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FN-TOPSIS: Fuzzy Networks for Ranking
Traded Equities
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Abstract— Fuzzy systems consisting of networked rule bases,
called fuzzy networks, capture various types of imprecision
inherent in financial data and in the decision-making processes
on them. This paper introduces a novel extension of the
Technique for Ordering of Preference by Similarity to Ideal
Solution (TOPSIS) method and uses fuzzy networks to solve
multi criteria decision-making problems where both benefit and
cost criteria are presented as subsystems. Thus, the decision
maker evaluates the performance of each alternative for portfolio
optimisation and further observes the performance for both
benefit and cost criteria. This approach improves significantly
the transparency of the TOPSIS methods, while ensuring high
effectiveness in comparison to established approaches. The
proposed method is further tested to solve the problem of
selection/ranking of traded equity covering developed and
emergent financial markets. The ranking produced by the
method is validated using Spearman rho rank correlation. Based
on the case study, the proposed method outperforms the existing
TOPSIS approaches in terms of ranking performance.

Index Terms—Fuzzy networks, Multi-criteria decision making,
Portfolio selection, Ranking performance, Spearman rho
correlation, TOPSIS, Type 1 fuzzy numbers, Type 2 fuzzy numbers,
Z-numbers

I. INTRODUCTION

ULTI-criteria decision making (MCDM) problems are

often observed in reality, and decision makers are faced
with the challenge of the presence of multiple criteria. The
focus is on identifying the best performing solution among
feasible alternatives assessed by a group of decision makers
and evaluated through multiple criteria[1]. In portfolio
optimization, investors target high returns and affordable risks.
Typically, assets with the potential for high returns also carry
a high market risk [2]. Structuring complex problems well and
considering multiple criteria explicitly lead to more informed
and better decisions. There have been important advances in
the field since the start of the modern multiple-criteria
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decision-making discipline in the early 1960s.Various MCDM
techniques have been developed with the overall objective to
assist decision makers solve complex decision problems in a
systematic, consistent and more productive way.

TOPSIS is an MCDM technique for ranking and selection
of alternatives [15]. The TOPSIS analysis considers two
reference points -a positive ideal solution (PIS) and a negative
ideal solution (NIS) - as well as the distances to both PIS and
NIS. The preference order is ranked according to the closeness
of PIS and NIS, and according to a combination of the two
distance measures. TOPSIS is considered as one of the major
decision making techniques, and in recent years has been
effectively applied to the areas of human resources
management [3], transportation[4], product design [5],
manufacturing[6], water management [7], quality control [8],
military[9], tourism[10], food science [11]and location
analysis[12].

TOPSIS is used in this research due to its stability and
simplicity of use with cardinal information [13]. TOPSIS has
been successfully applied in MCDM problems as one of the
most frequent methods used. The main advantage of the
TOPSIS methods is that they are easily implemented and
understood, as they directly define values based on experts’
opinions in order to calculate final results [14].

Fuzzy TOPSIS was introduced to approach uncertainty in
linguistic judgment. Initial research on fuzzy TOPSIS was
conducted in [15], where TOPSIS is extended to type-1 fuzzy
environments; this extended version used type-1 fuzzy
linguistic value (represented by type-1 fuzzy number, [16]) as
a substitute for the directly given crisp value in grade
assessment. Overall, the Type-1 fuzzy TOPSIS problem is to
find the most desirable alternative(s) from a set of n feasible
alternatives, according to the decision information by DMs
about attribute weights and attribute values. There is no
solution satisfying all attributes simultaneously, as attributes
are conflicting to some extent. Thus, the solution is a set of
non-inferior solutions, or a compromise solution according to
the DMs preferences [17]. However, the existing fuzzy
MCDM methods are only based on type-1 fuzzy sets [18]. In
order to offer better care for the problems of vagueness,
another discovery, type-2 fuzzy set was provided by [19]. This
concept looks to comprehensively represent uncertainties,
compared to type 1 fuzzy set, due to the ability of providing
more flexible spaces [18].

Prof Zadeh introduced the concept of type-2 fuzzy set [20],
which is a generalization of the concept of fuzzy set . This
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concept is illustrated by a fuzzy membership function, where
each element of this set is a fuzzy set in [0, 1], unlike a type-1
fuzzy set where the membership grade is a crisp number in [0,
1] [21]. The membership functions of type 2 fuzzy set are
three dimensional and include a Footprint of Uncertainty
(FOU) as the new third dimension, which can be described as
the union of the primary memberships [22]. The FOU
provides additional degrees of freedom to directly model and
process uncertainties, and type-2 fuzzy set is more
comprehensive compared to fuzzy set in providing more
flexibility spaces to represent uncertainties [23]. The
challenges in computational volume have led to the
development of interval type-2 fuzzy set in 2000 by Mendel
and Liang [24]. It can be viewed as a special case, as all values
of secondary membership are equal to 1 [25]. Currently,
interval type-2 fuzzy set is widely used and successfully
applied in perceptual computing[26], [27], control systems
[28]-[31] and the MCDM field. One of the MCDM methods
incorporating interval type 2 fuzzy set is the Interval Type-2
Fuzzy TOPSIS (T2-TOPSIS), which was first established in
[18]. The authors introduced a T2-TOPSIS method to
approach fuzzy MCDM problems.

Most recently, Z-number has been the newest fuzzy number
presented in the literature of fuzzy sets. Z-number is
introduced in [32] as an extension of type-1 fuzzy number but
is completely different from type-2 fuzzy number. Although
both Z -number and type-2 fuzzy number are extensions of
type-1 fuzzy number, the former is capable of measuring the
reliability of the decision made while the latter is not. Since
fuzzy numbers are the medium of quantitative representation
for natural language, Z- number enhances the capability of
both type-1 and type-2 fuzzy numbers by taking into account
the reliability of the numbers used [32]. According to [33], Z-
number is represented by two embedded type-1 fuzzy
numbers, where one of them plays the role to define the
reliability of the first one. Research on utilizing Z-number in
decision making applications is inadequate as compared to
other fuzzy numbers, as it is a new concept developed in the
theory of fuzzy sets. One of the MCDM methods that
implemented Z-number is called Z-TOPSIS and was first
established in [34]. The authors presented a Z-TOPSIS method
to handle fuzzy MCDM problems, in order to give a
meaningful structure for formalizing information in decision
making problems, as it takes into account decision makers’
reliability. Z-numbers uncertainty relates to fuzziness of class
boundaries. Possibility theory is rooted in uncertainty of type-
1, however over the years, possibility theory has moved in the
direction of extending its domain to accommodate uncertainty
of type-2 [35].

Fuzzy systems are vital within the armoury of fuzzy tools
and applicable to real-life decision-making environments.
There are three types of fuzzy systems introduced in the
literature -systems with a single rule base, systems with
multiple rule bases, and systems with networked rule bases.
Systems with a single rule base are characterised with a black
box nature, where the inputs are mapped directly to the output
without considering any internal connection. Systems with

multiple rule bases are characterises with a white box nature,
where the inputs are mapped to the outputs through interval
variables as connections. This type of systems is also termed
chained fuzzy systems or hierarchical fuzzy systems. The third
type of fuzzy systems incorporates networked rule bases, and
is termed fuzzy networks (FN). Fuzzy networks are introduced
as a theoretical concept in [36] and are characterised with a
white box nature, where the inputs are mapped to the outputs
through intermediate variables.

According to [37], the accuracy of single rule base is
moderate but the level of transparency is low, while multiple
rule bases are regarded as having low accuracy in dealing with
complex processes management. While in most decision
making studies, single rule bases and multiple rule bases are
common approaches [38], in this research we focus on fuzzy
networks as they are both well transparent and accurate. A
node represents each subsystem in a FN whereby the
interactions among subsystems are the connections between
nodes. Therefore FNs consider explicitly the interaction
among subsystems[37]. A fuzzy network is more transparent
than a single rule based fuzzy system for decision making
because it considers separately benefit related and cost related
criteria. This network takes into account explicitly the internal
structure of the modelled process by representing each group
of criteria as a node and the interactions among different
groups as connections. This network based approach allows
the modelled process to be presented as a white-box in
contrast to the existing system based approaches that use a
black-box presentation. In this case, the white-box
presentation improves significantly the transparency of the
model due to the explicit and adequate reflection of the
internal structure of the modelled process. This ability brings
considerable benefits to modelling complex processes, and
although FNs have been introduced recently, a significant
volume of work have been done and dedicated to the
theoretical development and applications of FNs [36]-[37],
[39]-[40].

On the other hand, the reliability of decision information
and the experience of experts are still in need of better
incorporation into modelling complex decision-making
processes. For example, how confident in their choices are
investors as decision makers, and how much experience
experts as financial analysts have in relevant asset classes and
markets [41]. Furthermore, existing TOPSIS methods have a
very low transparency level, and therefore are not able to track
the performance of benefit and cost criteria[42]. In decision
making processes, it is important that decision makers are
aware of how the multiple criteria are performing. Based on
[43], in decision making environment it is essential to track
the performance of criteria, in order to take control and not
underestimate or overestimate uncertainty of the criteria. The
proposed method represents a systematic TOPSIS approach to
estimating the strengths and weaknesses of alternatives that
satisfy transactions, activities or functional requirements for a
business. In addition to that, tracking of criteria allows
decision makers to determine if it is a sound
investment/decision (justification/feasibility) and provides a
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basis for comparing alternatives. In this case, it involves
comparing the total expected cost criteria of each alternative
against the total expected benefits criteria, to see whether the
benefits outweigh the costs and by how much. The
inefficiencies described above bring the motivation of this
study.

