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Abstract— Fuzzy systems consisting of networked rule bases, 

called fuzzy networks, capture various types of imprecision 
inherent in financial data and in the decision-making processes 
on them. This paper introduces a novel extension of the 
Technique for Ordering of Preference by Similarity to Ideal 
Solution (TOPSIS) method and uses fuzzy networks to solve 
multi criteria decision-making problems where both benefit and 
cost criteria are presented as subsystems. Thus, the decision 
maker evaluates the performance of each alternative for portfolio 
optimisation and further observes the performance for both 
benefit and cost criteria. This approach improves significantly 
the transparency of the TOPSIS methods, while ensuring high 
effectiveness in comparison to established approaches. The 
proposed method is further tested to solve the problem of 
selection/ranking of traded equity covering developed and 
emergent financial markets. The ranking produced by the 
method is validated using Spearman rho rank correlation. Based 
on the case study, the proposed method outperforms the existing 
TOPSIS approaches in terms of ranking performance. 
 

Index Terms—Fuzzy networks, Multi-criteria decision making, 
Portfolio selection, Ranking performance, Spearman rho 
correlation, TOPSIS, Type 1 fuzzy numbers, Type 2 fuzzy numbers, 
Z-numbers  
 

I. INTRODUCTION 
ULTI-criteria decision making (MCDM) problems are 
often observed in reality, and decision makers are faced 

with the challenge of the presence of multiple criteria. The 
focus is on identifying the best performing solution among 
feasible alternatives assessed by a group of decision makers 
and evaluated through multiple criteria[1]. In portfolio 
optimization, investors target high returns and affordable risks. 
Typically, assets with the potential for high returns also carry 
a high market risk [2]. Structuring complex problems well and 
considering multiple criteria explicitly lead to more informed 
and better decisions. There have been important advances in 
the field since the start of the modern multiple-criteria 

Manuscript received August 4,2015; revised December 4, 2015; accepted 
February 11, 2016. This work was partially supported by Universiti Utara 
Malaysia. 

Abdul Malek Yaakob, School of Quantitative Sciences, Universiti Utara 
Malaysia, 06010 Sintok, Kedah, Malaysia. (e-mail: abd.malek@uum.edu.my). 

Antoaneta Serguieva, Department of Computer Science, University 
College London, 66-72 Gower Street, London WC1E 6EA, United Kingdom. 
(e-mail: a.serguieva @ucl.ac.uk). 

Alexander Gegov, School of Computing, University of Portsmouth, 
Buckingham Building, Lion Terrace, Portsmouth PO1 3HE, United Kingdom. 
(e-mail: alexander.gegov@port.ac.uk). 

decision-making discipline in the early 1960s.Various MCDM 
techniques have been developed with the overall objective to 
assist decision makers solve complex decision problems in a 
systematic, consistent and more productive way. 
 TOPSIS is an MCDM technique for ranking and selection 
of alternatives [15]. The TOPSIS analysis considers two 
reference points -a positive ideal solution (PIS) and a negative 
ideal solution (NIS) - as well as the distances to both PIS and 
NIS. The preference order is ranked according to the closeness 
of PIS and NIS, and according to a combination of the two 
distance measures.  TOPSIS is considered as one of the major 
decision making techniques, and in recent years has been 
effectively applied to the areas of human resources 
management [3], transportation[4], product design [5], 
manufacturing[6], water management [7], quality control [8], 
military[9], tourism[10], food science [11]and location 
analysis[12]. 
 TOPSIS is used in this research due to its stability and 
simplicity of use with cardinal information [13]. TOPSIS has 
been successfully applied in MCDM problems as one of the 
most frequent methods used. The main advantage of the 
TOPSIS methods is that they are easily implemented and 
understood, as they directly define values based on experts’ 
opinions in order to calculate final results [14].  

Fuzzy TOPSIS was introduced to approach uncertainty in 
linguistic judgment. Initial research on fuzzy TOPSIS was 
conducted in [15], where TOPSIS is extended to type-1 fuzzy 
environments; this extended version used type-1 fuzzy 
linguistic value (represented by type-1 fuzzy number, [16]) as 
a substitute for the directly given crisp value in grade 
assessment. Overall, the Type-1 fuzzy TOPSIS problem is to 
find the most desirable alternative(s) from a set of n feasible 
alternatives, according to the decision information by DMs 
about attribute weights and attribute values. There is no 
solution satisfying all attributes simultaneously, as attributes 
are conflicting to some extent. Thus, the solution is a set of 
non-inferior solutions, or a compromise solution according to 
the DMs preferences [17]. However, the existing fuzzy 
MCDM methods are only based on type-1 fuzzy sets  [18]. In 
order to offer better care for the problems of vagueness, 
another discovery, type-2 fuzzy set was provided by [19]. This 
concept looks to comprehensively represent uncertainties, 
compared to type 1 fuzzy set, due to the ability of providing 
more flexible spaces [18].  

Prof Zadeh introduced the concept of type-2 fuzzy set [20], 
which is a generalization of the concept of fuzzy set . This 
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concept is illustrated by a fuzzy membership function, where 
each element of this set is a fuzzy set in [0, 1], unlike a type-1 
fuzzy set where the membership grade is a crisp number in [0, 
1] [21]. The membership functions of type 2 fuzzy set are 
three dimensional and include a Footprint of Uncertainty 
(FOU) as the new third dimension, which can be described as 
the union of the primary memberships [22]. The FOU 
provides additional degrees of freedom to directly model and 
process uncertainties, and type-2 fuzzy set is more 
comprehensive compared to fuzzy set in providing more 
flexibility spaces to represent uncertainties [23]. The 
challenges in computational volume have led to the 
development of interval type-2 fuzzy set in 2000 by Mendel 
and Liang [24]. It can be viewed as a special case, as all values 
of secondary membership are equal to 1 [25]. Currently, 
interval type-2 fuzzy set is widely used and successfully 
applied in perceptual computing[26], [27], control systems 
[28]–[31] and the MCDM field. One of the MCDM methods 
incorporating interval type 2 fuzzy set is the Interval Type-2 
Fuzzy TOPSIS (T2-TOPSIS), which was first established in 
[18]. The authors introduced a T2-TOPSIS method to 
approach fuzzy MCDM problems. 
 Most recently, Z-number has been the newest fuzzy number 
presented in the literature of fuzzy sets. Z-number is 
introduced in [32] as an extension of type-1 fuzzy number but 
is completely different from type-2 fuzzy number. Although 
both Z -number and type-2 fuzzy number are extensions of 
type-1 fuzzy number, the former is capable of measuring the 
reliability of the decision made while the latter is not. Since 
fuzzy numbers are the medium of quantitative representation 
for natural language, Z- number enhances the capability of 
both type-1 and type-2 fuzzy numbers by taking into account 
the reliability of the numbers used [32]. According to [33], Z-
number is represented by two embedded type-1 fuzzy 
numbers, where one of them plays the role to define the 
reliability of the first one. Research on utilizing Z-number in 
decision making applications is inadequate as compared to 
other fuzzy numbers, as it is a new concept developed in the 
theory of fuzzy sets. One of the MCDM methods that 
implemented Z-number is called Z-TOPSIS and was first 
established in [34]. The authors presented a Z-TOPSIS method 
to handle fuzzy MCDM problems, in order to give a 
meaningful structure for formalizing information in decision 
making problems, as it takes into account decision makers’ 
reliability. Z-numbers uncertainty relates to fuzziness of class 
boundaries. Possibility theory is rooted in uncertainty of type-
1, however over the years, possibility theory has moved in the 
direction of extending its domain to accommodate uncertainty 
of type-2 [35]. 
 Fuzzy systems are vital within the armoury of fuzzy tools 
and applicable to real-life decision-making environments. 
There are three types of fuzzy systems introduced in the 
literature -systems with a single rule base, systems with 
multiple rule bases, and systems with networked rule bases. 
Systems with a single rule base are characterised with a black 
box nature, where the inputs are mapped directly to the output 
without considering any internal connection. Systems with 

multiple rule bases are characterises with a white box nature, 
where the inputs are mapped to the outputs through interval 
variables as connections. This type of systems is also termed 
chained fuzzy systems or hierarchical fuzzy systems. The third 
type of fuzzy systems incorporates networked rule bases, and 
is termed fuzzy networks (FN). Fuzzy networks are introduced 
as a theoretical concept in [36] and are characterised with a 
white box nature, where the inputs are mapped to the outputs 
through intermediate variables. 
 According to [37], the accuracy of single rule base is 
moderate but the level of transparency is low, while multiple 
rule bases are regarded as having low accuracy in dealing with 
complex processes management. While in most decision 
making studies, single rule bases and multiple rule bases are 
common approaches [38], in this research we focus on fuzzy 
networks as they are both well transparent and accurate. A 
node represents each subsystem in a FN whereby the 
interactions among subsystems are the connections between 
nodes. Therefore FNs consider explicitly the interaction 
among subsystems[37]. A fuzzy network is more transparent 
than a single rule based fuzzy system for decision making 
because it considers separately benefit related and cost related 
criteria. This network takes into account explicitly the internal 
structure of the modelled process by representing each group 
of criteria as a node and the interactions among different 
groups as connections. This network based approach allows 
the modelled process to be presented as a white-box in 
contrast to the existing system based approaches that use a 
black-box presentation. In this case, the white-box 
presentation improves significantly the transparency of the 
model due to the explicit and adequate reflection of the 
internal structure of the modelled process. This ability brings 
considerable benefits to modelling complex processes, and 
although FNs have been introduced recently, a significant 
volume of work have been done and dedicated to the 
theoretical development and applications of FNs [36]-[37], 
[39]-[40]. 
 On the other hand, the reliability of decision information 
and the experience of experts are still in need of better 
incorporation into modelling complex decision-making 
processes. For example, how confident in their choices are 
investors as decision makers, and how much experience 
experts as financial analysts have in relevant asset classes and 
markets [41]. Furthermore, existing TOPSIS methods have a 
very low transparency level, and therefore are not able to track 
the performance of benefit and cost criteria[42]. In decision 
making processes, it is important that decision makers are 
aware of how the multiple criteria are performing. Based on 
[43], in decision making environment it is essential to track 
the performance of criteria, in order to take control and not 
underestimate or overestimate uncertainty of the criteria. The 
proposed method represents a systematic TOPSIS approach to 
estimating the strengths and weaknesses of alternatives that 
satisfy transactions, activities or functional requirements for a 
business. In addition to that, tracking of criteria allows 
decision makers to determine if it is a sound 
investment/decision (justification/feasibility) and provides a 
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basis for comparing alternatives. In this case, it involves 
comparing the total expected cost criteria of each alternative 
against the total expected benefits criteria, to see whether the 
benefits outweigh the costs and by how much. The 
inefficiencies described above bring the motivation of this 
study. 
 The paper proposes a novel fuzzy network based modelling 
method that represents an extension of fuzzy set theory. The 
method has been validated comparatively against established 
fuzzy system based modelling methods for a case study on 
ranking traded equities. The main advantages of the proposed 
method in the context of this case study are its higher 
transparency and accuracy. The paper is structured as follows: 
Section II briefly reviews the concepts of fuzzy sets and fuzzy 
systems, and the operation of fuzzy networks. The novel 
methodology of TOPSIS using fuzzy networks with merging 
rule bases FN-TOPSIS is formulated in Section III. Section IV 
illustrates the application of FN-TOPSIS to the problem of 
ranking equities traded on the major stock exchanges in a 
developed and a developing financial market. Further 
discussion and analysis of the FN-TOPSIS ranking 
performance are provided in Section V. The main conclusions 
are summarised in Section VI. 
 

