geske 1977),
stochastic interest rates (Shimko, Tejima, and van Deventer 1993, Longstaff
and Schwartz 1995) or an optimally chosen capital structure (e. g. Leland
1994). Strategic issues have only more recently become the focus of at-
tention. Anderson and Sundaresan (1996) and Mella-Barral and Perraudin
(1997) look at a game between creditors and shareholders who optimally
choose to default on payments, rather than on games between creditors,
such as co-ordination failure.

It is interesting to note that allowing default before maturity seems to
have been one of the most interesting extensions for commercial implementa-
tions of the Merton model so far, it is used e g. in the KMV EDFTM method-
ology (Crosbie and Bohn 2002) or in the CreditGradesTM model (Finger
et al. 2002). Of course, models with a default barrier make it possible for
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much lower volatilities to produce lower bond prices, given some suitable as-
sumptions about recovery fractions, overcoming some of the shortcomings of
the original simple (Merton 1974) model.

This paper will derive a continuous-time structural model of bond prices,
with the simplest possible assumptions, integrating co-ordination failure. It
will be shown that once limits are taken, the model resembles the Merton
model, but with a default barrier, allowing for default before maturity.

2 The model

2.1 Co-ordination failure among short term creditors

Shorter-term financing for firms that issue bonds can take many forms. As
these firms are mostly large and well-established corporations, short-term
financing is likely to be raised either in the form of commercial paper, sup-
plemented by a commercial paper back-up line of credit, or by a revolving
credit facility or line of credit syndicated or extended by more than one bank,
as lenders try to diversify credit risk exposure. Any facility or line of credit
will almost certainly be governed by covenants intended to protect the cred-
itors. These covenants can be related to e. g. revenues, cash flow etc, and
will allow the creditors to foreclose or stop lending in case they are breached.

Co-ordination failure in periods of financial difficulty for the firm could
be modelled as follows: A firm needs a certain amount of short-term liquidity
(as e. g. working capital, which is proportional to the total value of assets),
which it borrows regularly from a syndicate of banks. Assume that the
actual amount borrowed is negligible when compared to the total amount of
publicly traded debt (the bond).1 The borrowing facility has previously been
negotiated, and is governed by covenants.

Assume that the covenants specify a cash-flow or revenue target, and
that revenues or cash-flows are proportional to the total asset value of the
firm. Alternatively, assume that the covenant specifies a value of assets (a
net worth covenant). In all cases, we can model a breach of the covenant
as a fall of the asset value below a pre-specified level. If the covenants are
breached, it is up to individual banks to decide whether or not to extend
further credit. Assume that if a large enough proportion of the banks decide

1For a non-negligible amount of bank debt, the resulting pricing equations would have
to be slightly adjusted. The solution and pricing methodology would remain the same,
however.
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to stop extending credit, the firm has to default on payments and is pushed
into bankruptcy.

In this situation, banks will consider the likely actions of other banks, and
co-ordination failures (i.e. failure to extend credit when it would be optimal
for the banks as a group to do so) can arise.

2.2 The setup

As in the Merton (1974) model, the bond will be priced as a function of
the asset value process. We will first set up a discrete time game, where in
every period in which covenants are breached, lenders have to decide whether
or not to stop lending. We will then be able to derive a critical point for
the asset value for which the firm will just be forced into bankruptcy (the
‘trigger point’). The asset value changes between periods, such that when we
take the continuous time limit, the process will turn out to be a geometric
Brownian motion. This will then allow us to price the bond as a combination
of barrier options on the asset value using standard techniques, where the
barrier is given by the trigger point.

Assume that bank debt is junior to all other debt.2

2.2.1 Payoffs

Let C be the critical level of assets stipulated directly or indirectly in the
covenant. If the asset value V falls below C, the covenant is breached.
Bankruptcy will take place immediately before a time t only when the fraction
of banks who stop lending l is larger than or equal to Vt

C
, such that it will

be impossible for the firm to be liquidated because banks stop lending in
the case where Vt > C (i.e. when covenants are not breached), even if some
banks would prefer to call loans. As Vt falls, it becomes easier for banks to
push the firm into bankruptcy.

Assume that if a bank decides to stop lending, it receives a payoff of zero.
If it continues lending and the firm is not pushed into bankruptcy, it earns
the spread s∗ (negotiated at the time of origination of the loan and fixed
throughout its life for simplicity) on the employed principal. If it continues
lending and the firm is pushed into bankruptcy, it will loose its share of the
principal P . Assume that banks are myopic in the sense that they only care
about present payoffs. This considerably simplifies the solution of the game.
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The table below illustrates the ‘per unit of principal’ payoffs that banks
need to take into account when making the decision whether to continue or
stop lending.

firm goes bankrupt firm does not go bankrupt
stop lending 0 0
continue lending −P s∗P

2.2.2 Information content of prices

A necessary ingredient for co-ordination failure to arise is uncertainty about
the actions of other agents. Without common knowledge of the fundamentals
(the asset value in our case) of an issuer, agents will not be completely sure
of how other agents will act. Suppose there is private as well as public
information, then provided that private information is sufficiently precise in
relation to public information, i. e. there is sufficient uncertainty about the
actions of others, this will create co-ordination failure.