The paper proposes a novel fuzzy network based modelling
method that represents an extension of fuzzy set theory. The
method has been validated comparatively against established
fuzzy system based modelling methods for a case study on
ranking traded equities. The main advantages of the proposed
method in the context of this case study are its higher
transparency and accuracy. The paper is structured as follows:
Section 11 briefly reviews the concepts of fuzzy sets and fuzzy
systems, and the operation of fuzzy networks. The novel
methodology of TOPSIS using fuzzy networks with merging
rule bases FN-TOPSIS is formulated in Section Il1. Section IV
illustrates the application of FN-TOPSIS to the problem of
ranking equities traded on the major stock exchanges in a
developed and a developing financial market. Further
discussion and analysis of the FN-TOPSIS ranking
performance are provided in Section V. The main conclusions
are summarised in Section VI.

Il. THEORETICAL PRELIMINARIES

A.  Fuzzy Sets
Definition 1[20]: Type-1 Fuzzy sets

A type-1 fuzzy set A is defined on a universe X, and is
denoted as:

A={(x ua(x)]xe X}
where 1, (x): X —[0,1] is the membership function of A.

The membership  p,(x) describes the degree of

belongingness of x € X in A. Throughout this paper, type-1,
type-2 fuzzy numbers and Z-numbers are presented through
trapezoidal membership functions. The good coverage of
trapezoidal membership functions is a good compromise
between efficiency and effectiveness.

Definition 2[44]: Type-1 Fuzzy Numbers

A trapezoidal type-1 fuzzy number is represented by the
following membership function:

X—a, .
— if a <x<a,

a —a
1 if a,<x<a;

ua(x)=(a1,22,85,84) = a —x
—4— if az<x<a,

Az —a3
0 otherwise

Definition 3[19]: Type-2 Fuzzy sets

A type-2 fuzzy set A in the universe of discourse X is
represented by a type-2membershipfunction 3 as follows:

A= {((x,u),,u;(x,u))| VueJy c[01]o< ,u;(x,u)g 1}
where J 5 denotes an interval in [0, 1]. A type-2 fuzzy set A
can also be represented as:

A- | Iu;\(xl%'u)

XeX ued,
where 5, < [oa]and “‘ denotes the union over all admissible
xand u.

Definition 4[19]: Interval Type-2 Fuzzy Numbers

A trapezoidal interval type-2 fuzzy number is represented by:
A=(AY AL )=(aV a¥ .y ,a¥; 1 (AY ), 4, (AY ), ab,ak, ol
vak?ﬂl(;L)'ﬂZ(AL))’

where aY and At are type-1 fuzzy numbers while

a¥,a¥,ay,ay,a-,ak,at and aj are the reference points
of the type-2 fuzzy number
A . Also, 4, (AY)denotes the membership value of the element

interval

at’l-ﬂ)in the upper trapezoidal membership function A for

1<j<2,and 4 (At) denotes the membership value of the lower

trapezoidal membership function At fori<j<2. Here,

1 (A%) €[04, 1y (AY) [0, i (A%) e[04], and u, (AY) e [0,]
, for 1<i<n.
Definition 5[32]: Z-numbers

Z-number is an ordered pair of type-1 fuzzy numbers denoted
asz — (A,B). The first component A, a restriction on the values

is a real-valued uncertain variable. The second component g is
a measure of reliability for the first component.
The concept of a Z-number 7 :(/K, g) provides a basis for

computation with fuzzy numbers that have various reliability.

The second component B may be interpreted as a response to
the question: How confident are decision makers that X is A.

B. Fuzzy Systems

A fuzzy system consists of a single rule base where inputs
are processed simultaneously without taking into account the
connections and the structure of the system. For this type of
system, the rules are derived based on expert knowledge about
the process. The results are normally quite accurate but the
poor transparency of the system can be an obstacle to
understanding complex processes.

C. Fuzzy Networks

A fuzzy network is a new type of fuzzy system, which
consists of networked rule bases (nodes) and deals with inputs
sequentially, while taking into account the connections and
structure of the system. The rules for both fuzzy systems and
fuzzy networks are derived from knowledge and data. A
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networked fuzzy system is transparent and fairly accurate at
the same time due to its hybrid nature, which facilitates the
understanding and management of complex processes.

There are four formal models for fuzzy networks
characterised in [36], namely:(i) if-then rule and integer tables,
(ii) block schemes and topological expressions, (iii) incidence
and adjacency matrices, and (iv) Boolean matrices and binary
relations. Here we employ if-then rules and Boolean matrices,
in order to represent the fuzzy rules. Hence the properties of
such models will be reviewed briefly. The choice is justified
by the ability of these formal models to work with any number
of nodes in FNs.

A fuzzy system withrrules, m inputs p,,..., P, taking
linguistic terms from the sets{S,;,..., Sy },..., {Sm.-... Spur | » @NC
n outputs qy,---,q,taking linguistic terms from the output
Sets{Tyy,---, Ty fy-o {Tots -, Tor »  CaN  be described by the
following rule base:

Rule 1: If p isSy;and ---and p,, is Syythen gis (1)
T;and ---andq, is Ty

Ruler:If p is S;, and ---and p,, is S, then q;
is T, and ---andqy, is T,

A rule base is incorporated as a node within the fuzzy
network. A generalised Boolean matrix compresses
information from a rule base represented by a node. The row
and column labels of the Boolean matrix are all possible
permutation of linguistics terms of the inputs and outputs for
this rule base. The elements of the Boolean matrix are either
'0's or 'I's, where each 1' reflects a present rule. The Boolean
matrix representation of the rule base from Eq. (1) is given
with Eq. (2):
Tll"'Tnl cee Tlr "'an (2)
Si1-- S 1 0

S1r Smr 0 e 1

Boolean matrices are very suitable for formal representation of
fuzzy networks[40]. They describe fuzzy networks at a lower
level of abstraction with respect to individual nodes. Boolean
matrices also lend themselves easily to manipulation for the
purpose of simplifying fuzzy networks to linguistically
equivalent fuzzy systems, using the linguistics composition
approach. In the next subsection, we briefly review two
Boolean matrix operations, as these two are involved in the
FN-TOPSIS.

Basic Operations

Horizontal merging is a binary operation that can be
applied to a pair of sequential nodes in FN. This operation
combines the operand nodes from the pair into a single
product node. The operation can be applied when the output
from the first node is fed forward as an input to the second

node in the form of an intermediate variable. The product node
has the input from first operand node and the output from the
second operand node whereas the intermediate variable does
not appear in the product node.

Therefore, if the first operand node is the rule base in Eq.
(1) that is represented by the Boolean matrix in Eq. (2), and
the second operand node is the rule base in Eq. (3) that is
represented by the generalised Boolean matrix in Eq. (4):

Rule 1: If g, is T; and ---andq,, is T;then w;  (3)

is Rj;and ---andwg is Ry

Rule r:If g, is T, and ---andq,, is T, then w;
is Ry, and ---and Wy is Ry,

Then the generalised Boolean matrix of Eq. (3) is described in
Eq. (4) as follows:
Rll"'Rgl er "'Rgr (4)

Ty T 1 0

Tlr "'an 0 1
The product node is the rule base in Eq. (5):
Rule 1: If p, is S;; and ---and p,, is S, then w; (5)
is Ryjand --and wy is Ry,

Rule r:If p; is Sy, and ---and p,, is S, then w;
is Ryyand ---and Wy is Ry,

and its generalised Boolean matrix of Eq. (5) is constructed in
Eq. (6) as follows:

Ry R (6)

S117Sm 1 0

gr

Sir - Spr 0 1

The fuzzy system described by the rule base in Eq. (3) is with
r rules, n inputs q;,---,q,taking linguistic terms from the
input sets {T,,, -+, Ty}, T+, Tor }» @A g OUtPULS Wy, -+, W,
taking linguistic terms from the set of outputs
{Ryz, Ry - {Rgr -+, Ryr f- Similarly, the fuzzy system
described by the rule base in Eq. (5) is with r rules, m inputs
Py, -+, Py taking linguistic terms from the input sets
{11, S1r b {Smar -1 Siur f» @Nd g oUtpULS W, -+, Wy taking
linguistic terms

{Rn:"'lR1r}1"'1{Rg11'“1
may have a different number of rules but the number of rules
in the product rule base is always equal to the number of rules

in the first operand rule base. For simplicity, the notations
used in Fig. 1 are in a vector form where the vectors x,y,v

are of dimensions n,m, g , respectively.
Vertical merging is a binary operation that can be applied to a

from the set of outputs
Rgr}. In general, the operand rule bases
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pair of parallel nodes in fuzzy network. The inputs to the
product node represent the union of the inputs to the operand
nodes, and the outputs from the product node represent the
union of the output from the operand nodes.