II. THEORETICAL PRELIMINARIES 

A.  Fuzzy Sets 
 

Definition 1[20]: Type-1 Fuzzy sets 
 

A type-1 fuzzy set A  is defined on a universe X , and is 
denoted as:  

( ) }|),{( XxxxA A ∈= µ  
where ( ) ]1,0[: →XxAµ  is the membership function of A . 
 

 The membership ( )xAµ  describes the degree of 
belongingness of Xx ∈ in A . Throughout this paper, type-1, 
type-2 fuzzy numbers and Z-numbers are presented through 
trapezoidal membership functions. The good coverage of 
trapezoidal membership functions is a good compromise 
between efficiency and effectiveness. 

Definition 2[44]: Type-1 Fuzzy Numbers 
 

A trapezoidal type-1 fuzzy number is represented by the 
following membership function: 
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Definition 3[19]: Type-2 Fuzzy sets 
 

A type-2 fuzzy set A~  in the universe of discourse X is 
represented by a type-2membershipfunction A~µ  as follows: 

 

( ) ( )( ) [ ] ( ){ }1,0,1,0|,,,~
~~ ≤≤⊆∈∀= uxJuuxuxA AXA µµ  

where XJ denotes an interval in [0, 1]. A type-2 fuzzy set A~  
can also be represented as: 
 

     ( )
( )∫∫

∈∈

=
xJu

A

Xx
ux

uxA ,
,~ ~µ  

 

where [ ]1,0⊆XJ and ∫∫ denotes the union over all admissible 

x and u . 
 

Definition 4[19]: Interval Type-2 Fuzzy Numbers 
 

A trapezoidal interval type-2 fuzzy number is represented by: 
 

( ) ( ) ( )( )( LLLUUUUUULU aaaAAaaaaAAA 321214321 ,,,~,~;,,,~,~~
µµ==

( ) ( ))LLL AAa ~,~;, 214 µµ , 

where UA~  and LA~  are type-1 fuzzy numbers while
LLLUUUU aaaaaaa 3214321 ,,,,,,  and La4 are the reference points 

of the interval type-2 fuzzy number  
A~ . Also, )~( U

j Aµ denotes the membership value of the element 
U

ja )1( + in the upper trapezoidal membership function UA~ for

21 ≤≤ j ,and )~( L
j Aµ denotes the membership value of the lower 

trapezoidal membership function LA~  
for 21 ≤≤ j . Here,

]1,0[)(1 ∈UAµ , ]1,0[)(2 ∈UAµ , ]1,0[)(1 ∈LAµ , and ]1,0[)(2 ∈LAµ

, for ni ≤≤1 . 
 

Definition 5[32]: Z-numbers 
 

Z-number is an ordered pair of type-1 fuzzy numbers denoted 
as )~,~( BAZ = . The first component ,~A  a restriction on the values 
is a real-valued uncertain variable. The second component B~ is 
a measure of reliability for the first component.  

The concept of a Z-number ( )BAZ ~,~
=  provides a basis for 

computation with fuzzy numbers that have various reliability. 
The second component B~  may be interpreted as a response to 
the question: How confident are decision makers that X~ is A~ .  

B.  Fuzzy Systems 
 

 A fuzzy system consists of a single rule base where inputs 
are processed simultaneously without taking into account the 
connections and the structure of the system. For this type of 
system, the rules are derived based on expert knowledge about 
the process. The results are normally quite accurate but the 
poor transparency of the system can be an obstacle to 
understanding complex processes.  

C. Fuzzy Networks 
 

A fuzzy network is a new type of fuzzy system, which 
consists of networked rule bases (nodes) and deals with inputs 
sequentially, while taking into account the connections and 
structure of the system. The rules for both fuzzy systems and 
fuzzy networks are derived from knowledge and data. A 
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networked fuzzy system is transparent and fairly accurate at 
the same time due to its hybrid nature, which facilitates the 
understanding and management of complex processes.  

There are four formal models for fuzzy networks 
characterised in [36], namely:(i) if-then rule and integer tables, 
(ii) block schemes and topological expressions, (iii) incidence 
and adjacency matrices, and (iv) Boolean matrices and binary 
relations. Here we employ if-then rules and Boolean matrices, 
in order to represent the fuzzy rules. Hence the properties of 
such models will be reviewed briefly. The choice is justified 
by the ability of these formal models to work with any number 
of nodes in FNs. 

A fuzzy system with r rules, m  inputs mpp ,,1  taking 
linguistic terms from the sets { } { }mrmr SSSS ,,,,,, 1111  , and 
n  outputs nqq ,,1  taking linguistic terms from the output 
sets { } { }nrnr TTTT ,,,,,, 1111  , can be described by the 
following rule base: 

 

Rule 1: If 1p  is 11S and and mp  is 1mS then 1q is 

11T and and lq  is 1nT  

                  
Rule r : If 1p  is rS1  and and mp  is mrS then 1q
is rT1 and and nlq  is nrT  

 

(1) 

A rule base is incorporated as a node within the fuzzy 
network. A generalised Boolean matrix compresses 
information from a rule base represented by a node. The row 
and column labels of the Boolean matrix are all possible 
permutation of linguistics terms of the inputs and outputs for 
this rule base. The elements of the Boolean matrix are either 

'0' s or '1' s, where each '1'  reflects a present rule. The Boolean 
matrix representation of the rule base from Eq. (1) is given 
with Eq. (2): 

 111 nTT     nrr TT 1  

111 mSS   1    0  

        

mrr SS 1  0    1  
 

(2) 
 
 
 
 

Boolean matrices are very suitable for formal representation of 
fuzzy networks[40]. They describe fuzzy networks at a lower 
level of abstraction with respect to individual nodes. Boolean 
matrices also lend themselves easily to manipulation for the 
purpose of simplifying fuzzy networks to linguistically 
equivalent fuzzy systems, using the linguistics composition 
approach. In the next subsection, we briefly review two 
Boolean matrix operations, as these two are involved in the 
FN-TOPSIS.  

 
Basic Operations 
 

Horizontal merging is a binary operation that can be 
applied to a pair of sequential nodes in FN. This operation 
combines the operand nodes from the pair into a single 
product node. The operation can be applied when the output 
from the first node is fed forward as an input to the second 

node in the form of an intermediate variable. The product node 
has the input from first operand node and the output from the 
second operand node whereas the intermediate variable does 
not appear in the product node. 

Therefore, if the first operand node is the rule base in Eq. 
(1) that is represented by the Boolean matrix in Eq. (2), and 
the second operand node is the rule base in Eq. (3) that is 
represented by the generalised Boolean matrix in Eq. (4): 

 Rule 1: If 1q  is 11T  and and mq  is 1nT then 1w
is 11R and and gw  is 1gR  

               
Rule r : If 1q  is rT1  and and mq  is nrT then 1w

is rR1 and and gw  is grR  

(3) 
 

Then the generalised Boolean matrix of Eq. (3) is described in 
Eq. (4) as follows: 

  111 gRR     grr RR 1  

111 nTT   1    0  

        

nrr TT 1  0    1  
 

(4) 
 

The product node is the rule base in Eq. (5): 
 

 

Rule 1: If 1p  is 11S  and and mp  is 1mS then 1w
is 11R and and gw  is 1gR  

              
Rule r : If 1p  is rS1  and and mp  is mrS then 1w

is rR1 and and gw  is grR  , 

(5) 
 

 

and its generalised Boolean matrix of Eq. (5) is constructed in 
Eq. (6) as follows: 

  111 gRR     grr RR 1  

111 mSS   1    0  
        

mrr SS 1  0    1  
 

(6) 
 

The fuzzy system described by the rule base in Eq. (3) is with 
r  rules, n  inputs nqq ,,1  taking linguistic terms from the 

input sets { } { }nrnr TTTT ,,,,,, 1111  , and g  outputs gww ,,1 

taking linguistic terms from the set of outputs
{ } { }grgr RRRR ,,,,,, 1111  . Similarly, the fuzzy system 
described by the rule base in Eq. (5) is with r  rules, m inputs 

mpp ,,1  taking linguistic terms from the input sets

{ } { }mrmr SSSS ,,,,,, 1111  , and g  outputs gww ,,1  taking 

linguistic terms from the set of outputs
{ } { }grgr RRRR ,,,,,, 1111  . In general, the operand rule bases 

may have a different number of rules but the number of rules 
in the product rule base is always equal to the number of rules 
in the first operand rule base. For simplicity, the notations 
used in Fig. 1 are in a vector form where the vectors vyx ,,  
are of dimensions gmn ,, , respectively. 
Vertical merging is a binary operation that can be applied to a 
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pair of parallel nodes in fuzzy network. The inputs to the 
product node represent the union of the inputs to the operand 
nodes, and the outputs from the product node represent the 
union of the output from the operand nodes.  