In a comment on Morris and Shin’s (2000) paper, Atkeson (2000) doubts
that the co-ordination failure idea is applicable to pricing debt. He argues
that if agents can see prices, there will be no co-ordination failure, because
all information will be revealed in the prices - there is no role for private
information, and hence uncertainty about the information of other agents.
In our case, banks do not trade and hence their private information will not
necessarily be revealed. But even if it were, co-ordination failure could arise,
depending on the exact timing assumptions.

Suppose that banks have to make a decision as to whether or not to stop
lending after they have received a signal, but before the signals are revealed
to all. Subsequently, signals are revealed to all, then trading occurs and
information is integrated into prices. Then there might still be co-ordination
failure, because the private information has not been made public at the time
when the banks need to act.

2.2.3 Timing

Time increments are of size ∆. At time t, identical agents (the banks) know
the asset value of this period, Vt. We will later let the number of agents tend
to infinity, and will subsequently index them by the unit interval.3 Relative

3Note that similar results could be obtained by starting with n banks and then taking
the continuous time limit. Since this would require a more involved argument, it is not done
here. The interested reader is referred to Morris and Shin (2002b) for a game-theoretic
exposition of the argument.
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changes in the asset value are normally distributed. The bonds trade at a
price Bt which incorporates the information Vt. Let q denote a time increment
that is smaller than ∆ (0 < q < ∆). At t+q, banks receive a signal Xi about
the increase in the asset value - subscript i indexes the different banks, we
omit the time subscript to simplify notation. They form a posterior given
their information. Given their posterior, they make a decision as to whether
or not to stop lending or not.

After it has been determined whether the firm will fail in this period or
not, we proceed to the next period: Signals are revealed, the asset value is
revealed and the price Bt+∆ incorporating all the information Vt+∆ is formed.
We see that as a consequence of these timing assumptions, only public infor-
mation will be incorporated into prices. This is important as it allows pricing
by standard martingale techniques.

In the case of bankruptcy before maturity, the banks receive their payoffs
as described above, and the bondholders receive a (recovery) fraction R < 1
of the current asset value.

At the maturity of the bond, the holders receive the minimum of their
share of the face value of the bond or the asset value of the firm. At this
point, there is no cost to reorganisation (the firm will be wound up in any
case).

x x x

t

signals revealed
Vt revealed
trading
Bt formed

t + q

no trading
banks receive new signals
banks form posterior
banks act
firm fails or does not fail

t + ∆
signals revealed
Vt+∆ revealed
trading
Bt+∆ formed

Figure 1: Timing assumptions

2.2.4 Information

The relative increase in the asset value is normally distributed around a drift.

Vt+∆ − Vt = µV Vt∆ + Vtηt, ηt ∼ NID

(

0,
1

α

)
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At t + q, banks receive a signal Xi (subscript i indexes the different
agents) about the impending change in V , with the distribution of the signal,
conditional on the asset value Vt given by

Xi = Vt+∆ + Vtεi, εi ∼ NID

(

0,
1

β

)

,

where Cov(ηt, εi) = 0, i. e. the noise is orthogonal to the innovations in
the asset value.

From the signal Xi and the public information Vt, agents form a posterior
about the value of the firm in period t + ∆, Vt+∆ (which is also normally
distributed).

2.3 The solution

2.3.1 Basic procedure

We follow the same procedure as Morris and Shin (2001) to solve the model.
Suppose that agents follow a switching strategy around a certain posterior
belief. Given the posterior belief around which agents switch, we can work
out how many of them will stop lending, given the asset value in the next
period (posterior beliefs will be centered around this asset value in the next
period). We can therefore work out what the critical next-period asset value
is for which the firm will fail, given the belief in this period around which
agents switch. This is the trigger point.

2.3.2 The discrete time trigger point

In the appendix, section 5.1, the following solution is derived (equation 4):

V ∗
t = CΦ

{

α√
β

(

V ∗
t

Vt−∆

− 1 − µV ∆

)

+

√
α + β√

β
Φ−1

{

1

1 + s∗

}}

The trigger point V ∗
t is unique if:

C
1√
2π

α√
β

1

Vt

< 1

(cf. appendix, section 5.1.8, proposition 1, condition A).
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2.3.3 Continuous time limit

Now take the continuous time limit. If we want the asset value process to
tend to a geometric Brownian motion, we need

lim
∆→dt

1

α
= σ2

V dt,

i.e. the variance of public information about the innovation in the asset value
to be proportional to time. So the variance of the innovation is O(∆), or the
precision is O( 1

∆
).

Now a sufficient condition for the uniqueness of the equilibrium described
in equation (4) in continuous time, regardless of the asset value, the parameter
C and the face value of debt, is that

1

β
= o

(

∆2
)

,

i. e. that private information becomes more precise at a rate faster than
∆2, because this ensures that condition (A) (s.a.) is always satisfied. This is
just to say that we need the quality of private information to be sufficiently
high in relation to the quality of public information in order for agents to
be sufficiently uncertain about the actions of others to obtain co-ordination
failure. As ∆ → dt, ∆2 → 0, and hence β grows at a faster rate than α.
Consequently, α√

β
tends to zero, so condition (A) will be satisfied for any

permissible Vt. Also,
√

α+β√
β

→ 1. The resulting trigger point equation then
reduces to

V ∗ = C

(

1

1 + s∗

)

. (1)

Note that the solution is constant. If we let the intermediate time period
(t + q) tend to the period immediately following it (t + dt), the firm fails at
t whenever V (t) hits C ({1/(1 + s∗}), i. e. when the asset value is a fraction
({1/(1 + s∗}) of the covenant (given that s∗ > 0). So here failure actually
occurs at a later point than the first time the covenant is breached. The
boundary or trigger point is a decreasing function of the opportunity cost of
stopping to lend (loosing the spread s∗) - agents are reluctant to stop lending
if it is costly for them to do so.