Therefore, if the first operand node is the rule base in Eq.
(1) that is represented by the Boolean matrix in Eq. (2), and
the second operand is the rule base in Eq. (7) that is
represented by the generalised Boolean matrix in Eq. (8):

Rule 1: If wj is Ry, and --and W, is Ry, then y,is  (7)

Qq and ---andwy, is Qy

Rule s:If w, is Rjg and ---and Wy is Ry then y,
is Qi and ---andwj, iS Qg

then the generalised Boolean matrix of Eq. (8) is described
with Eq. (9):

Qll"'th le "'th (8)
1 0

Ry R 0 1
The product node is the rule in Eq. (9):

Rule 1: If p, is Sy; and ---and p,, is S,;and w, 9)
is Ry; and ---and Wy is Ry, then g, is T;; and ---and

g, is Ty and y, is Q;;and ---and y,, is

Rule r-s:If p, is Sy, and ---and p,, is S, and

w, is Ry and ---andwg is Rysthen gjis Ty, and
---andq, is T, and y, is Qand

th '

---and y, is

and the generalised Boolean matrix of Eq. (9) is constructed in
Eqg. (10) as follows:

Tll"'Tnl Tlr "'an (10)
Qi1+ Qn Qs -+~ Qs
Sll"'Sml 1 0
R11"‘Rgl
Slr "'Smr 0 |
Rgr - Rys

In this case, the fuzzy system described by the rule base in
Eq. (8) hass rules, g inputsW; -+ W taking linguistic terms
from the input sets{R;, Ry} {Ryy Ry f» and h outputs

y; .-y, taking linguistic terms from the output sets
Qu Qi) {Qu-Qu ). However, the fuzzy system
described by the rule base in Eq. (10) is with r-srules,
M-+ g inputs Xy -+ Xpy, Wy - Wy taking linguistic terms from

the input sets

{Slll""slr}""'{Sml""'smr}'{Rlli""Rls}""!{Rgl"'Rgs}'
and n+h outputs qy,---,dg, Y1,--+,Y taking linguistic terms
from the output sets

{Tllr'“ler}l"'v{Tnl""'an}v{Qllv"'les}"“'{th'“th}'
The number of rules in the product rule base is equal to the
product of the number of rules in the operand rule bases. For
simplicity, the notations used in Fig. 2 are in a vector form
where the vectors x,y,v,whave dimensionsn,m,g,h,

respectively.

I1l. METHOD FORMULATION

In this approach, the decision makers opinions are
evaluated independently, since they may have different
influence degrees, depending on their experience in the area.
Furthermore, criteria are categorised into benefit criteria or
cost criteria. Each category generates correspondingly benefit
fuzzy systems or cost fuzzy systems, where the output of the
systems is Benefit Levels (BL) or Cost Levels (CL),
representing the performance of each category .Fig. 3
illustrates the proposed Generalised Fuzzy Network Model for
TOPSIS, where Benefit subsystem (BS), Cost subsystem (CS)
and Alternatives subsystems (AS) are incorporated in the form
of fuzzy network nodes. The inputs are the benefit
criteriaB,,...,B and the cost criteria Cy,...,C. At the end of the
process, Alternatives Levels (AL) are determined. The dotted
frame represents the vertical merging of rule bases, and the
dashed frame illustrates the horizontal merging of rule bases.

The next subsections, illustrate systematically the
implementation of Type-1, Type-2 and Z-fuzzy numbers to
FN-TOPSIS.

A. Type-1 Fuzzy Number Implementation

The following Table | and Table Il are used by decision
makers to evaluate the rating of alternatives and the
importance of criteria, and Table 11l is used to determine the
alternative level as the output, in generating fuzzy rule bases.

The following are the procedures involved in implementing
a fuzzy network with merging rule bases to TOPSIS, based on
Type-1fuzzy numbers. Steps 1-6 are adopted from [15] and
[45], while steps 7-10 are introduced as part of the proposed
method in this paper.

Step 1:

Construct decision matrices where each decision maker
opinion is evaluated independently, and categorise into two
Criteria Categories as Benefit Criteria and Cost Criteria
defined through a Benefit System and a Cost System.

In the decision matrices DZ2,Dgand weight matrices
W2 W (k=1,---,K), it is assumed thateis the number of
benefit criteria, f is the number of cost criteria, and k is the
number of the decision maker as shown in Eq. (11):



>TFS-2015-0580<

By | X1k X1k X1m k (11)
DB _ 2| X2k Xa2k Xamk | and
k= : : :
Be Xel,k Xe2,k Xem,k
Ci| Yik Yok Yimk
DC — Co| Yax Yok Yomk
k = : : : ’
Ci|Yrk Yizk Y fm.k
B
Wy :[gl,k U2k ge,k]and

ch :[hl,k h2,k hfyk:l Jfork=1... K.
where Xj; . are Type-1 fuzzy sets representing the rating of

alternatives A; (j=1,---,m)with respect to benefit criteria B;

(i=1---,e) according to the k™ decision maker , and g;  are
Type-1 fuzzy sets representing the weights of benefit criteria
By (i=1---,e)according to the k™ decision maker, where
k=1---,K. Also, Yjy are Type-1 fuzzy sets describing the

rating of alternatives A; (j=1---,m)with respect to cost

criteria C; (i=1,---, f )according to the k™ decision maker,
and h; are Type-1 fuzzy sets describing the weights of cost

criteriaC; (i=1,--, ) according to the k™ decision maker,
where k=1,---,K..

Step 2:

Construct weighted and normalized decision matrices.

The fuzzy rating and weight of each criterion are variables
describedwithType-1 trapezoidal fuzzy numbers. The ratings
of alternatives A; (j=1,---,m)are described with the Type-1

trapezoidal fuzzy numbers x; :(ai}k,bij*’k,cij*yk,di}k)and
Yiik :(auyyk,bi}’yk,ci{k,dijy’k), while the importance of benefit
criteria B; (i=1---,e) and cost criteria C; (i=1,---, f )are
respectively represented by g;, :(ai?k,bi?k,ci?k,di?k )and
hivk:(ai'jk,bi'jk,c{jk,diﬁk), for k=1,---,K. The normalized
fuzzy decision matrices R, and weight normalized fuzzy
decision matrices V, are calculated as shown in Eq. (12):

Rk = [rij,k ](e+f)xm ! (12)

where

X X X X
aji b/ K Ciik d: K
e = "X‘* , ”X‘* , ");* , ”X’* , for B, ¢ B
dile di) dix diy

ljk =

P N
c ik ik ik By
Fijx -

,forC; eC

y 'Y TRy Ly
dic Cix bix ajx

dk :m?Xdi}(,k, (i=1--.e), (j=1---,m)

aiV: :m'inai}/k, (i:l’-.., f), (j:ll...’m)
, i ,

B and c are the sets of benefit criteria and cost criteria
respectively;

Vi :[Vijlk](e+f)><m '
where
Vi‘jg.k = rij,k(')gi,k , for B; B
Vijk =
Vi =tk (hi L forCieC
and
Vijk = (ai‘jyk bk ik i )are Type-1 fuzzy sets;

for k=1---,K.

Step 3:

Find the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy
Negative Ideal Solution (FNIS) for each alternative, and the
distance between each alternative to FPIS and FNIS.

The FPIS and FNIS solutions are correspondingly

A :(V1+,k’V;,kl"'lv(+e+f),k)and A¢ =(V1_,k’V2_,k""vV(_e+f),k ,

where v, =(1 1 1 1) and v;,, =(0 0 0 O0)are Type-1
fuzzy sets, for k =1,---, K . The distance for benefit criteria of
each alternative j, A;, from A is AE}fk , calculated as shown

in Eq. (13):
B _ N AR (B vt (13)
Aj,k = ZAK(Vij,lei,k ), where
i=1

AE(Vi?,kvak):\/é[(a;fiE ‘1)2 + (bi‘j’:f _1)2 + (Ci\J(:E _1)2 +( i

for j=1,---,m ,and B; eB,andk =1,---,K .

The distance for benefit criteria of each alternative j, A; , from
AN A'?‘k , calculated as shown in Eq. (14):

%5 = Y AR vy ) where
i=1

8= 2]t o) 2 o)+ 52 -0 + oy ~0)°]

3

(14)
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for j=1,---,m ,and B; €eB,andk =1,---,K .

The distance for cost criteria of each alternative from A[ is

Aﬁ*k , calculated as shown in Eq. (15):
f (15)
Ay = ZAi(vﬁk,vifk), where

1
cf.,c C
Ak(Vij,kvViJfk :\/E‘:(ai\]{,k

for j=1---,m,and C; eC,andk=1,---,K .

1)+ bys 1)+ eys )+ s

Finally, the distance for cost criteria of each alternative from
Acis chfk , calculated as shown in Eq. (16):

5= YA i) where

1
5= 2] 0" + byE ) 35 ) (o -]
for J :1!|m ,and CI EC,andk :1’..., K.

Step 4:
Find the closeness coefficients for both the benefit and cost
systems.

(16)

The closeness coefficients CCEK for the benefit systems, and

the closeness coefficients CCJ(-fk for the cost systems, are
calculated in Eq. (17):

B- (o
A J,k A J,k

cct =— 2
! jik C c-

i an
CCJ,k =

forj=1--,mand k=1---, K.

Step 5:

Derive the Influenced Closeness Coefficients (ICC) by
applying the influence degree of each decision maker. Then
find the normalised ICC (NICC), dividing the ICC by the
maximum value of ICC.