Therefore, if the first operand node is the rule base in Eq. 
(1) that is represented by the Boolean matrix in Eq. (2), and 
the second operand is the rule base in Eq. (7) that is 
represented by the generalised Boolean matrix in Eq. (8): 

 

 
Rule 1: If 1w  is 11R  and and gw  is 1gR then 1y is 

11Q and and hw  is 1hQ  

               
Rule s : If 1w  is sR1  and and gw  is gsR then 1y
is sQ1 and and hw  is hsQ  

(7) 

 

then the generalised Boolean matrix of Eq. (8) is described 
with Eq. (9): 
 

 
 

111 hQQ     hss QQ 1  

111 gRR   1    0  

        

gsr RR 1  0    1  
 

(8) 

 

 

The product node is the rule in Eq. (9): 
 

 
Rule 1: If 1p  is 11S  and and mp  is 1mS and 1w  
is 11R  and and gw  is 1gR then 1q is 11T and and

nq  is 1nT  and 1y  is 11Q and and hy  is  

                 
Rule sr ⋅ : If 1p  is rS1  and and mp  is mrS and 

1w  is sR1  and and gw  is gsR then 1q is rT1 and 

and nq  is nrT  and 1y  is sQ1 and and hy  is 

hsQ    , 

(9) 

 

and the generalised Boolean matrix of Eq. (9) is constructed in 
Eq. (10) as follows: 

  111 nTT 

111 hQQ     
nrr TT 1

hss QQ 1  

111 mSS 

111 gRR   1    0  

        
mrr SS 1

gsgr RR   
0    1  

 

(10) 

 

 

In this case, the fuzzy system described by the rule base in 
Eq. (8) has s  rules, g  inputs gww 1 taking linguistic terms 

from the input sets { } { }gsgs RRRR  1111 ,, , and h outputs 

hyy 1  taking linguistic terms from the output sets 
{ } { }hshs QQQQ  1111 ,, . However, the fuzzy system 
described by the rule base in Eq. (10) is with sr ⋅ rules, 

gm + inputs gm wwxx  11 , taking linguistic terms from 

the input sets  
{ } { } { } { }gsgsmrmr RRRRSSSS  11111111 ,,,,,,,,,,, , 

and hn +  outputs hg yyqq ,,,,, 11   taking linguistic terms 
from the output sets 

{ } { } { } { }hshsnrnr QQQQTTTT  11111111 ,,,,,,,,,,, . 
The number of rules in the product rule base is equal to the 
product of the number of rules in the operand rule bases. For 
simplicity, the notations used in Fig. 2 are in a vector form 
where the vectors wvyx ,,, have dimensions hgmn ,,, , 
respectively. 

III. METHOD FORMULATION 
In this approach, the decision makers opinions are 

evaluated independently, since they may have different 
influence degrees, depending on their experience in the area. 
Furthermore, criteria are categorised into benefit criteria or 
cost criteria. Each category generates correspondingly benefit 
fuzzy systems or cost fuzzy systems, where the output of the 
systems is Benefit Levels (BL) or Cost Levels (CL), 
representing the performance of each category .Fig. 3 
illustrates the proposed Generalised Fuzzy Network Model for 
TOPSIS, where Benefit subsystem (BS), Cost subsystem (CS) 
and Alternatives subsystems (AS) are incorporated in the form 
of fuzzy network nodes. The inputs are the benefit 
criteriaB1,…,Be and the cost criteria C1,…,Cf. At the end of the 
process, Alternatives Levels (AL) are determined. The dotted 
frame represents the vertical merging of rule bases, and the 
dashed frame illustrates the horizontal merging of rule bases. 
 The next subsections, illustrate systematically the 
implementation of Type-1, Type-2 and Z-fuzzy numbers to 
FN-TOPSIS. 
 

A. Type-1 Fuzzy Number Implementation 
 

The following Table I and Table II are used by decision 
makers to evaluate the rating of alternatives and the 
importance of criteria, and Table III is used to determine the 
alternative level as the output, in generating fuzzy rule bases.  

The following are the procedures involved in implementing 
a fuzzy network with merging rule bases to TOPSIS, based on 
Type-1fuzzy numbers. Steps 1-6 are adopted from [15] and 
[45], while steps 7-10 are introduced as part of the proposed 
method in this paper. 

 
Step 1: 
Construct decision matrices where each decision maker 
opinion is evaluated independently, and categorise into two 
Criteria Categories as Benefit Criteria and Cost Criteria 
defined through a Benefit System and a Cost System. 
In the decision matrices C

k
B
k DD , and weight matrices

C
k

B
k WW , ( )Kk ,,1= , it is assumed that e is the number of 

benefit criteria, f  is the number of cost criteria, and k is the 
number of the decision maker as shown in Eq. (11): 
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k hhhW ,,2,1 =  , for Kk ,,1 = . 

 

(11) 
 

where kijx ,  are Type-1 fuzzy sets representing the rating of 

alternatives jA ( )mj ,,1= with respect to benefit criteria iB

( )ei ,,1=  according to the thk  decision maker , and kig , are 
Type-1 fuzzy sets representing the weights of benefit criteria 

kiB , ( )ei ,,1= according to the thk  decision maker, where 

Kk ,,1 = . Also, kijy ,  are Type-1 fuzzy sets describing the 

rating of alternatives jA ( )mj ,,1= with respect to cost 

criteria iC ( )fi ,,1= according to the thk  decision maker, 

and kih , are Type-1 fuzzy sets describing the weights of cost 

criteria iC ( )fi ,,1=  according to the thk  decision maker, 
where Kk ,,1 = . 
 
Step 2: 
Construct weighted and normalized decision matrices. 
The fuzzy rating and weight of each criterion are variables 
describedwithType-1 trapezoidal fuzzy numbers. The ratings 
of alternatives jA ( )mj ,,1= are described with the Type-1 

trapezoidal fuzzy numbers ( )x
kij

x
kij

x
kij

x
kijkij dcbax ,,,,, ,,,= and

( )y
kij

y
kij

y
kij

y
kijkij dcbay ,,,,, ,,,= , while the importance of benefit 

criteria iB ( )ei ,,1=  and cost criteria iC ( )fi ,,1= are 

respectively represented by ( )g
ki

g
ki

g
ki

g
kiki dcbag ,,,,, ,,,= and 

( )h
ki

h
ki

h
ki

h
kiki dcbah ,,,,, ,,,= , for Kk ,,1 = . The normalized 

fuzzy decision matrices kR and weight normalized fuzzy 
decision matrices kV  are calculated as shown in Eq. (12): 

 
[ ]

mfekijk rR
×+

=
)(, , 

 where 

(12) 
 
















∈












=

∈












=

=

CCfor
a

a

b

a

c

a

d

a
r

BBfor
d

d

d

c

d

b

d

a
r

r

iy
kij

y
ki

y
kij

y
ki

y
kij

y
ki

y
kij

y
kiC

kij

ix
ki

x
kij

x
ki

x
kij

x
ki

x
kij

x
ki

x
kijB

kij

kij

,,,,

,,,,

,

*
,

,

*
,

,

*
,

,

*
,

.

*
,

,
*

,

,
*

,

,
*

,

,
.

,  

 
x

kij
j

x
ki dd ,
*

, max= , ( )ei ,,1= , ( )mj ,,1=  

y
kijj

y
ki aa ,
*

, min= , ( )fi ,,1= , ( )mj ,,1=  

B and C are the sets of benefit criteria and cost criteria 
respectively; 
 

[ ]
mfekijk vV

×+
=

)(, , 

where 

( )

( )







∈⋅=

∈⋅=
=

CCforhrv

BBforgrv
v

ikikij
C

kij

ikikij
B

kij

kij

,

,

,,.

,,.

,  

and 
( )v

kij
v

kij
v

kij
v

kijkij dcbav ,,,,, ,,,= are Type-1 fuzzy sets; 

for Kk ,,1 = . 
 
Step 3:  
Find the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy 
Negative Ideal Solution (FNIS) for each alternative, and the 
distance between each alternative to FPIS and FNIS. 
The FPIS and FNIS solutions are correspondingly 

( )( )+
+

+++ = kfekkk vvvA ,,2,1 ,,,  and ( )( )−
+

−−− = kfekkk vvvA ,,2,1 ,,,  , 

where ( )1111, =+
kiv  and ( )0000, =−

kiv are Type-1 
fuzzy sets, for Kk ,,1 = . The distance for benefit criteria of 

each alternative j, jA , from +
kA is +∆B

kj, , calculated as shown 

in Eq. (13): 

 ( )∑
=

++ ∆=∆
e

i
ki

B
kij

B
k

B
kj vv

1
,,, , , where 

( ) ( ) ( ) ( ) (
 +−+−+−=∆ + 2,

,
2,

,
2,

,,, 111
3
1, v

ij
Bv
kij

Bv
kij

Bv
kijki

B
kij

B
k dcbavv

, 
for mj ,,1 =  , and BBi ∈ , and Kk ,,1 =  . 
 

(13) 
 

The distance for benefit criteria of each alternative j, jA , from 
−
kA is −∆B

kj, , calculated as shown in Eq. (14): 

 

( )∑
=

−− ∆=∆
e

i
ki

B
kij

B
k

B
kj vv

1
,,, ,  , where 

( ) ( ) ( ) ( ) ( ) 



 −+−+−+−=∆ − 2,

,
2,

,
2,

,
2,

,,, 0000
3
1, Bv

kij
Bv
kij

Bv
kij

Bv
kijki

B
kij

B
k dcbavv

, 

(14) 
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for mj ,,1 =  , and BBi ∈ , and Kk ,,1 = . 
 

The distance for cost criteria of each alternative from +
kA is

+∆C
kj, , calculated as shown in Eq. (15): 

 

( )∑
=

++ ∆=∆
f

i
ki

C
kij

C
k

C
kj vv

1
,,, , , where  

( ) ( ) ( ) ( ) (
 −+−+−+−=∆ + ,

,
2,

,
2,

,
2,

,,, 111
3
1, Cv

kij
Cv
kij

Cv
kij

Cv
kijki

C
kij

C
k dcbavv

  
for mj ,,1 = , and CCi ∈ , and Kk ,,1 = . 
 

(15) 
 

Finally, the distance for cost criteria of each alternative from 
−
kA is −∆C

kj, , calculated as shown in Eq. (16): 

 
( )∑

=

−− ∆=∆
f

i
ki

C
kij

C
k

C
kj vv

1
,,, , , where 

( ) ( ) ( ) ( ) ( ) 



 −+−+−+−=∆ − 2,

,
2,

,
2,

,
2,

,,, 0000
3
1, Cv

kij
Cv
kij

Cv
kij

Cv
kijki

C
kij

C
k dcbavv   

for mj ,,1 =  , and CCi ∈ , and Kk ,,1 = . 

(16) 
 

Step 4: 
Find the closeness coefficients for both the benefit and cost 
systems. 
The closeness coefficients B

kjCC , for the benefit systems, and 

the closeness coefficients C
kjCC , for the cost systems, are 

calculated in Eq. (17): 

 −+

−

∆+∆

∆
=

B
kj

B
kj

B
kjB

kjCC
,,

,
, , 

−+

−

∆+∆

∆
=

C
kj

C
kj

C
kjC

kjCC
,,

,
,  

for mj ,,1 =  and Kk ,,1 = . 
 

(17) 
 

Step 5:  
Derive the Influenced Closeness Coefficients (ICC) by 
applying the influence degree of each decision maker. Then 
find the normalised ICC (NICC), dividing the ICC by the 
maximum value of ICC. 