Due to the special assumptions about payoffs, this function turns out to
be quite simple here - it is constant. Of course, one could allow for more
general types of costs, but these do not in general produce a closed form
solution.
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2.3.4 The actions of banks in the continuous time limit

Conditional on the asset value in the next period, the probability that a bank

receives a signal which prompts it to stop lending is Φ
{

1
Vt

√
β(X∗

t − Vt+∆)
}

.

We see that as β tends to infinity, this probability tends either to 1 or to
0. What this means is that because all banks essentially receive the same
information (as the signal becomes infinitely precise), the banks will either
all stop lending, or will all refrain from doing so. So for any bank, the ex-
ante probability of stopping to lend when the other agents do not do so
tends to zero. Also, the probability of continuing to lend if all other agents
are stopping to lend tends to zero. This is essentially because in the limit,
agents receive the same signals, and there is no uncertainty about the asset
value. However, strategic uncertainty remains.

2.3.5 Strategic uncertainty in the continuous time limit

Strategic uncertainty remains in the sense that for the marginal agent, the
fraction of bondholders that forces reorganisation is still a random variable in
the limit, which actually turns out to be uniformly distributed. This implies
that the solution of the game is preserved in the limit. This type of result
has been discussed at length elsewhere (Morris and Shin 2002a). A formal
proof is in the appendix, section 5.2.

To illustrate the point, suppose that we instead start with the assumption
that there is no private information, and hence no co-ordination failure. All
banks now have the same information, and (in the absence of asymmetries)
will therefore either all stop lending, or all continue lending. Suppose there is
a strategy that specifies a path for the switching point. At every node of the
game, it does not pay to deviate from the strategy when it specifies stopping
to lend (because in this case deviating always implies loosing the principal
P - continuing to lend when everyone else forecloses is not a good idea),
and it does not pay to deviate from a strategy when it specifies continuing
to lend (deviating always implies loosing the spread s∗). It follows that all
paths of a trigger point below C can be supported. The important difference
to the co-ordination failure case is that there is no strategic uncertainty.
Taking the limit of our discrete time co-ordination failure game has allowed
us to eliminate all equilibria but one, even though in the continuous-time
co-ordination failure case, agents also all have the same information.
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2.4 Pricing

Prices will depend on the expected payoff to bondholders under an equivalent
martingale measure. Prices are only determined in periods in which the asset
value for the period is known, implying that expectations can be taken under
the natural filtration of the asset value process.

2.4.1 Payoffs to bondholders

Letting t+ q tend to the time period following it, default at time t will occur
when V (t) hits the trigger point V ∗. Suppose τ is the stopping time at which
the asset value process hits the boundary and T denotes maturity. Suppose
that bondholders receive a (recovery) fraction R of the asset value in the case
of default before maturity (in this case, the asset value will be equal to V ∗.
Then the payoffs are

1. Π1(T ) = D − max(D − VT , 0), if τ > T (no default before maturity)

2. Π2(τ) = RV ∗, if τ < T (default before maturity)

With these payoffs, the model looks very similar to the standard Black
and Cox (1976) case. The difference here is that the absorbing boundary
is given by our trigger point, which is a fraction of the covenant (in their
case it is the covenant), and that the payoff upon hitting this boundary is
not equal to the asset value, but to a fraction R of the asset value. Pricing
will consequently look very similar, and is relatively straightforward under
standard assumptions (e. g. the assumptions that there exists a money
market account with a fixed risk free rate and that the asset value is traded4).

2.4.2 Bond price

The bond price will be equal to the discounted expected value of the payoffs
under the equivalent martingale measure (Q) defined by the money market
account as a numeraire.

FB(Vt, t, T ) = EQ
t

[

e−r(T−t)Π1I (τ > T ) + e−r(T−τ)Π2I (τ ≤ T )
]

(Here, r denotes the constant risk free interest rate, t denotes the present
and I is the indicator function)

4In the author’s opinion the latter assumption is unpalatable but unfortunately stan-
dard in the literature
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At this stage pricing is straightforward. It was first explored by Black
and Cox (1976). For a good recent treatment, cf. e. g. Ericsson and Reneby
(1998).

The bond can be viewed as a portfolio of barrier options. We can view
Π1 as a combination of a long position in a down-and-out call with strike
price 0 (which is of course just equivalent to a down-and-out position in the
underlying asset value), and a short position in a down-and-out call in with
a strike price of D. This captures the fact that a bond can be viewed as a
bull spread on the asset value. We can view Π2 as a long position in RV ∗

units of a dollar-in-boundary claim (a claim that pays one dollar in the case
the boundary is hit before maturity). The price is the sum of prices of these
positions:

FB(V (t), t, T, V ∗) = FC,DO(V (t), 0, t, T ) − FC,DO(V (t), D, t, T )

+ RV ∗FDIB(V (t), t, T )

where FC,DO(V (t), Z, t, T ) denotes the price of a down-and-out call with
strike price Z on the underlying V at t with maturity T . Similarly, FDIB(V (t), t, T )
denotes the price of a dollar-in-boundary claim. The interested reader is re-
ferred to the appendix, section 5.3 for details of how the components are
priced.