Let ¢, denotes the influence degree, between o (un-influential)
and 10 (very influential), of decision makerk , where
k=1---,K.Next, leto, stands for the normalized influence

degree of the k™ decision maker, k =1,---,K . , as evaluated
with Eq. (18):

(18)

Eq. (19) evaluates the influence closeness coefficients ICCJ-BYk

and ICka for each DM Kk, respectively along the benefit and
cost criteria.

IcCP, =o xCCPand ICCS, =0y xCCE, for  (19)

j=1--,mand k=1 K.

It is further necessary to normalize the coefficients, in order to
ensure that their values vary between 0 to 1. Eq. (20) evaluates

the normalised coefficients, where NICC?, and NICC?, are

respectively the normalized influence closeness coefficients
for the benefit and cost systems, as related to the k™ decision

maker.
IccB (20)
NICC}) = %ax ICC P, and
i
c _lcch, c
i

for j=1,---,mand k=1,---,K.
Both NICCJ.B‘k and NICCfk will take linguistic terms from
Table I11 for the level of alternatives performance.
Step 6:
Construct the antecedent matrices and the consequent

matrices for the BS and CS systems, based on DMs opinions
and the values of the NICC coefficients.

Having the opinions DZand DS of all DMs (k=1,---,K)on
each alternative j(j=1,--,m)in respect to each benefit
criterion i (i =1,---,e) and each cost criterion i(i=1,---, f ) (see
Eq. 11) , we can define the BS antecedent matrix X, and the

CS antecedent matrix Y, for each DM k, as introduced with
Eq. (21):

X1k X2k X1m k (1)
X, = X2.1,k Xz.zy X2r.n,k and
Xertk  Xezk ° Xemk
Yiik Yk Yim k
Y, - Y2:1,|< y2:2,k yZ:n,k for k=1--- K
Yirk Yok Y fm.k

where Xjj cand Y are linguistic terms describing decision
makers’ opinions. Having determined the NICC* and
NICCJ-C'k coefficients for all decision makers (k=1,---,K),
next the benefit consequent matrix A, and the cost consequent

matrix ‘P, are defined as shown in Eq. (22):

Amk ] and (22)

y/m'k] for k=1---,K

Ay = [ﬂl,k /12,k

¥y = ['//1,k Vo
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where 4;, and w;are linguistic terms representing the
output of the BS and CS systems, based respectively on the
values of nicc® and NICCF, With reference to FPIS and

FNIS, FPIS represents the compromise solution while FNIS
represents the worst possible solution. The range is within the
closed interval [0, 1]. NICC equation illustrates the distance of
each alternative from FPIS and FNIS with the nearest value to
compromise solution which is 1. The closer the NICC to 1, the
higher the priority of the alternatives. The scalar is translated
into linguistic term to which the scalar has the highest
membership degree. The benefit sub system consists of K
matrix decision rules presented in Eq. (23):

Xk Xiak Xim k (23)
If X, = Xz}’k XZF’ XZ[“"‘ then
Xk Xeak  ° Xemk
Ay :[ﬂ’l,k ey }“m,k] for k=1--K;
And can be described with the rule bases in Eq. (24):
Rule 1: If B, is X, and ---and B, is X, then  (24)

BLis A,

Rulem:If B, is X, , and ---and B, is X, then
BLis A,
where BL is the benefit level of alternatives, for j=1,---,m

and for k=1---,K;The cost system consists of K matrix
decision rules presented in Eq. (25):

Yiik Yok Yimk (25)
Ify, = y2.l,k yzzz,k y2r:n,k then
Yiik Yok Y fmk
Py :[Vfl,k Vak '//m,k] for k=1---,K;
and can be described with the rule bases in Eq. (26):
Rule 1: If C, is Yy, and ---andCy is y,;, then  (26)

CLyis yy

Rulem:If C is y;,, and ---andC; is y,

then CL, is v,
where CL is the cost level of alternatives, for j=1,---,mand
k=1---,K.
Step 7:

Construct the antecedent matrices and consequent matrices
for the Alternatives System (AS).

The AS antecedent matrices M, are based on the Benefit
Levels A, and Cost Levels ¥, , which are the outputs of the
BS and CS systems correspondingly. The antecedent matrix of

a system with two inputs, i.e. BLand CL, each taking m
possible values, will be usually of size 2x(m-m), as
presented in Eq. (27).

" CBL[ A Ak Ank 0 Amk (27)
el Vi ¥k Vik ° Ymk
fork=1---,K .

However, in this case each tuple of inputs (ﬂj,k,‘//j,k) stands

for the assessed levels of the same alternative j through two
types of criteria — benefits and costs. Therefore, the AS
antecedent matrices M, are of size 2xm, as constructed in
Eq. (28):

M _ BL ;i‘l,k }“2,k /13,k ﬂ/m’k (28)
KoL Vik Vok Vak ° Wmk
fork=1---,K .

The AS consequent matrices are derived as follows:
(i)Calculate the aggregation &;  of weighted NICCEk and

NICC?k, the division by two in Eq. (29) reflects the equal
importance of each of the two subsystems by means of a
weighted mean:

(29)

NICCE x| & |eNicc, x|
Tole+f ©ole+f

Sik = 2
for j=1,---,mand k=1---,K.

(i) Normalize the values of &; to ensure they lie within
[0.1], as calculated in Eqg. (30):

_Sik i=1...
NG =7 max &, for j=1---,m and
i

k=1---,K.

(30)

(iii) For ij'k , take linguistic terms from Table 111 for the

alternatives levels. The translation of scalars to linguistic
terms is done in the same way as in Eq. (22).Then the K for
AS consequent matrices, in this case of size 1x m rather than
1xm-m, are described in Eq. (31):

Nény ] 1)

Ny = AL[Nfl,k Nfz,k
Jfor k=1,---,K ,
where AL is the level of alternatives.

Therefore, the alternatives system is presented with K matrix

decision rules, as constructed in Eq. (32):

~ BL{ M Ay Ak } then (32)

CL Vik Yak Yk
' :AL[Nka NS,k Nézm,k] '

if M,

for k=1---,K ;

and can be described with the rule bases in Eq. (33):
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Rule 1: If BL is 4y and CL is yy,then ALis
NSk

(33)

Rulem: If BL is 4,, and CL is y,,, then AL is
Nép, for k=1 K ;

where BL is the level of benefits, CL is the level of costs,
and AL is the level of alternatives.

Step 8:

Construct the generalised Boolean matrix representing the
overall system.

Having derived the rules for the three systems - BS, CS and
AS — we can now translate these rules into Boolean matrix
form. The generalised BS Boolean matrix for each alternative
j is constructed in Eq. (34), based on the opinions of all K
decision makers:

Aj1 Ak (34)
, for
¥jazXga 1 0 j=L-m
Xk Xgx 0 .. 1

where the row and column labels of the Boolean matrix are all
possible permutation for the BS rule base of the linguistics
terms for the input (1-7) as in Tables | and Il, and of the
linguistic terms for the output (1-5) as in Table I11.

The generalised CS Boolean matrix for each alternative
j is constructed in Eq. (35) based on the opinions of all K
decision makers:

Via Vik (35)
Yiji o Yea L 0 , for
: : oo j=%--m
Yijk Yk U 1

where the row and column labels of the Boolean matrix are all
possible permutation for the CS rule base of the linguistics
terms for the input (1-7) as in Tables | and Il, and of the
linguistic terms for the output (1-5) as in Table I11.

The vertical merging of the BS and CS generalised
Boolean matrices will produce the generalised Boolean matrix
constructed in Eq. (36):

i Aik (36)
Vi Vik
Xo:qooe X
15,1 ej,1 1 0 ,fOI‘
Yiji - Yia j=1---,m
Xl,K ...X .,K
: K 0 1
Yijk Yk

Next, the AS generalised Boolean matrix for each alternative j
is introduced in Eqg. (37) based on the opinions of all K
decision makers:

9
N&;, N, « (37)
, for
Aix Vi r ... 0 j=1.r
ﬁ,ij ¥k 0 1

Then, the resultant generalised Boolean matrix for the overall
system for each alternative j is produced in Eq. (38) based on
the opinions of all K decision makers:

NE;, NEx  (39)
X . ...X .
Ht ot 1 0
Yiji Y
X1j,k " Xej,K
: ? 0 1
Yimk = Yimk
Jfor j=1,---,m

Step 9:
Derive the rules for the alternatives based on the generalised
Boolean matrix from Eq. (40), as shown below for
j=L--,m:

Rule 1: If By is Xyj, and ---and B, is Xgjqand Cy is Yy,

and ---andC is Yia

then ALis N&;

Rule nj:If By is X;j  and ---and B is Xgj ¢ and Cy is
Yij,k and ---andCf is yfj’K
then AL is N&;

Step 10:
Derive a final score for each alternative.
In order to produce a final score I'; for each alternative j, take

the average aggregate membership value of the consequent
part of the njrules in Eg. (38). Then multiply with the

influence multiplier based on the KDMs average influence
degree for alternative j. This is shown in Eq. (39):

n K
Z ZN(;?Lk .(Nlcc:ffk + Nlcc}fk)

Fj _ Rule=1 k=1

(39)

n-K

for j=1,---,m.
Thus the ranking order of all alternatives can be determined:
the better alternatives j have higher values of T;. The

alternatives we have developed the above ranking approach
for are stock exchange traded equities. We have considered
application to a developing financial market, and are currently
extending the application to comparison of performance in
developing and developed financial markets.
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B. Interval Type-2 Fuzzy Number Implementation

In this implementation of FN-TOPSIS, we use Interval Type-2
fuzzy number, as detailed in Table IV, Table V and Table VI,
for rating of alternatives and weighting the importance of
criteria. All linguistics terms are written in the form of
trapezoidal Type-2-fuzzy numbers.