Let kθ denotes the influence degree, between 0 (un-influential) 

and 10 (very influential), of decision maker k , where 
Kk ,,1= . Next, let kσ  stands for the normalized influence 

degree of the thk  decision maker, Kk ,,1= . , as evaluated 
with Eq. (18):  

 ∑
=

= K

l
l

k
k

1

θ

θσ          , for Kk ,,1 = . (18) 

 

Eq. (19) evaluates the influence closeness coefficients B
kjICC ,  

and C
kjICC , for each DM k, respectively along the benefit and 

cost criteria. 
 

 
B

kjk
B

kj CCICC ,, ×= σ and C
kjk

C
kj CCICC ,, ×= σ for

mj ,,1=  and Kk ,,1 = . 

(19) 

 
 

It is further necessary to normalize the coefficients, in order to 
ensure that their values vary between 0 to 1. Eq. (20) evaluates 
the normalised coefficients, where B

kjNICC , and C
kjNICC , are 

respectively the normalized influence closeness coefficients 
for the benefit and cost systems, as related to the kth decision 
maker.  

 
B

kj
j

B
kjB

kj ICCICCNICC ,
,

, max=             and          

C
kj

j

C
kjC

kj ICCICCNICC ,
,

, max=          

for mj ,,1=  and Kk ,,1= . 

(20) 

 

Both B
kjNICC ,  and C

kjNICC ,  will take linguistic terms from 
Table III for the level of alternatives performance. 
 

Step 6:  
Construct the antecedent matrices and the consequent 
matrices for the BS and CS systems, based on DMs opinions 
and the values of the NICC coefficients.  

Having the opinions B
kD and C

kD  of all DMs ( )Kk ,,1= on 
each alternative j ( )mj ,,1= in respect to each benefit 
criterion i ( )ei ,,1=  and each cost criterion i ( )fi ,,1=  (see 

Eq. 11) , we can define the BS antecedent matrix kX and the 

CS antecedent matrix kY for each DM k, as introduced with 
Eq. (21): 

 





















=

kemkeke

kmk

kmkk

k

xxx

xxx
xxx

X

,,2,1

,222,21

,1,12,11

,









and





















=

kfmkfkf

kmkk

kmkk

k

yyy

yyy
yyy

Y

,,2,1

,2,22,21

,1,12,11









  for Kk ,,1 =  

(21) 

 

 
where kijx , and kijy , are linguistic terms describing decision 

makers’ opinions. Having determined the kB
jNICC ,  and

kC
jNICC ,  coefficients for all decision makers ( )Kk ,,1 = , 

next the benefit consequent matrix kΛ and the cost consequent 

matrix kΨ are defined as shown in Eq. (22): 
 

 [ ]kmkkk ,,2,1 λλλ =Λ and      

[ ]kmkkk ,,2,1 ψψψ =Ψ for  Kk ,,1 =  

(22) 
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where ki,λ  and ki,ψ are linguistic terms representing the 
output of the BS and CS systems, based respectively on the 
values of B

kjNICC , and C
kjNICC , . With reference to FPIS and 

FNIS, FPIS represents the compromise solution while FNIS 
represents the worst possible solution. The range is within the 
closed interval [0, 1]. NICC equation illustrates the distance of 
each alternative from FPIS and FNIS with the nearest value to 
compromise solution which is 1. The closer the NICC to 1, the 
higher the priority of the alternatives. The scalar is translated 
into linguistic term to which the scalar has the highest 
membership degree. The benefit sub system consists of K 
matrix decision rules presented in Eq. (23): 

 
If 





















=

kemkeke

kmk

kmkk

k

xxx

xxx
xxx

X

,,2,1

,222,21

,1,12,11

,









then 

[ ]kmkkk ,,2,1 λλλ =Λ for Kk ,,1=  ; 
 

(23) 

 

And can be described with the rule bases in Eq. (24): 
 

 
Rule 1: If 1B  is kx ,11  and and eB  is kex ,1 then 

BL is k,1λ  

              
Rule m : If 1B  is kmx ,1  and and eB  is kemx , then 

BL is km,λ  

(24) 

 

where BL is the benefit level of alternatives, for mj ,,1 =  
and for Kk ,,1= ;The cost system consists of K matrix 
decision rules presented in Eq. (25): 
 

 
If 





















=

kfmkfkf

kmkk

kmkk

k

yyy

yyy
yyy

Y

,,2,1

,2,22,21

,1,12,11









then 

[ ]kmkkk ,,2,1 ψψψ =Ψ  for Kk ,,1=  ; 
 

(25) 

 

and can be described with the rule bases in Eq. (26): 

 
Rule 1: If 1C  is ky ,11  and and fC  is kfy ,1 then 

1CL is k,1ψ  

                                                                                

Rule m : If 1C  is kfy ,1  and and fC  is kfmy ,

then mCL is km,ψ  

(26) 

 

where CL is the cost level of alternatives, for mj ,,1 = and 
Kk ,,1 = . 

 

Step 7:  
Construct the antecedent matrices and consequent matrices 
for the Alternatives System (AS).  
The AS antecedent matrices kΜ are based on the Benefit 
Levels kΛ  and Cost Levels kΨ , which are the outputs of the 
BS and CS systems correspondingly. The antecedent matrix of 

a system with two inputs, i.e. BL and CL , each taking m
possible values, will be usually of size ( )mm ⋅×2 , as 
presented in Eq. (27).  
 

 








=

kmkkmk

kmkmkk
k CL

BL
M

,,1,,1

,,,1,1

ψψψψ
λλλλ





for Kk ,,1 =  . 

(27) 
 

However, in this case each tuple of inputs ( )kjkj ,, ,ψλ  stands 

for the assessed levels of the same alternative j through two 
types of criteria – benefits and costs. Therefore, the AS 
antecedent matrices kΜ are of size m×2 , as constructed in 
Eq. (28): 

 








=

kmkkk

kmkkk
k CL

BL
M

,,3,2,1

,,3,2,1

ψψψψ
λλλλ

3

3  

for Kk ,,1 =  . 

(28) 
 

 

The AS consequent matrices are derived as follows: 
 (i) Calculate the aggregation kj,ξ of weighted B

kjNICC , and 
C

kjNICC , , the division by two in Eq. (29) reflects the equal 
importance of each of the two subsystems by means of a 
weighted mean: 

 2

,,

,









+

×+







+

×

=
fe

fNICC
fe

eNICC C
kj

B
kj

kjξ  

for mj ,,1 = and Kk ,,1 = . 
 

(29) 
 

 (ii) Normalize the values of kj,ξ to ensure they lie within

]1,0[ , as calculated in Eq. (30): 

 kj
j

kj
kjN

,

,
, max x

x
x = for mj ,,1 =  and 

Kk ,,1 = . 
 

(30) 
 

(iii) For kjN ,ξ , take linguistic terms from Table III for the 
alternatives levels. The translation of scalars to linguistic 
terms is done in the same way as in Eq. (22).Then the K for 
AS consequent matrices, in this case of size m×1 rather than

mm ⋅×1 , are described in Eq. (31): 
 

 
[ ]kmkkk NNNALN ,,2,1 ξξξ =  

, for  Kk ,,1 =  , 
where AL is the level of alternatives. 

(31) 
 

Therefore, the alternatives system is presented with K matrix 
decision rules, as constructed in Eq. (32): 
 

 
If 








=

kmkk

kmkk
k CL

BL
M

,,2,1

,,1,1

ψψψ
λλλ




 then 

[ ]kmkkk NNNALN ,,2,1 ξξξ = , 
 
for Kk ,,1 =  ; 
 

(32) 
 

and can be described with the rule bases in Eq. (33): 
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Rule 1: If BL  is k,1λ  and CL  is k,1ψ then AL is 

kN ,1ξ  
                     
Rule m : If BL  is km,λ  and CL  is km,ψ then AL is 

kmN ,ξ ,  for Kk ,,1 =  ; 

(33) 
 

where BL  is the level of benefits, CL  is the level of costs,  
and AL is the level of alternatives. 
 

Step 8:  
Construct the generalised Boolean matrix representing the 
overall system. 
Having derived the rules for the three systems - BS, CS and 
AS – we can now translate these rules into Boolean matrix 
form. The generalised BS Boolean matrix for each alternative 
j is constructed in Eq. (34), based on the opinions of all K 
decision makers: 

 
 
, for 

mj ,,1 =
 

 
 

 1,jλ    Kj ,λ  

1,1,1 ejj xx   1    0  

        

KejKj xx ,,1   0    1  

(34) 

 

where the row and column labels of the Boolean matrix are all 
possible permutation for the BS rule base of the linguistics 
terms for the input (1-7) as in Tables I and II, and of the 
linguistic terms for the output (1-5) as in Table III. 
 The generalised CS Boolean matrix for each alternative 
j is constructed in Eq. (35) based on the opinions of all K 
decision makers: 

 
 

 
, for 

mj ,,1 =  
 
 

 
1,jψ    

Kj ,ψ  

1,1,1 fjj yy   1    0  

        

KfjKj yy ,,1   0    1  

(35) 

 

where the row and column labels of the Boolean matrix are all 
possible permutation for the CS rule base of the linguistics 
terms for the input (1-7) as in Tables I and II, and of the 
linguistic terms for the output (1-5) as in Table III. 

The vertical merging of the BS and CS generalised 
Boolean matrices will produce the generalised Boolean matrix 
constructed in Eq. (36): 

 

  
1,jλ

1,jψ    
Kj,λ

Kj,ψ  

1,1,1 ejj xx 

1,1,1 fjj yy   
1    0  

        

KejKj xx ,,1 

KfjKj yy ,,1   
0    1  

 

(36) 

 
 

       , for 
mj ,,1=  

 

Next, the AS generalised Boolean matrix for each alternative j 
is introduced in Eq. (37) based on the opinions of all K 
decision makers: 

 
 

, for 
mj ,,1=

 
 

 

 1,jNξ    KjN ,ξ  

1,1, jj ψλ  1   0  

        

KjKj ,, ψλ  0    1 

(37) 

 

 
Then, the resultant generalised Boolean matrix for the overall 
system for each alternative j is produced in Eq. (38) based on 
the opinions of all K decision makers: 

 

     , for mj ,,1=  

 1,jNξ    KjN ,ξ  

1,1,1 ejj xx 

1,1,1 fjj yy   
1    0  

        

KejKj xx ,,1 

kfmkm yy ,,1   
0    1  

(38) 

 

Step 9: 
Derive the rules for the alternatives based on the generalised 
Boolean matrix from Eq. (40), as shown below for 

mj ,,1 = : 
 

 

Rule 1: If 1B  is 1,1 jx  and  and eB  is 1,ejx and 1C  is 1,1 jy  

and  and fC  is 1,fjy  

then AL is 1,jNξ  

                               

Rule jn : If 1B  is Kjx ,1  and  and eB  is Kejx , and 1C  is 

Kjy ,1  and  and fC  is Kfjy ,  

then AL is KjN ,ξ  

 

Step 10:  
Derive a final score for each alternative. 
In order to produce a final score jΓ  for each alternative j, take 
the average aggregate membership value of the consequent 
part of the jn rules in Eq. (38). Then multiply with the 
influence multiplier based on the KDMs average influence 
degree for alternative j. This is shown in Eq. (39): 

 ( )
Kn

NICCNICCN
K

k

C
kj

B
kjkj

n

Rule
j ⋅

+⋅

=Γ
∑∑

== 1
,,,

1

ξ

         

for mj ,,1 = . 