2.4.3 Equity price

5

Similarly, we can interpret equity as a down-and-out call option on the
asset value. Hence the price of equity is given by

FE(V (t), t, T, V ∗) = FC,DO(V (t), D, t, T ).

The sum of the value of equity and the value of debt equals the market
value of the firm:

FMV (V (t), t, T, V ∗) = FC,DO(V (t), 0, t, T ) + RV ∗FDIB(V (t), t, T )

This is in essence the sum of the price of the down-and-out asset value of
the firm, plus the price of the down-and-in claim representing the recovery

5Note that the equity price presented here depends on the assumption that the amount
borrowed by banks is negligible when compared to the total amount of publicly traded
debt. For a non-negligible amount, the equations would have to be adjusted slightly.
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value in the case of default. Note that the market value is not equal to the
asset value of the firm unless R = 1, i. e. there is no cost associated with
bankruptcy.

2.4.4 Extension to coupon-paying debt

An extension to a coupon-paying bond is simple, using methods described by
Ericsson and Reneby (1998). If we assume that coupon i is paid in case the
boundary is not reached prior to its maturity ti, and not paid if the boundary
is reached and reorganisation takes place at or before maturity, then we can
think of the coupon essentially as a down-and-out binary cash call with the
strike price and barrier equal to the trigger point. If the coupon rate is c of
face value D, then the value of the bond will be increased by

Bc = cD
∑

i

FBCC,DO (V (t), t, ti, V
∗)

The value of equity will be decreased by

Ec = − (1 − κ) cD
∑

i

FBCC,DO (V (t), t, ti, V
∗) ,

where FBCC,DO denotes the pricing function of a down-and-out binary
cash call, and κ is the tax rate - this captures the value of the tax shield to
equity.

3 Discussion

Note that the present model is a special case of a very generic bond pricing
approach (Ericsson and Reneby 1998) that views a bond as a portfolio of
simple and barrier claims. This also goes for other bond pricing models inte-
grating strategic interaction (Mella-Barral and Perraudin 1997). In essence,
incorporating elements of strategic interaction into bond pricing produces
arguments as to what the simple and barrier claims should be that make up
the bond. Strategic interaction produces different payoffs in different states
of the world which determine the price. Of course, any other model that
produces the same payoffs will also produce the same price.

3.1 Comparison to Black-Cox and Merton

In the Black and Cox (1976) case, the amount recovered if bondholders liq-
uidate the firm is simply V (t). It is trivial to show that this is always more
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than B(t) (intuitively, this is the case since B(t) represents a claim to V (T )
in some states of the world, and a claim to a value less than V (T ) in oth-
ers, whereas V (t) represents a claim to V (T ) in all states of the world).
Liquidation or bankruptcy will therefore always occur when the covenant is
breached, as it is a dominant strategy for bondholders to liquidate.

Note that in the co-ordination failure model, if the opportunity cost of
stopping to lend is set to zero (s∗ = 0), and there are no costs to bankruptcy
(R = 1), the trigger point is C, which is simply the value of the covenant,
and the amount recovered is the same as in the Black and Cox (1976) model.
The prices will coincide. Essentially, if the cost of stopping lending is zero,
then it becomes a dominant strategy to do so as soon as possible, if there are
no bankruptcy costs.

If we let s∗ → ∞, it is always preferable to continue lending, and the
barrier drops to zero. In this case, bankruptcy before maturity does not
occur, and the price will coincide with the Merton (1974) price.

The effect producing the price that differs from Merton price is twofold:
Firstly, the possibility of early default - i.e. receiving money before the
maturity of the bond - increases the value of the bond, as in the Black-
Cox case. But secondly, since there is a cost of reorganisation R < 1, this
decreases the value of the bond, ceteris paribus. Because these two effects
conflict, the co-ordination failure model does not produce a discount vis-a-
vis the Merton case in all situations. However, it will make it possible for
realistic volatilities to generate low bond prices, as opposed to the Merton
model.

3.2 Comparison to Morris-Shin

Morris and Shin (2001) refer to a version of equation (4), and argue that if
one assumes the trigger point to be fixed, one would underprice debt, as the
trigger point is actually a decreasing function of the asset value. So as the
asset value decreases, the trigger point moves up. Ignoring this effect would
cause overpricing. The effect mentioned by Morris and Shin (2001) does not
cause the difference in the price to the Merton (1974) model here, because
the continuous time limit of the trigger point (equation 1) is not a function
of the asset value - it is constant.
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3.3 Comparison to commercial implementations

In their implementation of a Merton (1974) model with a barrier, the KMV
corporation calculates the default barrier as a function of the book value of
long-term debt, convertible debt, preferred equity and common equity. In
general KMV finds that the

the default point [...] generally lies somewhere between total
liabilities and current, or short-term liabilities

(Crosbie and Bohn 2002, p. 3). We can view this as an ad-hoc attempt at
calculating the trigger point V ∗, which is of course likely to be related to all
these balance sheet items.

Another commercial implementation, the CreditGradesTM model (Finger
et al. 2002), acknowledges the difficulty in determining the appropriate de-
fault barrier in a pricing exercise and treats it as random. The mean of the
default barrier is calculated from balance sheet items, in a manner similar to
the KMV calculations, and from average recovery rates, and their standard
deviation. The main effect of introducing a random barrier is to produce
higher spreads at low volatilities for shorter-dated instruments.

