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Abstract
Obesity is globally prevalent and highly heritable, but the underlying genetic factors remain
largely elusive. To identify genetic loci for obesity-susceptibility, we examined associations
between body mass index (BMI) and ~2.8 million SNPs in up to 123,865 individuals, with
targeted follow-up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known
obesity-susceptibility loci and identified 18 new loci associated with BMI (P<5×10−8), one of
which includes a copy number variant near GPRC5B. Some loci (MC4R, POMC, SH2B1, BDNF)
map near key hypothalamic regulators of energy balance, and one is near GIPR, an incretin
receptor. Furthermore, genes in other newly-associated loci may provide novel insights into
human body weight regulation.

Obesity is a major and increasingly prevalent risk factor for multiple disorders, including
type 2 diabetes and cardiovascular disease1,2. While lifestyle changes have driven its
prevalence to epidemic proportions, heritability studies provide evidence for a substantial
genetic contribution (h2~40–70%) to obesity risk3,4. BMI is an inexpensive, non-invasive
measure of obesity that predicts the risk of related complications5. Identifying genetic
determinants of BMI could lead to a better understanding of the biological basis of obesity.

Genome-wide association (GWA) studies of BMI have previously identified ten loci with
genome-wide significant (P < 5×10−8) associations in or near FTO, MC4R, TMEM18,
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GNPDA2, BDNF, NEGR1, SH2B1, ETV5, MTCH2, and KCTD156–10. Many of these
genes are expressed or known to act in the central nervous system, highlighting a likely
neuronal component to the predisposition to obesity9. This pattern is consistent with results
in animal models and studies of monogenic human obesity, where neuronal genes,
particularly those expressed in the hypothalamus and involved in regulation of appetite or
energy balance, are known to play a major role in susceptibility to obesity11–13.

The ten previously identified loci account for only a small fraction of the variation in BMI.
Furthermore, power calculations based on the effect sizes of established variants have
suggested that increasing the sample size would likely lead to the discovery of additional
variants9. To identify more loci associated with BMI, we expanded the GIANT (Genetic
Investigation of ANtropometric Traits) consortium GWA meta-analysis to include a total of
249,769 individuals of European ancestry.

Results
Stage 1 GWA studies identify novel loci associated with BMI

We first conducted a meta-analysis of GWA studies of BMI and ~2.8 million imputed or
genotyped SNPs using data from 46 studies including up to 123,865 individuals (Online
Methods, Supplementary Fig. 1 and Supplementary Note). This stage 1 analysis revealed 19
loci associated with BMI at P < 5×10−8 (Table 1, Fig. 1a and Supplementary Table 1). These
19 loci included all ten loci from previous GWA studies of BMI6–10, two loci previously
associated with body weight10 (FAIM2 and SEC16B) and one locus previously associated
with waist circumference14 (near TFAP2B). The remaining six loci, near GPRC5B,
MAP2K5/LBXCOR1, TNNI3K, LRRN6C, FLJ35779/HMGCR, and PRKD1, have not
previously been associated with BMI or other obesity-related traits.

Stage 2 follow-up leads to additional novel loci for BMI
To identify additional BMI-associated loci and to validate the loci that reached genome-
wide significance in stage 1 analyses, we examined SNPs representing 42 independent loci
(including the 19 genome-wide significant loci) with stage 1 P < 5×10−6. Variants were
considered to be independent if the pair-wise linkage disequilibrium (LD; r2) was less than
0.1 and if they were separated by at least 1 Mb. In stage 2, we examined these 42 SNPs in up
to 125,931 additional individuals (79,561 newly genotyped individuals from 16 different
studies and 46,370 individuals from 18 additional studies for which GWA data were
available; Table 1, Supplementary Note, and Online Methods). In a joint analysis of stage 1
and stage 2 results, 32 of the 42 SNPs reached P < 5×10−8. Even after excluding SNPs
within these 32 confirmed BMI loci, we still observed an excess of small P-values compared
to the distribution expected under the null hypothesis (Fig. 1b), suggesting that more BMI
loci remain to be uncovered.

The 32 confirmed associations included all 19 loci with P < 5×10−8 at stage 1, 12 additional
novel loci near RBJ/ADCY3/POMC, QPCTL/GIPR, SLC39A8, TMEM160, FANCL,
CADM2, LRP1B, PTBP2, MTIF3/GTF3A, ZNF608, RPL27A/TUB, NUDT3/HMGA1, and
one locus (NRXN3) previously associated with waist circumference15 (Table 1,

Supplementary Table 1, Supplementary Fig. 1 and 2). In all, our study increased the number
of loci robustly associated with BMI from 10 to 32. Four of the 22 new loci were previously
associated with body weight10 or waist circumference14,15, whereas 18 loci had not
previously associated with any obesity-related trait in the general population. Whilst we
confirmed all loci previously established by large-scale GWA studies for BMI6–10 and waist
circumference14,15, four loci identified by GWA studies for early-onset or adult morbid
obesity16,17 [at NPC1 (rs1805081; P = 0.0025), MAF (rs1424233; P = 0.25), PTER
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(rs10508503; P = 0.64), and TNKS/MSRA (rs473034; P = 0.23)] showed limited or no
evidence of association with BMI in our study.