(39) 
 

Thus the ranking order of all alternatives can be determined: 
the better alternatives j have higher values of jΓ . The 
alternatives we have developed the above ranking approach 
for are stock exchange traded equities. We have considered 
application to a developing financial market, and are currently 
extending the application to comparison of performance in 
developing and developed financial markets. 
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B.  Interval Type-2 Fuzzy Number Implementation 

In this implementation of FN-TOPSIS, we use Interval Type-2 
fuzzy number, as detailed in Table IV, Table V and Table VI, 
for rating of alternatives and weighting the importance of 
criteria. All linguistics terms are written in the form of 
trapezoidal Type-2-fuzzy numbers.  

 
In terms of steps involved in the implementation of Type-2 

fuzzy numbers in FN-TOPSIS, the concept of ranking 
trapezoidal interval Type-2 fuzzy numbers is relevant to step 3 
prior to finding the distance of alternatives from positive ideal 
solutions and negative ideal solutions. The other steps are the 
same as type-1 fuzzy sets implementation discussed in 
subsection III (A). 

 

Step 3:  
Find the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy 
Negative Ideal Solution (FNIS) for each alternative, and the 
distance between each alternative to FPIS and FNIS. 
 

In order to construct the ranking weighted decision matrices, 
for mj ,,1 = and mk ,,1 = , we need to calculate the 

ranking value of each Interval Type-2 fuzzy numbers kijv , , i.e. 

)( ,kijvRank .The maximum number n of edges in the upper 

membership function U
kijv , and the lower membership function 

L
kijv , are first defined, where fei += ,,1 and mj ,,1 = . If 

n is an odd number and 3≥n , then 1+= nr . If n  is an even 
number and 4≥n , then nr = . The )( ,kijvRank of an Interval 
Type-2 fuzzy numbers is presented in Eq. (40): 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )∑∑∑

∑∑∑

∑∑∑

∈
−

∈∈

∈∈∈

∈
−

∈∈

++++

+












+++−

+++=

},{
,2

},{
,2

},{
,1

},{
,

},{
,2

},{
,1

},{
,1

},{
,2

},{
,1,

1

LUl

l
kijr

LUl

l
kij

LUl

l
kij

LUl

l
kijr

LUl

l
kij

LUl

l
kij

LUl

l
kijr

LUl

l
kij

LUl

l
kijkij

vvv

vSvSvS
r

vMvMvMvRank

µµµ 





 
(40) 
 

Here ( )l
kijp vM , denotes the average of the elements lv

pkija ,
,, and 

( )
lv

pkija ,
1,, + , i.e. ( ) ( )( )

2

,
1,,

,
,,

,

lv
pkij

lv
pkijl

kijp
aa

vM ++
= , for 1,,1 −= rp  . 

Also ( )l
kijp vS ,  denotes the standard deviation of elements 

lv
pkij

lv
kij

lv
kij aaa ,

,,
,

2,,
,

1,, ,,,  , i.e. ( ) ∑ ∑
= =














−=

p

t

p

t

lv
tkij

lv
tkij

l
kijp a

p
a

p
vS

1

2

1

,
,,

,
,,,

11 , for 

rp ,,1= . Finally, ( )l
kijp v ,µ denotes the membership value of 

the element ( )
lv

pkija ,
1,, +

for 2,,1 −= rp 2 ,where },{ LUl ∈ and r

is an even number.  
 

The fuzzy positive ideal solution ( )( )+
+

+++ = kfekkk vvvA ,,2,1 ,,,   
and the fuzzy negative ideal solution

( )( )−
+

−−− = kfekkk vvvA ,,2,1 ,,,  are defined in Eq. (41): 

 
( )( )+

+
+++ = kfekkk vvvA ,,2,1 ,,,  and  

( )( )−
+

−−− = kfekkk vvvA ,,2,1 ,,,   , 

(41) 
 

where 
( ){ }

( ){ }









∈

∈

=

+≤≤

+≤≤
+

CCvRank

BBvRank

v

i
C

kijfej

i
B

kij
jej

ki

,min

,max

,1

,
1

,
 

and 
( ){ }

( ){ }









∈

∈

=

+≤≤

+≤≤
−

CCvRank

BBvRank

v

i
C

kij
fej

i
B

kijfej

ki

,max

,min

,
1

,1

,
 

 
Here, B denotes the set of benefit criteria, C denotes the set of 
cost criteria, and mi ,,1= .The distance +∆ kj, between each 

alternative kjA ,  and the fuzzy positive ideal solution +
kA is 

calculated with Eq. (42): 

 
( )( )∑

+

=

++ −=∆
fe

i
kikijkj vvRank

1

2
,,,

 
for mj ,,1= and Kk ,,1 =  

(42) 
 

The distance −∆ kj, between each alternative kjA , and the fuzzy 

negative ideal solution −
kA  is calculated is calculated with Eq. 

(43): 

 ( )( )∑
+

=

−− −=∆
fe

i
kikijkj vvRank

1

2
,,, for mj ,,1 =

and  Kk ,,1 =  
 

(43) 
 

C. Z-Number Implementation  
 

For the Z-number implementation of TOPSIS-FN, the Table I, 
Table II and Table III from subsection III (A) are used, with 
an additional Table VII for the linguistic terms representing 
decision maker reliability.  
 Here, the reliability of experts is taken into consideration 
during the decision making process. The experts are advised to 
use the linguistic terms in Table VII to evaluate the confidence 
in their decision. Decision makers are not supposed to use 
negative weight to represent their opinion. Otherwise, this 
would imply the use of unreliable information which is 
undesirable. This applies at the start of step 1 of the algorithm 
described in Type-1 fuzzy number implementation of FN-
TOPSIS. The other steps are the same as the implementation 
discussed in subsection III (A). 
 

Step 1:  
Use the information from Table VII to derive the second 
component B of the Z-number, and then convert the Z-number 
to Type-1 fuzzy number. 
Let )~,~( BAZ =  is a Z-number, where 

]}1,0[|),(~{]},1,0[|),(~{ ~~ ∈=∈= xxBxxA BA µµ , and A~µ  and 

B~µ are trapezoidal membership functions. The second part 
(reliability) needs to convert into a crisp number using fuzzy 
expectation, as shown in Eq. (44): 
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 ∫
∫=

dx

dxx

B

B

~

~

µ

µ
α  

(44) 
 

Where ∫ denotes an algebraic integration. Then add the weight 

of the second part (reliability) to the first part (restriction). 
Weighted Z-numbers can be denoted as: 
 

( ){ }]1,0[),()(,~
~~~ ∈== xxxxZ AAA αµµµ αα

α  

These can be represented with Type-1 fuzzy numbers as: 
 

]}1,0[),()(|)(,{~
~~~ ∈=><=′ xxxxxZ AZZ α

µµµ αα  

It is proven in [33] that Z ′~
 has the same Fuzzy Expectation as 

αZ~ .The remaining steps of the algorithm are the same as for 
the Type-1 fuzzy sets implementation. The next section is 
illustrating systematically the application of Type-1 fuzzy sets 
the proposed FN-TOPSIS method to solve the problem of 
selection/ranking of traded equity. 

IV. RANKING OF TRADED EQUITY 
 

We study the problem of ranking traded equity in 
developing financial markets within a crisis period, in order to 
illustrate the applicability and validity of the proposed FN 
methodology in a realistic scenario. Decision makers with 
different levels of experience evaluate 25 equities listed on the 
Main Board of the Kuala Lumpur Stock Exchange (KLSE) 
on30 November 2007. A set of financial ratios for the equities 
are considered towards the benefits and cost criteria in the FN-
TOPSIS algorithm. These include: Market Value of Firm 
(B1), defined as market value of firm-to-earnings before 
amortization, interest and taxes. This is one of the critical 
financial indicators, and the lower the ratio the better the 
equity [46]; Return on Equity (B2), which evaluates how 
much the company earns on the investment of its shareholders. 
ROE is measured as net income divided by stockholder funds. 
Portfolio managers examine ROE when deciding whether to 
trade (buy or sell) equities. The higher values of the ratio 
indicate healthier companies. Debt-to-Equity ratio (C1), 
belonging to long-term solvency ratios that are intended to 
address the firm’s long run ability to meet its obligations. It is 
considered by DMs that the lower the ratio the better[47]. 
Current Ratio (B3), which measures liquidity of companies, 
and explains the ability of a business to meet its current 
obligations when fall due. The higher the ratio, the more liquid 
is the company, and therefore in a better position.[48]. Market 
Value-to-Net Sales (B4), is market value ratios of particular 
interest to investors. The lower the ratio the better the 
equity[49]. The lower this ratio is better the equity. 
Price/earnings ratio (C2), measure the ratio of market price of 
each share of common stock to the earnings per share, the 
lower this ratio is better. 

In this study, the processes of ranking equities follow the 
proposed methods in section III. Fig. 4 illustrates the fuzzy 
network model for the problem of selection/ranking of traded 
equity and includes 4 benefit criteria and 2 cost criteria. 
 
 

Step 1:  
Based on the information provided by experts and using Eq. 
(11), the decision matrices for the benefit and cost systems can 
be constructed. The rating of each criterion for each equity and 
the importance of criteria are based on decision makers’ 
opinions.  
 
Step 2:  
Considering the benefit system, the normalized decision 
matrix B

kR  and the weight normalized decision matrix B
kV can 

be constructed for each k, using equations Eq. (12) 
correspondingly. 
For example, the calculations for E1 using the opinion of DM1 
is as follows: 

( )1,1,1,9.01,1 =g  ; ( )10,10,10,91,11 =x ; 10*
1,1 =xd  

( ) ( )1,1,1,9.01010,1010,1010,1091,11 ==Br  

( ) ( )1,1,1,81.011,11,11,9.09.01,11 =××××=Bv  
This step is repeated then for the cost system, in order to 
calculate the normalized decision matrix C

kR  and the weight 
normalized decision matrix C

kV . 
 