Ultimately, both models look very similar to the model presented in this
paper, the difference being only in assumptions about the exact location of
the default barrier and recovery fractions.

Additionaly, argument presented in this paper suggests that when calcu-
lating an estimate of the default barrier from balance sheet items, it might be
worthwile looking into the structure of short-term debt, short-term liquidity
needs and any covenants that might be in place. The co-ordination failure
approach as well as recent experience demonstrates that these are potentially
a lot more important than longer term debt in determining the location of a
default barrier.

4 Concluding Remarks

This paper argues that co-ordination failure is likely to arise between banks
that have jointly lent to a large firm. These co-ordination failures are very
likely to have an effect on the price of any bonds issued by the firm. Us-
ing a game-theoretic argument based on Morris and Shin’s (2001) model,
a continuous-time structural model of a bond price in the presence of such
co-ordination failure is derived. The resulting pricing equation is based on
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an endogenously derived default barrier that allows default before maturity.
Although many extensions to the Merton (1974) model have been suggested
since the initial introduction of a default barrier (Black and Cox 1976), this
enhancement has been one of the most popular ones with practitioners, and
it has been implemented by e. g. the KMV Corporation (now Moody’s
KMV) (Crosbie and Bohn 2002), and CreditGradesTM (Finger et al. 2002).
In view of the analysis presented here as well as some recent cases of financial
distress (e. g. Vivendi, Kirch, Enron, Energis, Worldcom or Hutchison 3G)
it might worthwhile to look at the role of covenants, short-term bank debt
and short-term liquidity needs in the estimation of default barriers.
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5 Appendix

5.1 Solution of the discrete time model

5.1.1 Basic procedure

We follow the same procedure as Morris and Shin (2001) to solve the model.
Suppose that agents follow a switching strategy around a certain posterior
belief. Given the posterior belief around which agents switch, it is possible
to derive the fraction of them that will foreclose, given the asset value in the
next period (posterior beliefs will be centered around this asset value in the
next period). We can therefore work out what the critical next-period asset
value is for which the firm will fail, given the belief in this period around
which agents switch.

Also, we can use the fact that agents will switch if they believe that they
will obtain a higher utility from doing so. Once we have defined utilities, this
allows us to derive the critical posterior belief, given a critical next period
asset value for which the firm fails.

So we have two equations in two unknowns, which can then be solved for
the critical asset value for which the firm fails - the trigger point.

5.1.2 Information

For convenience, the assumptions about information are restated here. The
relative increase in the asset value is normally distributed around a drift.

Vt+∆ − Vt = µV Vt∆ + Vtηt, ηt ∼ NID

(

0,
1

α

)

Agents receive a signal Xi (subscript i indexes the different agents) about
this increase with a distribution conditional on the asset value Vt given by

Xi = Vt+∆ + Vtεi, εi ∼ NID

(

0,
1

β

)

,

with Cov(ηt, εi) = 0, i. e. the noise is orthogonal to the innovations in
the fundamental.

5.1.3 Posteriors

From the signal Xi and the public information Vt, agents form a posterior
about the value of the firm in period t+ ∆, Vt+∆ which is normal with mean
and variance given by
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ρi = E(Vt+∆|Xi) =
α(1 + µV ∆)Vt + βXi

α + β

and

V ar(Vt+∆|Xi) =
(Vt)

2

α + β
.

5.1.4 Critical value of Vt+∆ for which the firm fails

Given the posterior belief around which agents switch, we work out how many
of them will foreclose, given the asset value in the next period (posterior
beliefs will be centered around this asset value in the next period). We then
work out what the critical next-period asset value is for which the firm fails,
given the belief in this period around which agents switch.

Suppose agents follow a switching strategy around ρ∗, i. e. agents fore-
close when their posterior is below ρ∗. Then an agent will not foreclose if
and only if the private signal is bigger than

X∗ =
α + β

β
ρ∗ − α

β
(1 + µV ∆)Vt.

Conditional on state Vt+∆, the distribution of Xi is normal with mean Vt+∆

and precision β

V 2
t
. So the ex-ante probability for any agent of foreclosing is

equal to

Φ

{

1

Vt

√

β(X∗ − Vt+∆)

}

.

As the number of agents tends to infinity, the fraction of agents that foreclose
will be equal to this ex ante probability for any individual agent by the law
of large numbers.

Since the firm fails if the fraction that forecloses is l ≥ Vt+∆

C
, the critical

value of Vt+∆ (denoted by V ∗
t+∆) for which the firm fails at t is given by

V ∗
t+∆ = CΦ

{

1
Vt

√
β(X∗ − V ∗

t+∆)
}

or

V ∗
t+∆ = CΦ

{

1

Vt

(

α√
β

(ρ∗ − (1 + µV ∆)Vt) +
√

β
(

ρ∗ − V ∗
t+∆

)

)}

. (2)
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5.1.5 Utility

Banks are myopic and only care about present utility u which is a function
of present consumption ct+q. This assumption makes it possible to solve the
game stage by stage, and simplifies the solution considerably. Consumption
in any intermediate period t + q is as described in the payoff matrix in the
main text, reproduced here for convenience:

firm fails (F) firm does not fail (C)
foreclose (f) 0 0
do not foreclose (n) −P s∗P

This is consumption per fraction of the loan that the bank holds. Let ξ
denote the fraction the bank holds.