In terms of steps involved in the implementation of Type-2
fuzzy numbers in FN-TOPSIS, the concept of ranking
trapezoidal interval Type-2 fuzzy numbers is relevant to step 3
prior to finding the distance of alternatives from positive ideal
solutions and negative ideal solutions. The other steps are the
same as type-1 fuzzy sets implementation discussed in
subsection 111 (A).

Step 3:

Find the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy
Negative Ideal Solution (FNIS) for each alternative, and the
distance between each alternative to FPIS and FNIS.

In order to construct the ranking weighted decision matrices,
for j=1...,mand k=1,....m, we need to calculate the

ranking value of each Interval Type-2 fuzzy numbers Vij o i.e.

Rank (vj; ) -The maximum number Nof edges in the upper
membership function vilj{k and the lower membership function
viJL]k are first defined, where i=1,...,e+ fand j=1....m.If
Nis an odd number andn>3, thenr=n+1. If n is an even
number and =4, then =N The Rank(v;,) of an Interval
Type-2 fuzzy numbers is presented in Eq. (40):

Rank(v; )= ZM1(Vilj,k)+ ZMz(Vilj,k)+"'+ ZM,,l(vi'j‘k)

le{U, L} le{U, L} l{U L}

{ Solib Tl Tabh)-

le{U, L} (UL} (UL}

(40)

Sl Sabiue Saabis)

(U, L} U L} (U, L}

Here M p(vi'j]k)denotes the average of the elements aﬁ’]'k]pand
v . ary +a’) _

Qijk,(ps1) MEM p("i'i,k)=( e ”'k’(pﬂ%’ for p=L....r=1.

AIsoSp(Vinyk) denotes the standard deviation of elements

vl vl vl .
aijykvl’aij,k,2!""aij,k,p y |'e'

3 3 :, for
Sp(vllj,k): EZ[aﬁL‘ *lzaﬁi'm}
P P

p=1...,r. Finally, , (., )denotes the membership value of
for p=1...,r—2 wherelefu,i3and T

the element aiVij (p41)

is an even number.

The fuzzy positive ideal solution Alj=(vfk,v§,k,---,v(+e+f)yk)

and the fuzzy negative ideal solution
A = (Vl_,k ,VE,k,--nv(}Hf),k)are defined in Eq. (41):
Ay = Vi Vs 1 Jand (41)

A :(Vl_,k’vz_,k""vv(_eﬂ),k)’

10

where

]én;fe)ij{Rank(vi?vk)}’ B eB
Vi =

min [Rankfvf, ¢ ec
and

1srj2ierl f {Rank(vi?’k )} Bic B
Vi =

1sr}1gae)if{Rank(vil¢xk)}‘ CeC

Here, B denotes the set of benefit criteria, C denotes the set of
cost criteria, and i=1,...,m.The distance AJ'J-Yk between each

alternative Ajx and the fuzzy positive ideal solution A, is
calculated with Eq. (42):

e+f 2
Ay =\/ Z(Rank(vijvk )—vifk)

i=1

for j=1,...,mand k=1,...,K

(42)

The distance A'j between each alternative A, and the fuzzy

negative ideal solution A, is calculated is calculated with Eq.
(43):

e+f 2
A :\/ Z(Rank(vij'k)—vijk) for

i=1
and k=1,...,K

(43)
j=1...,m

C.Z-Number Implementation

For the Z-number implementation of TOPSIS-FN, the Table I,
Table Il and Table Il from subsection Ill (A) are used, with
an additional Table VII for the linguistic terms representing
decision maker reliability.

Here, the reliability of experts is taken into consideration
during the decision making process. The experts are advised to
use the linguistic terms in Table VI to evaluate the confidence
in their decision. Decision makers are not supposed to use
negative weight to represent their opinion. Otherwise, this
would imply the use of unreliable information which is
undesirable. This applies at the start of step 1 of the algorithm
described in Type-1 fuzzy number implementation of FN-
TOPSIS. The other steps are the same as the implementation
discussed in subsection 111 (A).

Step 1:
Use the information from Table VII to derive the second
component B of the Z-number, and then convert the Z-number
to Type-1 fuzzy number.

Letz = (A,B) is a Z-number,

{A=(xuz) I xe[01}{B =(x, 15)[x€[01]}, and x5 and
u are trapezoidal membership functions. The second part

(reliability) needs to convert into a crisp number using fuzzy
expectation, as shown in Eq. (44):

where
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.[ Xugdx (44)

B J-,LlédX
Wherej denotes an algebraic integration. Then add the weight

a

of the second part (reliability) to the first part (restriction).
Weighted Z-numbers can be denoted as:

% = {(X, Hza lﬂ;\a (X) =auz(x),xe [O,l]}
These can be represented with Type-1 fuzzy numbers as:

Z' =< X 3 () > pz0 (%) = y,;(%), x e[0T}

It is proven in [33] that Z' has the same Fuzzy Expectation as

Z % .The remaining steps of the algorithm are the same as for
the Type-1 fuzzy sets implementation. The next section is
illustrating systematically the application of Type-1 fuzzy sets
the proposed FN-TOPSIS method to solve the problem of
selection/ranking of traded equity.

IV. RANKING OF TRADED EQUITY

We study the problem of ranking traded equity in
developing financial markets within a crisis period, in order to
illustrate the applicability and validity of the proposed FN
methodology in a realistic scenario. Decision makers with
different levels of experience evaluate 25 equities listed on the
Main Board of the Kuala Lumpur Stock Exchange (KLSE)
on30 November 2007. A set of financial ratios for the equities
are considered towards the benefits and cost criteria in the FN-
TOPSIS algorithm. These include: Market Value of Firm
(B1), defined as market value of firm-to-earnings before
amortization, interest and taxes. This is one of the critical
financial indicators, and the lower the ratio the better the
equity [46]; Return on Equity (B2), which evaluates how
much the company earns on the investment of its shareholders.
ROE is measured as net income divided by stockholder funds.
Portfolio managers examine ROE when deciding whether to
trade (buy or sell) equities. The higher values of the ratio
indicate healthier companies. Debt-to-Equity ratio (C1),
belonging to long-term solvency ratios that are intended to
address the firm’s long run ability to meet its obligations. It is
considered by DMs that the lower the ratio the better[47].
Current Ratio (B3), which measures liquidity of companies,
and explains the ability of a business to meet its current
obligations when fall due. The higher the ratio, the more liquid
is the company, and therefore in a better position.[48]. Market
Value-to-Net Sales (B4), is market value ratios of particular
interest to investors. The lower the ratio the better the
equity[49]. The lower this ratio is better the equity.
Price/earnings ratio (C2), measure the ratio of market price of
each share of common stock to the earnings per share, the
lower this ratio is better.

In this study, the processes of ranking equities follow the
proposed methods in section Ill. Fig. 4 illustrates the fuzzy
network model for the problem of selection/ranking of traded
equity and includes 4 benefit criteria and 2 cost criteria.
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Step 1:

Based on the information provided by experts and using Eqg.
(11), the decision matrices for the benefit and cost systems can
be constructed. The rating of each criterion for each equity and
the importance of criteria are based on decision makers’
opinions.

Step 2:
Considering the benefit system, the normalized decision
matrix RZ and the weight normalized decision matrix Vv,2 can

be constructed for each k, using equations Eq. (12)
correspondingly.

For example, the calculations for E1 using the opinion of DM1
is as follows:

91, =(0.9,1,1,1)  xy;; =(9,10,10,10), d;¥f =10
r, =(9/10,10/10,10/10,10/10)=(0.9,1,1,1)

Vi =(0.9%0.9,1x1,1x1,1x1)=(0.81,1,1,1)
This step is repeated then for the cost system, in order to
calculate the normalized decision matrix RS and the weight
normalized decision matrixv,© .
Step 3:
The Fuzzy Positive Ideal Solution (FPIS) and the Fuzzy
Negative Ideal Solution (FNIS) for each equity based on both
systems, and the distances between the rating of criteria for
each equity and the FPIS and FNIS, can be evaluated as
follows.
FPIS and FNIS are determined as:

A =[0122) 0, @12) oo (L110) ]

Ac =[(0,00,0),, . (00,00), 4 ..., (0,000)5,]

The distances AE}} and AB]-]( , between the rating according to

DM k of benefit criterial =1,...,4 for each equity j(j =1,...,25)
and the FPIS AJ or FNIS A are calculated using Eq. (13)

and Eq. (14). For example, the distance between the first
equity Elaccording to DMland the FPIS A" is calculated

using Eq. (13) for j=1and K =1, as follows:
A‘f’*(vll’1 , vlfl): \/% [(0.81—1)2 R (1—1)2] =011

And similarly:

AY (\/21,1 : v;11)= 0.409; A7* (vm , v§1)= 0.668
AT* (v41‘1 , v;l)z 0.298; to produce overall:
4
A= ZA?*(VM, v{l): 0.11+0.409+ 0.668+ 0.298 =1.4841
i=1