Step 3: 
The Fuzzy Positive Ideal Solution (FPIS) and the Fuzzy 
Negative Ideal Solution (FNIS) for each equity based on both 
systems, and the distances between the rating of criteria for 
each equity and the FPIS and FNIS, can be evaluated as 
follows. 
FPIS and FNIS are determined as: 
 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]kkkk

kkkk

A

A

,25,2,1

,25,2,1

0,0,0,0,,0,0,0,0,0,0,0,0

1,1,1,1,,1,1,1,1,1,1,1,1

2

2

=

=
−

+

 

 

The distances +∆B
kj, and −∆B

kj, , between the rating according to 

DM k of benefit criteria 4,,1=i for each equity j ( )25,,1 2=j

and the FPIS +
kA or  FNIS −

kA  are calculated using Eq. (13) 
and Eq. (14). For example, the distance between the first 
equity E1according to DM1and the FPIS +

1A  is calculated 

using Eq. (13) for 1=j and 1=k , as follows: 

( ) ( ) ( )[ ] 11.011181.0
3
1, 22

1,11,111 =−++−=∆ ++ 3vvB  

And similarly: 
 

( ) ;409.0, 1,21,211 =∆ ++ vvB ( ) 668.0, 1,31,311 =∆ ++ vvB  

( ) ;298.0, 1,41,411 =∆ ++ vvB to produce overall: 
 

( ) 4841.1298.0668.0409.011.0,
4

1
1,1,111,1 =+++=∆=∆ ∑

=

+++

i
ii

BB vv  

 

Next, using Eq. (14) for 1=j and 1=k , the distance between 
E1 according to DM1 and the FPIS −

1A  is calculated as: 

( ) ( ) ( )[ ] 373.101081.0
3
1, 22

1,11,111 =−++−=∆ −− 3vvB

 
and similarly 
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( ) ;063.1, 1,21,212 =∆ −− vvB ( ) ;789.0, 1,31,313 =∆ −− vvB

( ) 242.1, 1,41,414 =∆ −− vvB
 
producing overall: 

 

( ) 4671.4242.1789.0063.1373.1,
4

1
1,1,111,1 =+++=∆=∆ ∑

=

−−−

i
ii

BB vv  

Now, the distances +∆C
kj, and −∆C

kj, , between the rating 

according to DM k of cost criteria 2,,12=i for each equity j
( )25,,1 2=j  and the FPIS +

kA  or  FNIS −
kA  are calculated 

using Eq. (15) and Eq. (16). For example, the distance 
between the first equity E1 according to DM1 and the FPIS 

+
1A  is calculated using Eq. (15) for 1=j and 1=k , as 

follows: 
 

( ) ( ) ( )[ ] 49.0185.0139.0
3
1, 22

1,11,111 =−++−=∆ ++ 3vvC  

And similarly: 
 

( ) ( ) 12.1,, 1,21,211,, =∆=∆ ++++ vvvv C
kikij

C
k  

 

to produce overall: 
 

( ) 61.112.149.0,
2

1
1,1,111,1 =+=∆=∆ ∑

=

+++

i
ii

CC vv  

Next, using Eq. (16) for 1=j and 1=k , the distance between 
E1 according to DM1 and the FPIS −

1A  is calculated as: 
 

( ) ( ) ( )[ ] 017.1085.0039.0
3
1, 22

1,11,111 =−++−=∆= −− 3vvC  

and similarly 
 

( ) ( ) 339.0,, 1,21,211,, =∆=∆ −−−− vvvv C
kikij

C
k  

producing overall: 
 

( ) 358.1339.0017.1,
2

1
1,1,111,1 =+=∆=∆ ∑

=

−−−

i
ii

CC vv  

Step 4:  
Find the closeness coefficients for the benefit system B

kjCC ,
and 

for thecost system C
kjCC , , using Eq. (17) for each equity Ej, 

25,,1 2=j . For example, the closeness coefficient for E1 in 
the benefit system under the first decision maker 1=k is 
calculated using Eq. (19) as follows: 

751.0
4671.44841.1

4671.4

1,11,1

1,1
1,1 =

+
=

∆+∆

∆
= −+

−

BB

B
BCC  

and the closeness coefficient in the cost system  

457.0
358.161.1

358.1

1,11,1

1,1
1,1 =

+
=

∆+∆

∆
= −+

−

CC

C
CCC  

Step 5:  
The Influenced Closeness Coefficients B

kjICC ,  and C
kjICC , for 

each DM k are derived by applying the influence degree kθ of 
each decision maker, Using Eq. (18) and Eq. (19). Then the 

normalized coefficients B
kjNICC , and C

kjNICC ,  are calculated with 
Eq. (20). 
For example, the influence degree of DM1 is 81 =θ , and using 
Eq. (18) his normalised expertise is: 

32.0
7108

8
3

1

1
1 =

++
==

∑
=l

lθ

θσ  

Then the Influenced Closeness Coefficient BICC 1,1  for the 
benefit system for equity E1 according to DM1 is calculated 
with Eq. (19) as: 

2403.0751.032.01,111,1 =×=×= BB CCICC σ  
and similarly the corresponding Influenced Closeness 
Coefficientfor the cost system CICC 1,1 is produce as: 

1462.0457.032.01,111,1 =×=×= CC CCICC σ  

Next, the influenced closeness coefficients have to be 
normalized prior to matching the coefficients to the linguistic 
variable in Table III. Using Eq. (20), BNICC 1,1

and CNICC 1,1
 are 

calculated as: 

 2403.0
2403.0

max ,
1,1

1,1 == B
kj

j

B
B ICCICCNICC and

1659.0
1462.0

max 1,1
1,1

1,1 == C

j

C
C ICCICCNICC

 
Finally, the normalised coefficients are matched to the 
variable in Table III: 
 

;11,1 VGNICC B ≅=  VGNICCC ≅= 8812.01,1  
 

Step 6:  
The antecedent matrices kX for the benefit system are 
constructed using Eq. (21) for Kk ,,1 = , based on DM k 
opinions. Each decision maker has a separate benefit 
antecedent matrix. The consequent matrices kΛ for the benefit 
system are constructed using Eq. (22) for Kk ,,1= , based on 
the values of B

kjNICC ,  calculated at Step 5 above and matched 
to the linguistic terms in Table III. Each decision maker has a 
separate benefit antecedent matrix. Similarly, the antecedent 
matrices kY  and the consequent matrices kΨ are produced for 
the cost system. Thus the antecedent and consequent matrices 
for the benefit and cost rule bases are generated in this step. 
For example using Eq. (21), and according to the first decision 
maker 1=k , the antecedent matrix 1X for the benefit system 
is: 

=





















=

1,25,41,2,41,1,4

1,25,31,2,31,1,3

1,25,21,2,21,1,2

1,25,11,2,11,1,1

4

3

2

1

1

2521

xxx
xxx
xxx
xxx

B
B
B
B

X

EEE

3



3

3

3



















GGG
MPMVG
FVGVG

MGMGVG

B
B
B
B

EEE











4



2

1

2521

 

 
where iB  are the four benefit criteria. Then using Eq. (22), the 
consequent matrix 1Λ  is: 

[ ]==Λ 1,251,21,11

2521

λλλ 



BΛ
EEE

[ ]GVGVGBL
EEE



 2521  

where BL   is the benefit level. 
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Next using Eq. (22), and according to the first decision maker 
1=k , the antecedent matrix 1Y for the cost system is: 

=











=

1,25,21,2,21,1,2

1,25,11,2,11,1,1

2

1
1

2521

yyy
yyy

C
C

Y

EEE















GGF
FFG

C
C

EEE







2

1

2521

 

 
Then using Eq. (22), the consequent matrix 1Ψ  is:  

[ ]==Ψ 1,251,21,11

2521

ψψψ 



CL
EEE

[ ]GGVGCL
EEE



 2521  

where CL  is the cost level. 
The rule base of the benefit system for DM1 is constructed 
using Eq. (23) and Eq. (24), as follows: 
 

If  



















=

GGG
MPMVG
FVGVG

MGMGVG

B
B
B
B

X

EEE











4



2

1

1

2521
Then 

[ ]GVGVGBL
EEE





=L1

2521  

 
Rule 1:   If 1B is VG and 2B is VG and 3B is VG and 4B is G  
              then the output BL is VG 
Rule 2:   If 1B  is MG and 2B is VG and 3B is M and 4B  is G  
              then the output BL is VG 
                            
Rule 25:  If 1B  is MG and 2B is F and 3B is MP and 4B  is G  
               then the output BL is G 
 
By analogy, the rule base for the cost system is constructed. 
 

Step 7:  
The Alternatives System (AS) in this application is the Equity 
System (ES), and the antecedent matrices kM  of each DM k 
for ES are constructed using Eq. (28) based on the Benefit 
Level (BL) and Cost Level (CL), which are the outputs of the 
benefit system BS and cost system CS, respectively. Each 
decision maker has a separate equity antecedent matrix kM . 
Next, the ES consequent matrices kN  are derived using Eq. 
(29)-(31), while calculating the aggregations kj,ξ of weighted 

coefficients B
kjNICC , and C

kjNICC ,  for each equity j ( )25,,1 =j , 
then producing the normalised aggregations kjN ,ξ , and 

constructing the ES consequent matrices kN  based on kjN ,ξ . 
Each decision maker k has a separate equity consequent matrix

kN . 
For example, based on the benefit and cost levels BL and CL 
evaluated in Step 6 above and using Eq. (27), the ES 
antecedent matrix 1M according to DM1 is evaluated as: 
 

=











=

1,251,21,1

1,251,21,1
1

2521

ψψψ

λλλ







CL
BL

M

EEE









GGVG
GVGVG

CL
BL

EEE





 2521

 

Next, the ES consequent matrix 1N  according to DM1 is 
derived through: 

(i)    calculating the aggregated closeness coefficient 1,jξ  

for each equity 25,,12=j , with Eq. (28) and based on the 
normalised closeness coefficients B

jNICC 1,  and C
jNICC 1, according 

to DM1; e.g. for 1=j : 

=








+
×+








+
×

=
2

24
2

24
4

1,11,1

1,1

CB NICCNICC
ξ  

480.0
2

3
18812.0

3
200.1

1,1 =






+






×

=ξ  

(ii)  calculating the normalised aggregated closeness 
coefficients 1,jNξ  for each equity 25,,12=j , with Eq. (29) 
and based on the values 1,jξ  produced in Step 7(i) above; e.g. 

for 1=j : 

96.0
50.0
48.0

max 1,
1,1

1,1 ===
j

j

N x
xx  

and the value of 1,1ξN is matched to the linguistic variable for 
equity levels in Table III: 

VGN ≅= 960.01,1ξ  
(iii) The ES consequent matrix 1N for DM1 is constructed 
using Eq. (30) and based on the values 1,jNξ  for each equity j 

produced in Step 7(ii) above; e.g. for 1=j : 
 

[ ] [ ]GVGVGNNNELN
EEEEEE





== 1,251,21,11

25212521

ξξξ
 

 

Where EL is the equity level. 
Therefore, the equity system rule base according to DM1 is 
evaluated using Eq. (25) and Eq. (26) as: 
 

If 








=

GGVG
GVGVG

CL
BL

M

EEE







1

2521
Then

[ ]GVGVGELN
EEE





=1

2521  

 

Rule 1: If BL is VG and CL is VG then EL is VG  
Rule 2: If BL is VG and CL is VG then EL is VG  

         
Rule 25:  If BL is G and CL is G then EL is G  

Step 8:  
Having list of rules for 3 systems – BS, CS, ES – we now 
present these rules in Boolean matrix form. The Boolean 
matrices for each equity are constructed based on the opinions 
from all DMs. For example using Eq. (33), the Boolean matrix 
of the benefit system for E1 is produced in Eq. (45).The row 
and column labels of the Boolean matrix are all possible 
permutations of linguistics variable for the input (1-7) as in 
Table I and the linguistic variable for the output (1-5) as in 
Table III, for the benefit rule base. 
 