Then consumption in the case the agent decides to foreclose (f) and the
firm fails (F ) is

ct+q[fF ] = 0,

consumption in the case the agent decides to foreclose (f) but the firm does
not fail, i. e. it continues (C) is

ct+q[fC] = 0,

consumption in the case the agent decides not to foreclose (n) and the firm
fails (F ) is

ct+q[nF ] = −Pξt,

and consumption in case the agent decides not to foreclose (n) and the firm
does not fail, i. e. it continues C is

ct+q[nC] = s∗Pξt.

5.1.6 Critical value of ρ

We now use the fact that agents will switch if they believe that they will
obtain a higher utility from doing so. We then derive the critical posterior
belief, given a critical next period asset value for which the firm is reorganised.

Now the marginal agent (one that is indifferent between forcing reorgani-
sation or not) has a posterior over the asset value which has its mean just at
the switching point (i.e. ρ for this agent is equal to ρ∗). For her the expected
utility of not foreclosing should just equal the expected utility of foreclosing.
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This defines the switching point. Using F to denote the posterior cumulative
distribution (given the belief) over the asset value Vt+∆ we can write:

V ∗
t+∆
∫

−∞

u (ct+q [fR]) dF +

∞
∫

V ∗
t+∆

u (ct+q [fC]) dF =

V ∗
t+∆
∫

−∞

u (ct+q [nR]) dF +

∞
∫

V ∗
t+∆

u (ct+q [nC]) dF

Note that the utility at t + q does not depend on Vt+∆. We can therefore
write:

u (ct+q [fR]) Pr
(

Vt+∆ < V ∗
t+∆

)

+ u (ct+q [fC]) Pr
(

Vt+∆ > V ∗
t+∆

)

=

u (ct+q [nR]) Pr
(

Vt+∆ < V ∗
t+∆

)

+ u (ct+q [nC]) Pr
(

Vt+∆ > V ∗
t+∆

)

We can write this probability as:

Pr
(

Vt+∆ > V ∗
t+∆

)

= Φ

{√
α + β

Vt

(

ρ∗ − V ∗
t+∆

)

}

(

= 1 − Pr
(

Vt+∆ < V ∗
t+∆

))

.

We insert this and rearrange to obtain

ρ∗ − V ∗
t+∆ =

Vt√
α + β

Φ−1

{

u (ct[fF ]) − u (ct[nF ])

u (ct[nC]) − u (ct[nF ]) + u (ct[fF ]) − u (ct[fC])

}

Note that by definition, ct[fC] = ct[fF ], so the last two terms in the
denominator drop out.

Now take limits as the number of agents goes to infinity. This will imply
that the fraction of the loan held by any individual agent goes to zero, ξt → 0.
Note that we have a fraction of functions of ξt, and can apply l’Hopital’s rule.
In the limit, all ct+q are equal, so

lim
ξt→0

u (ct[fF ]) − u (ct[nF ])

u (ct[nC]) − u (ct[nF ]))
=
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u′(ct+q)(0) − u′(ct+q)(−P )

u′(ct+q)(s∗P ) − u′(ct+q)(−P )
=

1

1 + s∗
.

So the limit of our equation is

ρ∗ − V ∗
t+∆ =

Vt√
α + β

Φ−1

{

1

1 + s∗

}

. (3)

This equation together with (2) pins down the critical value of beliefs and
the asset value.

5.1.7 Equilibrium forced reorganisation

Combining equations (3) and (2) we can solve for the failure point at which
the asset value in the next period causes failure in this period:

V ∗
t+∆ = CΦ

{

α√
β

(

V ∗
t+∆

Vt

− 1 − µV ∆

)

+

√
α + β√

β
Φ−1

{

1

1 + s∗

}}

(4)

Reorganisation at time t + q will occur when V hits V ∗ at t + ∆.

5.1.8 Uniqueness

To simplify notation, define

Z =
α√
β

(

V ∗
t+∆

Vt

− 1 − µV ∆

)

+

√
α + β√

β
Φ−1

{

1

1 + s∗

}

and

Condition A C 1√
2π

α√
β

1
Vt

< 1

Proposition 1 The trigger point V ∗
t+∆ is unique if condition (A) is satisfied.

Proof.

This is a version of the proof in Morris and Shin (2001). A sufficient condition
for a unique solution is that the slope of

CΦ {Z}

is less than one everywhere. This slope is equal to

Cϕ {Z} α√
β

1

Vt

.
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It reaches a maximum where the argument of the normal density is 0, the
maximum there will be 1√

2π
. Hence a sufficient condition for a unique solution

is that

C
1√
2π

α√
β

1

Vt

< 1.

5.2 Uncertainty in the limit

It can be shown that the marginal or pivotal agent views the fraction of
banks that attempt to foreclose as a random variable that is uniformly dis-
tributed in the continuous-time limit, and hence that strategic uncertainty
remains. Note that these kind of results have been discussed at length else-
where (Morris and Shin 2002a).

Proposition 2 The distribution of l given the belief ρ∗ of the marginal agent
is uniform in the limit

Proof.

The proportion of people who receive a lower signal X∗ is

l = Φ

(√
β

Vt

(X∗ − Vt+∆)

)

.

The question to ask is: What is the probability that a fraction less than
z of the other bondholders receive a signal higher than that of the marginal
agent, conditional on the marginal agent’s belief, or what is Pr ((1 − l) < z | ρ∗)?