Next, using Eq. (14) for j=1and k=1, the distance between
E1 according to DM1 and the FPIS A is calculated as:

22 (v s vi )= \/%[(0.81—0)2 oot (1—0)2] =1.373 and similarly
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A%‘(VZL1 V5 1): 1.063; AB~(vay, . v3, )= 0.789;

Ay (V41,1 ,v;l):l.242 producing overall:

4
AL = ZA?‘(vm,v;l): 1.373+1.063+0.789 +1.242 = 4.4671
i=1

Now, the distances AC]T( and A(j'k between the rating

according to DM k of cost criterial =1,...,2 for each equity j
(j=1...,25) and the FPIS A} or FNIS A are calculated

using Eg. (15) and Eg. (16). For example, the distance
between the first equity E1 according to DM1 and the FPIS

A/ is calculated using Eq. (15) for j=1and k=1, as
follows:

Aoy Vi) = \/% (03917 + -+ (0.85-17] = 0.49
And similarly:
C C
Ak+(vij,k ik )= A1+(V21,1 ) V2+,1)= 112
to produce overall:
2
AZF =D AT (vm,v;l)z 049+1.12=161
i=1
Next, using Eq. (16) for j=1and k=1, the distance between
E1 according to DM1 and the FPIS A is calculated as:

=AS” (vm , vljl)z \/% [(0.39 ~0)° + ---+(O.85—O)2] =1.017
and similarly

A(‘ii(vij,k ) Vik): Acl:i(vzlyl ) Vi,l): 0.339
producing overall:

2
857 =3 A5 (vigy Vi, )=1.017+0.339 ~1.358
i=1
Step 4:
Find the closeness coefficients for the benefit system ccl and

for thecost systemcc®, ,

using Eqg. (17) for each equity Ej,
i=1...,25. For example, the closeness coefficient for E1 in

the benefit system under the first decision maker k=1is
calculated using Eq. (19) as follows:

AYY 4.4671
A% ilA'iI ~Tagatrageri O
and the closeness coefficient in the cost system
A7 1358
ATT+ATT  161+1.358

CC} =

CCy = 0.457

Step 5:
The Influenced Closeness Coefficients ICCﬁk and |cc§kfor

each DM k are derived by applying the influence degree 6, of
each decision maker, Using Eq. (18) and Eq. (19). Then the
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normalized coefficients N|ccjfjkand N|cc§k are calculated with
Eq. (20).
For example, the influence degree of DM1 is ¢, =8, and using

Eqg. (18) his normalised expertise is:

o1 = 391 = 8 =0.32
8+10+7

.4
1=1
Then the Influenced Closeness CoefficientiCC; for the
benefit system for equity E1 according to DM1 is calculated
with Eq. (19) as:
ICC{; = 0y xCCf; =0.32x0.751=0.2403
and similarly the corresponding Influenced Closeness
Coefficientfor the cost system |cc; is produce as:
ICC{; =0y xCCf; =0.32x0.457 = 0.1462

Next, the influenced closeness coefficients have to be
normalized prior to matching the coefficients to the linguistic
variable in Table I11. Using Eq. (20), niccgand niccg are

calculated as:

C
Iccl s 02403 and c _lccy ¢ _ 0.1462
NICCE = 1Y/ jccB, = == NICC; = , ICC =
11 /mJaX ik = 02403 11 m]ax 11 0.1659

Finally, the normalised coefficients are matched to the
variable in Table I11:

NICC =1=VG; NICCJ; =0.8812=VG

Step 6:

Thef) antecedent matrices X, for the benefit system are
constructed using Eq. (21) for k=1---,K, based on DM k
opinions. Each decision maker has a separate benefit
antecedent matrix. The consequent matrices A for the benefit
system are constructed using Eq. (22) fork=1--,K , based on
the values of Nicc?, calculated at Step 5 above and matched
to the linguistic terms in Table I1l. Each decision maker has a
separate benefit antecedent matrix. Similarly, the antecedent
matricesY, and the consequent matrices ¥, are produced for

the cost system. Thus the antecedent and consequent matrices
for the benefit and cost rule bases are generated in this step.
For example using Eq. (21), and according to the first decision

maker K =1, the antecedent matrix X, for the benefit system

= E, - Eyxp E, E, o Eng

Bi| X111 X121 X 51| Bi[VG MG - MG

X, By Xou1 Xo24 X251 | _ B,|VG VG F
B3| X311 X321 Xsps1| B3|VG M . MP

By X411 Xa21 X4.251 B4/G G - G

where B; are the four benefit criteria. Then using Eq. (22), the
consequent matrix A, is:
E, E, - Eyx E, E, - Egx
Al = BL [j“l,l /12‘1 22511]: BL[\/G VG G]
where BL is the benefit level.
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Next using Eq. (22), and according to the first decision maker
k =1, the antecedent matrix Y, for the cost system is:

= E, -+ Eyx E, E, - Egx
G Y Yign o Yaesa 1_ C, {G F - F}
_Cz Y211 © Y251 - C,[F G - G
Then using Eq. (22), the consequent matrix \¥; is:
E, B - Ep E, E, - Eyx
Y1 =CL [‘//1,1 Va1 V/zs,l]: cLtvé G - G
where CL is the cost level.

The rule base of the benefit system for DM1 is constructed
using Eqg. (23) and Eq. (24), as follows:

Y
! Y221

EL E, - E

25
If &6 me .. mc|Then E. By - B
Blve ve .. F A, =BLVG VG - G]
gV M - MP
BJG G - G

Rule 1: IfB;isVGand B,is VG and B;is VG and B,is G

then the output BL is VG
Rule 2: If B; isMGand B,isVGandBsisMand B, isG

then the output BL is VG

Rule 25: If B; isMG and B,isFand BgisMPand B, isG
then the output BL is G

By analogy, the rule base for the cost system is constructed.

Step 7:
The Alternatives System (AS) in this application is the Equity
System (ES), and the antecedent matrices M, of each DM k

for ES are constructed using Eg. (28) based on the Benefit
Level (BL) and Cost Level (CL), which are the outputs of the
benefit system BS and cost system CS, respectively. Each
decision maker has a separate equity antecedent matrix M, .
Next, the ES consequent matrices N, are derived using Eq.

(29)-(31), while calculating the aggregations ¢, , of weighted
coefficients NICC}, and Niccf, for each equity j(j=1,---,25),
then producing the normalised aggregations NEjx and
constructing the ES consequent matrices N, based on N¢; .

Each decision maker k has a separate equity consequent matrix
N, .

For example, based on the benefit and cost levels BL and CL
evaluated in Step 6 above and using Eq. (27), the ES
antecedent matrix M, according to DM1 is evaluated as:

B, By - Ep E, E, - Ex
M. — BL| A1 Aas Aoy | BL{VG VG - G}
PUCL v v Wosa| CLIVG G - G

Next, the ES consequent matrix N; according to DM1 is
derived through:

13

()  calculating the aggregated closeness coefficient &;,

for each equity j=1,...,25, with Eq. (28) and based on the
normalised closeness coefficients NICCﬁl and N|ccflaccording

to DM1; e.g. for j=1:

4 2
NICCE x| —— |+ NICCS x| —=—
“{4+2j 1'1X[4+2j_

":zl,l = 2

1.00x (gj + 0.8812(%]
=0.480

Ga=
: 2
(if)  calculating the normalised aggregated closeness
coefficients NG, for each equity j=1,...,25, with Eq. (29)
and based on the values ia produced in Step 7(i) above; e.g.

and the value of N&,, is matched to the linguistic variable for

equity levels in Table 1lI:
N&;, =0.960 =VG

(iii) The ES consequent matrix N, for DM1 is constructed
using Eqg. (30) and based on the values N¢&;, for each equity j

for j=1:

produced in Step 7(ii) above; e.g. for j=1:

El E2 o EZS El E2 v E25
N; = EL[Né:l,l Nfz,l N§25,1]= [VG VG - G]
Where EL is the equity level.

Therefore, the equity system rule base according to DM1 is
evaluated using Eq. (25) and Eq. (26) as:

El EZ EZS
If BL[VG VG -.- G Then B B o By
.= N, =EL[VG VG - G]
CLIVG G - G

Rule 1: If BL is VG and CL is VG then EL is VG
Rule 2: If BL is VG and CL is VG then EL is VG

Rule 25: If BLis G and CL is G thenEL is G

Step 8:

Having list of rules for 3 systems — BS, CS, ES — we now
present these rules in Boolean matrix form. The Boolean
matrices for each equity are constructed based on the opinions
from all DMs. For example using Eg. (33), the Boolean matrix
of the benefit system for E1 is produced in Eq. (45).The row
and column labels of the Boolean matrix are all possible
permutations of linguistics variable for the input (1-7) as in
Table I and the linguistic variable for the output (1-5) as in
Table I11, for the benefit rule base.