 

 1 2 3 4 5 
1111 0 0 0 0 0 
            
6576 0 0 0 0 1 
            

(45) 
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7655 0 0 0 0 1 
            
7776 0 0 0 0 1 
7777 0 0 0 0 0 

  

Next using Eq. (34), the Boolean matrix of the cost system for 
E1is defined in Eq. (46): 

 

 

 1 2 3 4 5 
11 0 0 0 0 0 
            
44 0 0 0 1 0 
            
64 0 0 0  1 
            
76 0 0 0 0 0 
77 0 0 0 0 0 

(46) 
 

 

Step 9:  
Vertical merging is performed to merge the BS and CS 
Boolean matrices for each equity, then horizontal merging 
performed to merge the Boolean matrix obtain from the 
vertical merging operation with the ES Boolean matrix for 
each equity. For example, applying vertical merging of the BS 
and CS Boolean matrices for E1, the resultant Boolean matrix 
is constructed in Eq. (47), as follows: 
 

 

 

 11     54 55 
1111/11 0     0 0 

            
6576/44 0     1 0 
6576/64 0     0 1 

            
7655/44 0     1 0 
7655/64 0     0 1 

            
7776/44 0     1 0 
7776/64 0     0 1 

            
7777/77 0     0 0 

(47) 
 

 

The equity system ES Boolean matrix for E1 is evaluated in 
Eq. (48) as: 

 

 

 1 2 3 4 5 
11 0 0 0 0 0 
            

33 0 0 0 0 0 
            

44 0  0 0 0 
            

54 0 0 0 0 1 
55 0 0 0 0 1 

(48) 
 

 
Next, the resultant Boolean matrix for the overall system is 
produced as shown in Eq. (49), through horizontal merging 
between the Boolean matrices in Eq. (47) and Eq. (48): 
 

  1 2 3 4 5 
1111/11 0 0 0 0 0 

(49) 
 

 
 
 
 
 
 

            
6576/44 0 0 0 0 1 
6576/64 0 0 0 0 1 

            
7655/44 0 0 0 0 1 
7655/64 0 0 0 0 1 

            
7776/44 0 0 0 0 1 
7776/64 0 0 0 0 1 
7777/77 0 0 0 0 0 

where only the rows containing 1 are shown, along with the 
first and last rows. 
 

From the Boolean matrix in Eq. (49), the rule basis for equity 
E1 are derived, as described in Eq. (50): 
 

 

Rule 1: 6576/44/5 6 5 7 6 4 4 5 
Rule 2: 6576/64/5 6 5 7 6 6 4 5 
Rule 3: 7655/44/5 7 6 5 5 4 4 5 
Rule 4: 7655/64/5 7 6 5 5 6 4 5 
Rule 5: 7776/44/5 7 7 7 6 4 4 5 
Rule 6: 7776/64/5 7 7 7 6 6 4 5 
 

(50) 
 

The rules in Eq. (50) with 6 inputs and 1output can be 
represented in linguistic terms, as in Eq. (51) 
 

 

Rule 1: If B1 is G, and B2 is MG and B3 is VG 
and B4 is G and C1 is F and C2 is F  

            then E1 is VG 
Rule 2: If B1 is G, and B2 is MG and B3 is VG 

and B4 is G and C1 is G and C2 is F 
           then E1 is VG 
Rule 3: If B1 is VG, and B2 is G and B3 is MG 

and B4 is MG and C1 is F and C2 is F 
           then E1 is VG 
Rule 4: If B1 is VG, and B2 is G and B3 is MG 

and B4 is MG and C1 is G and C2 is F  
           then E1 is VG 
Rule 5: If B1 is VG, and B2 is VG and B3 is VG 

and B4 is G and C1 is F and C2 is F 
           then E1 is VG 
Rule 6: If B1 is VG, and B2 is VG and B3 is VG 

and B4 is G and C1 is G and C2 is F  
           then E1 is VG 

(51) 
 

 

Step 10:  
The final score for each alternative 25,,12=j  is derived with 
Eq. (39), by taking average of the aggregate membership value 
of the consequent part of all active rules in the overall system 
for equity j, and then multiplying with the influence multiplier 
based on the average influence degree across all K decision 
makers DMs for each equity j. 
For example, there are 6 active rules for E1 generated from the 
Boolean matrix operation. Eq. (39) is used in order to obtain 
final score for E1,the average aggregate membership value for 
the output of the 6 rules is calculated, and then multiplied with 
the influence multiplier for E1 across all DMs.  
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The final score and ranking positions for all 25 equities 
considered in this case study, and based on Type-1, Type 2 
and Z fuzzy numbers implementation of the proposed FN-
TOPSIS method are provided in Table VIII. 
 

V. ANALYSIS OF RESULTS  
For the validation of the proposed rule-based FN-TOPSIS, the 
authors consider established TOPSIS methods, as the non-
fuzzy TOPSIS[13] and the non-rule based fuzzy TOPSIS 
approaches-T1-TOPSIS [15],T2-TOPSIS[18], Z-TOPSIS[34]. 
All these methods are applied to evaluate the score and final 
ranking of the equities from the case study in Section V, and 
compared with the performance of FN-TOPSIS. The actual 
monthly equity returns in November 2007, based on trading 
the shares of the 25 companies on the Kuala Lumpur Stock 
Exchange and holding for a month, are used for 
benchmarking. The rankings are compared using the 
Spearman rho correlation coefficient ρ , where ρ  measures the 
strength of association between two ranked variables. This 
comparison approach is intuitively interpretable, and less 
sensitive to bias due to the effect of outliers [50].The 
Spearman’s Rank coefficient is evaluated as shown in Eq. 
(52). 

 nn
i

−

∂
−= ∑

3

26
1ρ     , 

(52) 
 

where i∂  represents the difference between the ranks, and n is 
the number of considered alternatives. 
The coefficient ρ  takes values between +1 to -1.Perfect 
positive relationship of ranks is indicated with 1=ρ , and 

1−=ρ indicates perfect negative association of ranks, while
0=ρ  shows no relationship. 

 

Considering the criteria set used i.e. B1, B2, B3, B4, C1 and 
C2 of traded equity described in section IV, the three proposed 
Fuzzy Network TOPSIS methods (PM) outperform the four 
established TOPSIS methods (EM), as shown in the last row 
of Table X. 

VI. CONCLUSIONS 
This paper introduces a novel TOPSIS method – FN-TOPSIS 
– extending the capabilities of rule-based fuzzy networks 
within multi-criteria decision-making analysis. FN-TOPSIS 
usesType-1, Type-2 and Z-fuzzy numbers, and incorporates 
experts’ knowledge into decision analysis as well as experts’ 
degree of experience and influence. At the same time, the 
approach improves transparency of decision analysis; 

particularly in the TOPSIS process, by explicitly taking into 
account all subsystems and interactions among them. FN-
TOPSIS not only provides an effective way to process 
imperfect information in decision-making practice in a more 
flexible and intelligent manner, but also presents expert 
knowledge more accurately. The performance of the proposed 
method is validated using a benchmark, and comparing against 
a set of competitive approaches. The results show that the 
proposed method outperforms the existing non-rule based 
TOPSIS methods in terms of ranking performance. We have 
successfully applied FN-TOPSIS to the problem of ranking 
equities traded in a developing financial market during a crisis 
period. This work continues research on hybrid approaches 
and implementing fuzzy set theory  in equity ranking and 
investment decisions, in a developed market (UK) during a 
pre-crisis period [51]–[54].The next objective is to implement 
and analyse the performance of the approach within 
developing and developed financial markets during a post-
crisis period. 
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FIGURES AND TABLES  

 
 
 
 

Fig.1: Horizontal merging of nodes 
 

 
 
 
 
 
 
 
 

Fig.2: Vertical merging of nodes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Fuzzy network model for TOPSIS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Fuzzy network for the FN-TOPSIS application to ranking traded equity 
 
 
TABLE I: LINGUISTIC TERMS FOR THE IMPORTANCE WEIGHT OF 
EACH CRITERION 

 
TABLE II: LINGUISTIC TERMS FOR THE RATING OF EACH  
ALTERNATIVE 

Linguistic Terms  Trapezoidal Fuzzy Number 
Very Poor (VP) 1 (0, 0, 0, 1) 
Poor (P) 2 (0, 1, 1,3) 
Medium Poor (MP) 3 (1, 3, 3, 5) 
Fair (F) 4 (3, 5, 5, 7) 
Medium Good (MG) 5 (5, 7, 7, 9) 
Good (G) 6 (7, 9, 9, 10) 
Very Good (VG) 7 (9, 10, 10, 10) 
 

TABLE III: LINGUISTIC TERMS FOR THE LEVEL OF 
ALTERNATIVES 

Linguistic Terms  Trapezoidal Fuzzy Number 
Very Bad (VB) 1 (0.00, 0.00, 0.00,0.25) 
Bad (B) 2 (0.00, 0.25, 0.25, 0.50) 
Regular (R) 3 (0.25, 0.50, 0.50, 0.75) 
Good (G) 4 (0.50, 0.75, 0.75, 1.00) 
Very Good (VG) 5 (0.75, 1.00, 1.00, 1.00) 