Now the event
1 − l < z

is equivalent to

1 − Φ

(√
β

Vt

(X∗ − Vt+∆)

)

< z

or (rearranging)

Vt+∆ < X∗ +
Vt√
β

Φ−1 (1 − z) .

So the probability we are looking for is Pr
(

Vt+∆ < X∗ + Vt√
β
Φ−1 (1 − z) | ρ∗

)

.

The posterior of the marginal agent over Vt+∆ has mean ρ∗ and variance
V 2

t

α+β
,

hence this probability is
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Pr ((1 − l) < z | ρ∗) = Φ

(√
α + β

Vt

(

X∗ +
Vt√
β

Φ−1 (1 − z) − ρ∗

))

.

Now as we take limits, ρ∗ → X∗, since private information becomes in-
finitely more precise than public information (the agent attaches all weight

to the signal and none to the mean of the prior), and
√

α+β√
β

→ 1. It follows
that

Pr ((1 − l) < z | ρ∗) = 1 − z,

or

Pr (l < 1 − z | ρ∗) = 1 − z.

So the cumulative distribution of l is the identity function, which implies
that the density will be uniform.

5.3 Pricing the bond

Pricing in our context is a standard procedure. For a good recent treatment,
cf. e. g. Ericsson and Reneby (1998). These methods were first used by
Black and Cox (1976). Essentially, the bond will be viewed as a portfolio of
barrier options. Some standard results are restated for convenience.

5.3.1 Default process

Define the default process

Y (t) ≡ 1

σV

ln
V (t)

V ∗
. (5)

This process will take the value zero in default. It is a Wiener process
that can be written as dY = µM

Y dt + dWM , where µM
Y is the drift of Y

under measure M . Note that it is standard to assume that V is traded.6

It follows that under standard assumptions, the drift of V under the risk
neutral measure Q (with the money market account as numeraire) is r, and

the drift of Y under Q will be µQ
Y =

r− 1
2
σ2

V

σV
.

6In the author’s opinion, this is an unsatisfactory assumption, however it is standard
in the literature.
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5.3.2 Standard distributional results

There are some useful standard results for this default process.
The first passage time density (under M) at time t of the default process

to zero is given by (cf. e. g. Øksendal 2000)

fM(Y (t), τ) ≡ Y (t)
√

2π (τ − t)3
e−

1
2

1
(τ−t)(Y (t)+µM

Y (τ−t))
2

. (6)

The point mass for the first passage time is given by

M

Pr (τ ≤ T ) =

∫ T

t

fM(Y (t), τ)dτ = Φ

(−Y (t) − µM
Y (T − t)√

T − t

)

(7)

+ e−2µM
Y Y (t)Φ

(−Y (t) + µM
Y (T − t)√

T − t

)

where Φ is the normal cumulative density. The density of Y (T ), given
that Y has not hit 0 before maturity, is given by

fM (Y (T ); Y (t), t, T ) =
1

√

2π (T − t)
e
− 1

2

(

Y (T )−Y (t)−µM
Y (T−t)

√
T−t

)

(8)

− e−2µM
Y Y (t) 1

√

2π (T − t)
e
− 1

2

(

Y (T )+Y (t)−µM
Y (T−t)

√
T−t

)

Using the definition of Y (t), we can change variables and work out the

corresponding results under Q, where µQ
Y =

r− 1
2
σ2

V

σ
, or the measure G, where

µG
Y = − r− 1

2
σ2

V

σ
.

Use r̃ to denote r − 1
2
σ2

V , x to denote V ∗

V (t)
and θ to denote

r+ 1
2
σ2

V

σ2
V

, then:

G

Pr (τ ≤ T ) = Φ (d5) + x−2θΦ (d6) (9)

where

d5 =
ln x +

(

r + 1
2
σ2
)

(T − t)

σV

√
T − t

(10)

and

d6 =
ln x −

(

r + 1
2
σ2
)

(T − t)

σV

√
T − t

. (11)
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Also,

fQ (ln V (T ); ln V (t)t, T ) (12)

=
1

√

2π (T − t)
e
− 1

2

(

ln V (T )−ln V (t)−r̃(T−t)

σV
√

T−t

)

−
(

V ∗

V (t)

)
2r̃

σ2
V 1
√

2π (T − t)
e
− 1

2

(

ln V (T )−ln(V (t)x2)−r̃(T−t)

σV
√

T−t

)

5.3.3 Prices of constituent claims

Dollar-in-boundary claim The price of a claim that pays 1 when the
boundary is hit (dollar-in-boundary claim) is

FDIB (V (t), t) = EQ
[

e−r(T−τ)I (τ ≤ T )
]

=

∫ T

t

e−r(τ−t)fQ(Y (t), τ)dτ

which (completing the squares and integrating) yields (see e.g. Ericsson
and Reneby 1998, in the appendix)

FDIB (V (t), t) = e−(µ
Q
Y
−µG

Y )Y (t)
G

Pr (τ ≤ T ) . (13)

Noting that

(

µQ
Y +

√

(

µQ
Y

)2

+ 2r

)

σV

=
2r

σ2
V

we can write this as

FDIB (V (t), t) = x
2r

σ2
V

(

Φ (d5) + x−2θΦ (d6)
)

or

FDIB (V (t), t) =
V (t)

V ∗

{

x2θΦ (d5) + Φ (d6)
}

(14)
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Down-and-out claim Define the payoff ΠTr(V (T )) as the payoff Π(V (T ))
truncated at V ∗:

Then we can derive the price of the down-and-out claim in terms of the
prices of the truncated down-and-out claims with starting values for the
process of V (t) and V (t)x2, using the distribution given in (8):

FΠ,DO (V (t), t) = FΠTr
(V (t), t) − x

2r̃

σ2
V FΠTr

(

V (t)x2, t
)

(15)

For a good exposition, see e. g. Björk (1998).