1 2

3 (45)
1111 0 0 O

4 5
0 0

6576 0 0 0 0 1
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7655 0 0 0 O 1

7776 0 0 0O O 1
7777 0 0 0 O O
Next using Eq. (34), the Boolean matrix of the cost system for
Elis defined in Eq. (46):
5 (46)

11 0

o
- O
- O

o

4 0 0 0 1 O
64 0 0 O 1

76 0
77 0

o o
o o -
o o -
o o

Step 9:

Vertical merging is performed to merge the BS and CS
Boolean matrices for each equity, then horizontal merging
performed to merge the Boolean matrix obtain from the
vertical merging operation with the ES Boolean matrix for
each equity. For example, applying vertical merging of the BS
and CS Boolean matrices for E1, the resultant Boolean matrix
is constructed in Eq. (47), as follows:

11 ... .. 54 55 (47)
1111/11 0 .. ... 0 ©
6576/44 0 1 0
6576/64 0 0 1
7655/44 0 1 0
7655/64 0 0 1
7776144 0 ... .. 1 0
7776064 0 ... .. 0 1
777777 0 ... .. 0 0

The equity system ES Boolean matrix for E1 is evaluated in
Eq. (48) as:
1 2 3 45 (48)
11 0 0 0 O

330 0 0 0O
44 0 0 00

1

5 0 0
55 0 0 1

00
00
Next, the resultant Boolean matrix for the overall system is

produced as shown in Eq. (49), through horizontal merging
between the Boolean matrices in Eq. (47) and Eq. (48):

1 2 3 4 5
1111/11 0 0 0 0O O

(49)
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6576/44 0

o o
oo ---
o o

6576/64 0 1
7655/44 0 0 O 0 1
7655/64 0 0 O O 1
7776/44 0 0 0 0 1
7776/64 0 0 O 0 1
7777/77 0 0 O O O
where only the rows containing 1 are shown, along with the

first and last rows.

From the Boolean matrix in Eq. (49), the rule basis for equity
E1 are derived, as described in Eq. (50):

Rule 1:6576/44/5 | 6 5 (50)
Rule 2:6576/64/5 | 6 5
Rule 3:7655/44/5 | 7 6
Rule 4:7655/64/5 | 7 6
Rule 5:7776/44/5 | 7 7

7

6
6
5
5
| 6
Rule 6:7776/64/5 ' 7 7 7 6

orO MO N
B el el B Y

o1 o1 0101 01Ol

The rules in Eqg. (50) with 6 inputs and loutput can be
represented in linguistic terms, as in Eq. (51)

Rule 1: If Bl is G, and B2 is MG and B3 is VG
and B4isGandClisFand C2isF
then E1 is VG

Rule 2: If Bl is G, and B2 is MG and B3 is VG
and B4isGand ClisGand C2isF
then E1 is VG

Rule 3: If B1is VG, and B2 is G and B3 is MG
and B4isMGand ClisFand C2isF
then E1 is VG

Rule 4: 1f B1is VG, and B2 is G and B3 is MG
and B4isMG and Clis Gand C2is F
then E1 is VG

Rule 5: If B1 is VG, and B2 is VG and B3 is VG
andB4isGand ClisFand C2isF
then E1 is VG

Rule 6: If B1 is VG, and B2 is VG and B3 is VG
andB4isGandClisGand C2isF
then E1 is VG

(51)

Step 10:
The final score for each alternative j=1,...,25 is derived with

Eqg. (39), by taking average of the aggregate membership value
of the consequent part of all active rules in the overall system
for equity j, and then multiplying with the influence multiplier
based on the average influence degree across all K decision
makers DMs for each equity j.

For example, there are 6 active rules for E1 generated from the
Boolean matrix operation. Eq. (39) is used in order to obtain
final score for E1,the average aggregate membership value for
the output of the 6 rules is calculated, and then multiplied with
the influence multiplier for E1 across all DMs.
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6

> 23: N, -(Nicc B, +Nicc®, )

— rl — Rule=1 k=1

6-3
_ 0.9(0.94)+o.9(o.79)+o.9(0.9% +0.9(0.94)+o.9(0.79)+o.9(o.9%

,0.9(0.94) +0.9(0.79) + 0.9(0.91)/ ,0.9(0.94) +0.9(0.79) + 0.9(0.91)/

18 18

,0.9(0.94) +0.9(0.79) + 0.9(0.91%8 ,0.9(0.94) +0.9(0.79) + 0.9(0.91%8
=0.79

The final score and ranking positions for all 25 equities
considered in this case study, and based on Type-1, Type 2
and Z fuzzy numbers implementation of the proposed FN-
TOPSIS method are provided in Table VIII.

V. ANALYSIS OF RESULTS

For the validation of the proposed rule-based FN-TOPSIS, the
authors consider established TOPSIS methods, as the non-
fuzzy TOPSIS[13] and the non-rule based fuzzy TOPSIS
approaches-T1-TOPSIS [15],T2-TOPSIS[18], Z-TOPSIS[34].
All these methods are applied to evaluate the score and final
ranking of the equities from the case study in Section V, and
compared with the performance of FN-TOPSIS. The actual
monthly equity returns in November 2007, based on trading
the shares of the 25 companies on the Kuala Lumpur Stock
Exchange and holding for a month, are wused for
benchmarking. The rankings are compared using the
Spearman rho correlation coefficient ,, where p measures the

strength of association between two ranked variables. This
comparison approach is intuitively interpretable, and less
sensitive to bias due to the effect of outliers [50].The
Spearman’s Rank coefficient is evaluated as shown in Eq.

(52).
6 of

3
n®-n
where 0, represents the difference between the ranks, and nis

the number of considered alternatives.
The coefficient P takes values between +1 to -1.Perfect

positive relationship of ranks is indicated with ,=1, and
p=-lindicates perfect negative association of ranks, while
p =0 shows no relationship.

(52)

p=1-

Considering the criteria set used i.e. B1, B2, B3, B4, C1 and
C2 of traded equity described in section 1V, the three proposed
Fuzzy Network TOPSIS methods (PM) outperform the four
established TOPSIS methods (EM), as shown in the last row
of Table X.

V1. CONCLUSIONS

This paper introduces a novel TOPSIS method — FN-TOPSIS
— extending the capabilities of rule-based fuzzy networks
within multi-criteria decision-making analysis. FN-TOPSIS
usesType-1, Type-2 and Z-fuzzy numbers, and incorporates
experts’ knowledge into decision analysis as well as experts’
degree of experience and influence. At the same time, the
approach improves transparency of decision analysis;

15

particularly in the TOPSIS process, by explicitly taking into
account all subsystems and interactions among them. FN-
TOPSIS not only provides an effective way to process
imperfect information in decision-making practice in a more
flexible and intelligent manner, but also presents expert
knowledge more accurately. The performance of the proposed
method is validated using a benchmark, and comparing against
a set of competitive approaches. The results show that the
proposed method outperforms the existing non-rule based
TOPSIS methods in terms of ranking performance. We have
successfully applied FN-TOPSIS to the problem of ranking
equities traded in a developing financial market during a crisis
period. This work continues research on hybrid approaches
and implementing fuzzy set theory in equity ranking and
investment decisions, in a developed market (UK) during a
pre-crisis period [51]-[54].The next objective is to implement
and analyse the performance of the approach within
developing and developed financial markets during a post-
crisis period.
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Fig.3: Fuzzy network model for TOPSIS

AS

cL
cs :

Fig. 4: Fuzzy network for the FN-TOPSIS application to ranking traded equity

TABLE I: LINGUISTIC TERMS FOR THE IMPORTANCE WEIGHT OF
EACH CRITERION

Linguistic Terms Trapezoidal Fuzzy Number

Very Low (VL) 1 (0.00,0.00,0.00, 0.10)
Low (L) 2 (0.00,0.10, 0.10, 0.25)
Medium Low (ML) 3 (0.15,0.30, 0.30, 0.45)
Medium (M) 4 (0.35,0.50, 0.50, 0.65)
Medium High (MH) 5  (0.55,0.70,0.70, 0.85)
High (H) 6  (0.80,0.90,0.90, 1.00)
Very High (VH) 7 (0.90, 1.00, 1.00, 1.00)