 
TABLE IV: LINGUISTIC TERMS FOR THE IMPORTANCE WEIGHT OF 
EACH CRITERION 
Linguistic Terms  Trapezoidal Type 2 Fuzzy Number 
Very Low (VL) 1 (0.00,0.00,0.00,0.10,1,1)(0.00,0.00,0.00,0.10,1,1) 
Low (L) 2 (0.00,0.10,0.10,0.25,1,1)(0.00,0.10,0.10,0.25,1,1) 
Medium Low 
(ML) 3 (0.15,0.30,0.30,0.45,1,1)(0.15,0.30,0.30,0.45,1,1) 

Medium (M) 4 (0.35,0.50,0.50,0.65,1,1)(0.35,0.50,0.50,0.65,1,1) 
Medium High 
(MH) 5 (0.55,0.70,0.70,0.85,1,1)(0.55,0.70,0.70,0.85,1,1) 

High (H) 6 (0.80,0.90,0.90,1.00,1,1)(0.80,0.90,0.90,1.00,1,1) 
Very High (VH) 7 (0.90,1.00,1.00,1.00,1,1)(0.90,1.00,1.00,1.00,1,1) 

 
 

Linguistic Terms  Trapezoidal Fuzzy Number 
Very Low (VL) 1 (0.00, 0.00, 0.00, 0.10) 
Low (L) 2 (0.00, 0.10, 0.10, 0.25) 
Medium Low (ML) 3 (0.15, 0.30, 0.30, 0.45) 
Medium (M) 4 (0.35, 0.50, 0.50, 0.65) 
Medium High (MH) 5 (0.55, 0.70,0.70, 0.85) 
High (H) 6 (0.80, 0.90, 0.90, 1.00) 
Very High (VH) 7 (0.90, 1.00, 1.00, 1.00) 
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TABLE V: LINGUISTIC TERMS FOR RATING OF ALL 
ALTERNATIVES 
Linguistic Terms  Trapezoidal Type 2 Fuzzy Number 
Very Poor (VP) 1 (0,0,0, 1,1) (0,0,0, 1,1) 
Poor (P) 2 (0,1,1,3,1,1) (0,1,1,3,1,1) 
Medium Poor 
(MP) 3 (1,3,3,5,1,1) (1,3,3,5,1,1) 

Fair (F) 4 (3,5,5,7,1,1) (3,5,5,7,1,1) 
Medium Good 
(MG) 5 (5,7,7,9,1,1) (5,7,7,9,1,1) 

Good (G) 6 (7,9,9,10,1,1) (7,9,9,10,1,1) 
Very Good (VG) 7 (9,10,10,10,1,1)(9,10,10,10,1,1) 

 
TABLE VI: LINGUISTIC TERMS FOR ALTERNATIVES LEVEL 
Linguistic 
Terms 

 Trapezoidal Type 2 Fuzzy Number 

Very 
Bad(VB) 

1 (0.00,0.00,0.00,0.25,1,1)(0.00,0.00,0.00,0.25,1,1) 

Bad (B) 2 (0.00,0.25,0.25,0.50,1,1)(0.00,0.25,0.25,0.50,1,1) 
Regular (R) 3 (0.25,0.50,0.50,0.75,1,1)(0.25,0.50,0.50,0.75,1,1) 
Good (G) 4 (0.50,0.75,0.75,1,1,1) (0.50, 0.75, 0.75, 1,1,1) 
Very Good 
(VG) 

5 (0.75,1.00,1.00,1.00,1,1) (0.75,1.00,1.00,1.00,1,1) 

 
TABLE VII: LINGUISTIC TERMS FOR EXPERTS RELIABILITY 
Linguistic Terms Trapezoidal Fuzzy Number 
Strongly Unlikely (SUL) (0.00, 0.00, 0.00, 0.10) 
Unlikely (UL) (0.00, 0.10, 0.10, 0.25) 
Somewhat Unlikely (SWU) ( 0.15, 0.30, 0.30, 0.45) 
Neutral (N) ( 0.35, 0.50, 0.50, 0.65) 
Somewhat Likely (SWL) ( 0.55, 0.70,0.70, 0.85) 
Likely (L) (0.80, 0.90, 0.90, 1.00) 
Strongly Likely (SL) (0.90, 1.00, 1.00, 1.00) 
 
 

TABLE VIII: RANKING BASED ON TYPE-1, TYPE-2 AND Z FUZZY 
NUMBERIMPLEMENTATION OF PROPOSED FN-TOPSIS METHOD 

 
Type-1 

Implementation  
Type-2 

implementation  
Z 

implementation 
Equit

y Final Score Rank  
Final 
Score 

Ran
k  

Final 
Score 

Ran
k 

E1 0.7900 6  0.6836 8  0.6931 5 
E2 0.8090 3  0.7198 4  0.5712 10 
E3 0.8813 1  0.8701 1  0.8221 1 
E4 0.4283 20  0.2717 20  0.2615 20 
E5 0.2735 22  0.1861 23  0.2267 23 
E6 0.7871 7  0.7684 3  0.6355 7 
E7 0.4652 14  0.3891 14  0.3029 17 
E8 0.4388 18  0.2799 19  0.2936 19 
E9 0.1730 25  0.1628 24  0.1152 25 

E10 0.4555 16  0.3357 16  0.3490 16 
E11 0.5084 12  0.4600 12  0.4169 13 
E12 0.4528 17  0.2920 18  0.3640 15 
E13 0.3661 21  0.2561 21  0.2457 21 
E14 0.7506 9  0.6441 9  0.6376 6 
E15 0.7936 5  0.6981 5  0.7237 3 
E16 0.8467 2  0.8370 2  0.7571 2 
E17 0.2551 24  0.1595 25  0.2409 22 
E18 0.4308 19  0.3568 15  0.3746 14 
E19 0.6536 10  0.5532 11  0.4993 11 
E20 0.4629 15  0.2987 17  0.2977 18 
E21 0.7761 8  0.6907 7  0.7029 4 
E22 0.2616 23  0.1982 22  0.1849 24 
E23 0.7956 4  0.6958 6  0.5940 9 
E24 0.6338 11  0.5574 10  0.6315 8 
E25 0.4899 13  0.3928 13  0.4937 12 

 
TABLE IX: ALTERNATIVE RANKING BASED ON ESTABLISHED TOPSIS METHODS (EM) AND PROPOSED FN-TOPSIS METHODS (PM) 

Equity Actual Conventional TOPSIS  
Approach (EM) 

Non-Rule Based Fuzzy TOPSIS 
Approach (EM) 

 FN-TOPSIS  
Approach (PM) 

    T-1 T-2 Z T-1 T-2 Z 
E1 2 2 4 3 7 6 8 5 
E2 4 7 3 5 9 3 4 10 
E3 1 1 1 1 1 1 1 1 
E4 21 21 20 18 20 20 20 20 
E5 19 24 24 23 24 22 23 23 
E6 11 6 6 6 8 7 3 7 
E7 17 11 12 12 17 14 14 17 
E8 24 14 18 17 18 18 19 19 
E9 23 25 25 24 25 25 24 25 
E10 22 15 16 14 14 16 16 16 
E11 8 20 14 15 13 12 12 13 
E12 13 12 17 16 16 17 18 15 
E13 25 23 22 22 22 21 21 21 
E14 9 10 9 10 10 9 9 6 
E15 3 8 8 8 3 5 5 3 
E16 5 3 2 2 2 2 2 2 
E17 18 18 21 21 21 24 25 22 
E18 12 19 19 19 19 19 15 14 
E19 15 13 11 11 11 10 11 11 
E20 16 17 15 13 15 15 17 18 
E21 7 4 7 7 4 8 7 4 
E22 20 22 23 20 23 23 22 24 
E23 6 5 5 4 5 4 6 9 
E24 14 9 10 9 6 11 10 8 
E25 10 16 13 25 12 13 13 12 
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TABLE X: SPEARMAN RHO CORRELATION COEFFICIENT FOR ALL TOPSIS METHODS 
 

 

Conventional 
TOPSIS 

Approach (EM)  
Non-Rule Based Fuzzy  

TOPSIS Approach (EM)  FN-TOPSIS  
Approach (PM) 

Equity    T-1   T-2   Z   T-1  T-2  Z 

 i∂  2
i∂   i∂  2

i∂   i∂  2
i∂   i∂  2

i∂   i∂  2
i∂   i∂  2

i∂   i∂  2
i∂  

E1 0 0  -2 4  -1 1  -5 25  -4 16  -6 36  -3 9 
E2 -3 9  1 1  -1 1  -5 25  1 1  0 0  -6 36 
E3 0 0  0 0  0 0  0 0  0 0  0 0  0 0 
E4 0 0  1 1  3 9  1 1  1 1  1 1  1 1 
E5 -5 25  -5 25  -4 16  -5 25  -3 9  -4 16  -4 16 
E6 5 25  5 25  5 25  3 9  4 16  8 64  4 16 
E7 6 36  5 25  5 25  0 0  3 9  3 9  0 0 
E8 10 100  6 36  7 49  6 36  6 36  5 25  5 25 
E9 -2 4  -2 4  -1 1  -2 4  -2 4  -1 1  -2 4 

E10 7 49  6 36  8 64  8 64  6 36  6 36  6 36 
E11 -12 144  -6 36  -7 49  -5 25  -4 16  -4 16  -5 25 
E12 1 1  -4 16  -3 9  -3 9  -4 16  -5 25  -2 4 
E13 2 4  3 9  3 9  3 9  4 16  4 16  4 16 
E14 -1 1  0 0  -1 1  -1 1  0 0  0 0  3 9 
E15 -5 25  -5 25  -5 25  0 0  -2 4  -2 4  0 0 
E16 2 4  3 9  3 9  3 9  3 9  3 9  3 9 
E17 0 0  -3 9  -3 9  -3 9  -6 36  -7 49  -4 16 
E18 -7 49  -7 49  -7 49  -7 49  -7 49  -3 9  -2 4 
E19 2 4  4 16  4 16  4 16  5 25  4 16  4 16 
E20 -1 1  1 1  3 9  1 1  1 1  -1 1  -2 4 
E21 3 9  0 0  0 0  3 9  -1 1  0 0  3 9 
E22 -2 4  -3 9  0 0  -3 9  -3 9  -2 4  -4 16 
E23 1 1  1 1  2 4  1 1  2 4  0 0  -3 9 
E24 5 25  4 16  5 25  8 64  3 9  4 16  6 36 
E25 -6 36  -3 9  -15 225  -2 4  -3 9  -3 9  -2 4 

 0 556  0 36
2  0 630  0 40

4  0 33
2  0 36

2  0 32
0 

 

0.786  0.861  0.758  0.845  0.872  0.861  0.877 
Method 
Ranking 

According 
Performance 

6  3-4  7  5  2  3-4  1 
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