Down-and-out call For example, consider a down-and-out call. For pric-
ing a down-and-out call with strike price Z, we need to know what the price
of a truncated call is. For a call whose price is truncated at V ∗, with a start-
ing value of the process equal to S, the price will be the simple Black-Scholes
price if V ∗ ≤ Z, i. e. if the truncated payoff is just equal to the normal call
payoff:

FC (S, Z, t) = SΦ (d1) − e−r(T−t)ZΦ (d2) (16)

where

d2 (S) =
ln
(

S
Z

)

+ r̃ (T − t)

σV

√
T − t

(17)

and

d1 (S) = d2 + σV

√
T − t. (18)

If V ∗ > Z, the price will be different. Denote the price of the truncated
call as FC,Tr. It is given by

FCTr
(S, Z, t) = SΦ(d3) − e−r(T−t)ZΦ(d4) (19)

where now

d4 (S) =
ln
(

S
V ∗

)

+ r̃ (T − t)

σV

√
T − t

(20)

and

d3 (S) = d4 + σV

√
T − t (21)

We can now insert these pricing functions into the equation for a down-
and-out-price to obtain the pricing functions FC,DO.
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Down-and-out call with strike price 0 By the above formulas, this is
given by

FC,DO (V (t), 0, t) = V (t)
[

Φ {d3(V (t)} − x2θ
(

Φ
{

d3

(

V (t)x2
)})]

(22)

Down-and-out call with strike price D, price of equity Suppose we
have a call with a strike price of D, which is bigger than V ∗, so that the
payoff function is not truncated, then its price is

FC,DO (V (t), D, t) = V (t)
(

Φ {d1(V (t)} − x2θΦ
{

d1

(

V (t)x2
)})

(23)

+ e−r(T−t)D

(

x
2r̃

σ2
V Φ
{

d2

(

V (t)x2
)}

− Φ {d2(V (t)}
)

This is also the value of equity (FE).

Note that the derivative of the value of equity with respect to the asset
value is

∂FE

∂V
= Φ {d1 (V )}+ 2r̃

σ2
V

(

x

(V ∗)2

)

(

V x2Φ
{

d1

(

V x2
)}

− e−r(T−t)DΦ
{

d2

(

V x2
)})

(24)
So using Itô’s lemma, we can now find the volatility of equity as

σFE
=

V

FE

∂FE

∂V
σV (25)

Bond price Recall that the dollar-in-boundary claim is

FDIB (V (t), t) =
V (t)

V ∗

[

x2θΦ {d5} + Φ {d6}
]

. (26)

Supposing that the recovery fraction is R, we will need RV ∗ of these -
this is what we get for holding the bond in case of early default.

Putting it all together, we can calculate the price of the bond as

B(V (t), t, T, V ∗) = FC,DO(V (t), 0, t, T ) (27)

− FC,DO(V (t), D, t, T )

+ RV ∗FDIB (V (t), t)
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B(V (t), t, T, V ∗) = V (t)
[

Φ {d3(V (t)} − x2θ
(

Φ
{

d3

(

V (t)x2
)})]

(28)

− V (t)
(

Φ {d1(V (t)} − x2θΦ
{

d1

(

V (t)x2
)})

− e−r(T−t)D

(

x
2r̃

σ2
V Φ
{

d2

(

V (t)x2
)}

− Φ {d2 (V (t))}
)

+ RV ∗V (t)

V ∗

[

x2θΦ {d5} + Φ {d6}
]

where

x =
V ∗

V (t)

θ =
r + 1

2
σ2

V

σ2
V

r̃ = r − 1

2
σ2

d1(V (t)) =
ln
(

V (t)
D

)

+
(

r + 1
2
σ2

V

)

(T − t)

σV

√
T − t

d2(V (t)) =
ln
(

V (t)
D

)

+
(

r − 1
2
σ2

V

)

(T − t)

σV

√
T − t

d3(V (t)) =
− ln x +

(

r + 1
2
σ2

V

)

(T − t)

σV

√
T − t

d1(V (t)x2) =
ln
(

V (t)
D

)

+ 2 ln x +
(

r + 1
2
σ2

V

)

(T − t)

σV

√
T − t

d2(V (t)x2) =
ln
(

V (t)
D

)

+ 2 ln x +
(

r − 1
2
σ2

V

)

(T − t)

σV

√
T − t

d3(V (t)x2) =
ln x +

(

r + 1
2
σ2

V

)

(T − t)

σV

√
T − t

d5 =
ln x +

(

r + 1
2
σ2

V

)

(T − t)

σV

√
T − t

(= d3(V (t)x2))

d6 =
ln x −

(

r + 1
2
σ2

V

)

(T − t)

σV

√
T − t

(= −d3(V (t)))

Now note that −d3(V (t)) = d6, and d5 = d3 (V (t)x2).
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