TABLE II: LINGUISTIC TERMS FOR THE RATING OF EACH
ALTERNATIVE

X y y X — =
§ _ Linguistic Terms Trapezoidal Fuzzy Number
Zl ™ Zr2 N, =72 Nio 5 Very Poor (VP) 1 (0,001
Poor (P) 2 0,1,13)
Fig.1: Horizontal merging of nodes Medium Poor (MP) 3 (1,335
Fair (F) 4 (3,557
X Medium Good (MG) 5 (5,7,7,9)
v X Good (G) 6  (7,9,9,10)
AN N> v, 9,9,
k —> —> Very Good (VG) 7 (910,10, 10)
+ — N1*2
TABLE I1l1l: LINGUISTIC TERMS FOR THE LEVEL OF
v W, ALTERNATIVES
Vv w >
> N, > Linguistic Terms Trapezoidal Fuzzy Number
Very Bad (VB) 1 (0.00,0.00, 0.00,0.25)
o . Bad (B) 2 (0.00,0.25,0.25, 0.50)
Fig.2: Vertical merging of nodes Regular (R) 3 (0.25. 0.50, 0.50, 0.75)
B ————— Good (G) 4 (0.50,0.75,0.75, 1.00)
” E- ------------------------------------------ || Very Good (VG) 5 (0'75’ 1'00’ 1'00’ 1'00)
” || TABLE IV: LINGUISTIC TERMS FOR THE IMPORTANCE WEIGHT OF
| § _tnoy utput:  Inpu tput EACH CRITERION
| B: : Linguistic Terms Trapezoidal Type 2 Fuzzy Number
i BL : —> | "VeryLow (VD) 1 (0.00,0.00,0.00,0.10,1,1)(0.00,0.00,0.00,0.10,1,1)
SN BS AS || Low (L) 2 (0.00,0.10,0.10,0.25,1,1)(0.00,0.10,0.10,0.25,1,1)
|: Ba AL Medium Low
" (ML) 3 (0.15,0.30,0.30,0.45,1,1)(0.15,0.30,0.30,0.45,1,1)
” “ Medium (M) 4 (0.35,0.50,0.50,0.65,1,1)(0.35,0.50,0.50,0.65,1,1)
” E " '(V'N*Iﬂ')”m High 5  (0.55,0.70,0.70,0.85,1,1)(0.55,0.70,0.70,0.85,1,1)
” P | High (H) 6  (0.80,0.90,0.90,1.00,1,1)(0.80,0.90,0.90,1.00,1,1)
I IC% cs cLi VeryHigh (VvH) 7 (0.90,1.00,1.00,1.00,1,1)(0.90,1.00,1.00,1.00,1,1)
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TABLE V: LINGUISTIC TERMS FOR RATING OF ALL
ALTERNATIVES
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TABLE VIII: RANKING BASED ON TYPE-1, TYPE-2 AND Z FUZZY
NUMBERIMPLEMENTATION OF PROPOSED FN-TOPSIS METHOD

Linguistic Terms

Trapezoidal Type 2 Fuzzy Number

Very Poor (VP)
Poor (P)
Medium Poor
(MP)

Fair (F)
Medium Good
(MG)

Good (G)

Very Good (VG)

1
2
3
4
5
6
7

(0,0,0,1,1) (0,0,0,1,1)
011311)(0,1,1311)

(1,3,3,5,1,1) (1,3,35,1,1)
(355711 (35,5,7,1,1)
(5,7,7,9,1,1) (5,7.7.9,1,1)

(7,9,9,10,1,1) (7,9,9,10,1,1)
(9,10,10,10,1,1)(9,10,10,10,1,1)

TABLE VI: LINGUISTIC TERMS FOR ALTERNATIVES LEVEL

Linguistic
Terms

Trapezoidal Type 2 Fuzzy Number

Very
Bad(VB)
Bad (B)
Regular (R)
Good (G)
Very Good
(VG)

A w NN e

6]

(0.00,0.00,0.00,0.25,1,1)(0.00,0.00,0.00,0.25,1,1)

(0.00,0.25,0.25,0.50,1,1)(0.00,0.25,0.25,0.50,1,1)
(0.25,0.50,0.50,0.75,1,1)(0.25,0.50,0.50,0.75,1,1)
(0.50,0.75,0.75,1,1,1) (0.50, 0.75, 0.75, 1,1,1)

(0.75,1.00,1.00,1.00,1,1) (0.75,1.00,1.00,1.00,1,1)

TABLE VII: LINGUISTIC TERMS FOR EXPERTS RELIABILITY

Linguistic Terms

Trapezoidal Fuzzy Number

Strongly Unlikely (SUL)

Unlikely (UL)

Somewhat Unlikely (SWU)

Neutral (N)

Somewhat Likely (SWL)

Likely (L)

Strongly Likely (SL)

(0.00, 0.00, 0.00, 0.10)
(0.00, 0.10, 0.10, 0.25)
(0.15, 0.30, 0.30, 0.45)
(0.35, 0.50, 0.50, 0.65)
(0.55,0.70,0.70, 0.85)
(0.80, 0.90, 0.90, 1.00)
(0.90, 1.00, 1.00, 1.00)

Type-1 Type-2 z
Implementation implementation implementation
Equit . i i
g Final Score Rank 'S:(I:r(])?lla Ean 'S:(':gz:é Ean
El 0.7900 6 0.6836 8 0.6931 5
E2 0.8090 3 0.7198 4 0.5712 10
E3 0.8813 1 0.8701 1 0.8221 1
E4 0.4283 20 0.2717 20 0.2615 20
E5 0.2735 22 0.1861 23 0.2267 23
E6 0.7871 7 0.7684 3 0.6355 7
E7 0.4652 14 0.3891 14 0.3029 17
E8 0.4388 18 0.2799 19 0.2936 19
E9 0.1730 25 0.1628 24 0.1152 25
E10 0.4555 16 0.3357 16 0.3490 16
Ell 0.5084 12 0.4600 12 0.4169 13
E12 0.4528 17 0.2920 18 0.3640 15
E13 0.3661 21 0.2561 21 0.2457 21
El4 0.7506 9 0.6441 9 0.6376 6
E15 0.7936 5 0.6981 5 0.7237 3
E16 0.8467 2 0.8370 2 0.7571 2
E17 0.2551 24 0.1595 25 0.2409 22
E18 0.4308 19 0.3568 15 0.3746 14
E19 0.6536 10 0.5532 11 0.4993 11
E20 0.4629 15 0.2987 17 0.2977 18
E21 0.7761 8 0.6907 7 0.7029 4
E22 0.2616 23 0.1982 22 0.1849 24
E23 0.7956 4 0.6958 6 0.5940 9
E24 0.6338 11 0.5574 10 0.6315 8
E25 0.4899 13 0.3928 13 0.4937 12

TABLE IX: ALTERNATIVE RANKING BASED ON ESTABLISHED TOPSIS METHODS (EM) AND PROPOSED FN-TOPSIS METHODS (PM)

Equity Actual Conventional TOPSIS Non-Rule Based Fuzzy TOPSIS FN-TOPSIS
Approach (EM) Approach (EM) Approach (PM)

T-1 T-2 z T-1 T-2 z
El 2 2 4 3 7 6 8 5
E2 4 7 3 5 9 3 4 10
E3 1 1 1 1 1 1 1 1
E4 21 21 20 18 20 20 20 20
E5 19 24 24 23 24 22 23 23
E6 11 6 6 6 8 7 3 7
E7 17 11 12 12 17 14 14 17
E8 24 14 18 17 18 18 19 19
E9 23 25 25 24 25 25 24 25
E10 22 15 16 14 14 16 16 16
Ell 8 20 14 15 13 12 12 13
E12 13 12 17 16 16 17 18 15
E13 25 23 22 22 22 21 21 21
El4 9 10 9 10 10 9 9 6
E15 3 8 8 8 3 5 5 3
E16 5 3 2 2 2 2 2 2
E17 18 18 21 21 21 24 25 22
E18 12 19 19 19 19 19 15 14
E19 15 13 11 11 11 10 11 11
E20 16 17 15 13 15 15 17 18
E21 7 4 7 7 4 8 7 4
E22 20 22 23 20 23 23 22 24
E23 6 5 5 4 5 4 6 9
E24 14 9 10 9 6 11 10 8
E25 10 16 13 25 12 13 13 12
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TABLE X: SPEARMAN RHO CORRELATION COEFFICIENT FOR ALL TOPSIS METHODS

Conventional

TOPSIS Non-Rule Based Fuzzy FN-TOPSIS
Approach (EM) TOPSIS Approach (EM) Approach (PM)
Equity T-1 T2 z T-1 T2 z
o & 0 & o o 0 o 0 o o & 0 o

E1 0 0 2 4 -1 1 5 25 -4 16 6 36 3 9
E2 3 9 11 -1 1 5 25 11 0 o0 6 36
E3 0 0 0 0 0 0 0 0 0 o0 0
E4 0 0 1 3 9 1 1 1 1 11 1
E5 5 25 5 25 -4 16 5 25 3 9 4 16 -4 16
E6 5 25 5 25 5 25 3 9 4 16 8 64 4 16
E7 6 36 5 25 5 25 0 0 3 9 3 9 0 0
E8 10 100 6 36 7 49 6 36 6 36 5 25 5 25
E9 2 4 2 4 -1 1 2 4 2 4 11 2 4
E10 7 49 6 36 8 64 8 64 6 36 6 36 6 36
E11 -12 144 6 36 749 5 25 -4 16 4 16 5 25
E12 1 1 -4 16 -3 9 3 9 -4 16 5 25 2 4
E13 2 4 3 9 3 3 9 16 4 16 4 16
E14 -1 1 0 o0 -1 1 4001 0 0 0 o0 3 9
E15 5 25 5 25 5 25 0 0 2 4 2 4 0

E16 2 4 3 9 3 9 39 3 9 3 9 39
E17 0 0 39 -3 9 3 9 6 36 749 -4 16
E18 7 49 7 49 749 749 749 3 9 2 4
E19 2 4 16 4 16 4 16 5 25 4 16 4 16
E20 -1 1 1 1 3 9 1 1 1 1 11 2 4
E21 3 9 0 0 0 3 9 4001 0 o0 3 9
E22 2 4 3 9 0 0 3 9 3 9 2 4 -4 16
E23 1 1 11 2 4 11 2 4 0 o0 3 9
E24 5 25 4 16 5 25 8 64 3 9 4 16 6 36
E25 6 36 39 15 225 2 4 3 9 3 9 2 4

0 556 0 326 0 630 0 440 0 323 0 326 0 302

Yo, 0.786 0.861 0.758 0.845 0.872 0.861 0.877

Method

Rankin

Accordigg 6 3-4 7 5 2 3-4 1

Performance
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