As expected, the effect sizes of the 18 newly discovered loci are slightly smaller, for a given
minor allele frequency, than those of the previously identified variants (Table 1 and Fig. 1c).
The increased sample size also brought out more signals with low minor allele frequency.
The BMI-increasing allele frequencies for the 18 newly identified variants ranged from 4%
to 87%, covering more of the allele frequency spectrum than previous, smaller GWA studies
of BMI (24%–83%)9,10 (Table 1 and Fig. 1c).

We tested for evidence of non-additive (dominant or recessive) effects, SNP×SNP
interaction effects and heterogeneity by sex or study among the 32 BMI-associated SNPs
(Online Methods). We found no evidence for any such effects (P > 0.001, no significant
results after correcting for multiple testing) (Supplementary Tables 1 and Supplementary
Note).

Impact of 32 confirmed loci on BMI, obesity, body size, and other metabolic traits
Together, the 32 confirmed BMI loci explained 1.45% of the inter-individual variation in
BMI of the stage 2 samples, with the FTO SNP accounting for the largest proportion of the
variance (0.34%) (Table 1). To estimate the cumulative effect of the 32 variants on BMI, we
constructed a genetic-susceptibility score that sums the number of BMI-increasing alleles
weighted by the overall stage 2 effect sizes in the ARIC study (N = 8,120), one of our
largest population-based studies (Online Methods). For each unit increase in the genetic-
susceptibility score, approximately equivalent to one additional risk allele, BMI increased by
0.17 kg/m2, equivalent to a 435–551 g gain in body weight in adults of 160–180 cm in
height. The difference in average BMI between individuals with a high genetic-
susceptibility score (≥38 BMI-increasing alleles, 1.5% (n=124) of the ARIC sample) and
those with a low genetic-susceptibility score (≤21 BMI-increasing alleles, 2.2% (n=175) of
the ARIC sample) was 2.73 kg/m2, equivalent to a 6.99 to 8.85 kg body weight difference in
adults 160–180 cm in height (Fig. 2a). Still, we note that the predictive value for obesity risk
and BMI of the 32 variants combined was modest, although statistically significant (Fig. 2b,
Supplementary Fig. 4). The area under the receiver operating characteristic (ROC) curve for
prediction of risk of obesity (BMI ≥ 30 kg/m2) using age, age2 and sex only was 0.515 (P =
0.023 compared to AUC of 0.50), which increased to 0.575 (P < 10−5) when also the 32
confirmed SNPs were included in the model (Fig. 2b). The area under the ROC for the 32
SNPs only was 0.574 (P < 10−5).

All 32 confirmed BMI-increasing alleles showed directionally consistent effects on risk of
being overweight (BMI ≥25 kg/m2) or obese (≥30 kg/m2) in stage 2 samples, with 30 of 32
variants achieving at least nominally significant associations. The BMI-increasing alleles
increased the odds of overweight by 1.013 to 1.138-fold, and the odds for being obese by
1.016- to 1.203-fold (Supplementary Table 2). In addition, 30 of the 32 loci also showed
directionally consistent effects on the risk of extreme and early-onset obesity in a meta-
analysis of seven case-control studies of adults and children (binomial sign test P =
1.3×10−7) (Supplementary Table 3). The BMI-increasing allele observed in adults also
increased the BMI in children and adolescents with directionally consistent effects observed
for 23 of the 32 SNPs (binomial sign test P = 0.01). Furthermore, in family-based studies,
the BMI-increasing allele was over-transmitted to the obese offspring for 24 of the 32 SNPs
(binomial sign test P = 0.004) (Supplementary Table 3). As these studies in extreme obesity
cases, children and families were relatively small (Nrange = 354 − 15,251) compared to the
overall meta-analyses, their power was likely insufficient to confirm association for all 32
loci. Nevertheless, these results show that the effects are unlikely to reflect population
stratification and that they extend to BMI differences throughout the life course.
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All BMI-increasing alleles were associated with increased body weight, as expected from
the correlation between BMI and body weight (Supplementary Table 2). To confirm an
effect of the loci on adiposity rather than general body size, we tested association with body
fat percentage, which was available in a subset of the stage 2 replication samples (n =
5,359–28,425) (Supplementary Table 2). The BMI-increasing allele showed directionally
consistent effects on body fat percentage at 31 of the 32 confirmed loci (binomial sign test P
= 1.54×10−8) (Supplementary Table 2).

We also examined the association of the BMI loci with metabolic traits (type 2 diabetes18,
fasting glucose, fasting insulin, indices of beta-cell function (HOMA-B) and insulin
resistance (HOMA-IR)19, and blood lipid levels20) and with height (Supplementary Tables 2
and 4). Although many nominal associations are expected because of known correlations
between BMI and most of these traits and because of overlap in samples, several
associations stand out as possible examples of pleiotropic effects of the BMI-associated
variants. Particularly interesting is the variant in the GIPR locus where the BMI-increasing
allele is also associated with increased fasting glucose levels and lower 2-hour glucose
levels (Supplementary Table 4)19,21. The direction of the effect is opposite to what would be
expected due to the correlation between obesity and glucose intolerance, but is consistent
with the suggested roles of GIPR in glucose and energy metabolism (see below)22. Three
loci show strong associations (P < 10−4) with height (MC4R, RBJ/ADCY3/POMC and
MTCH2/NDUFS3). Because BMI is weakly correlated with height (and indeed, the BMI-
associated variants as a group show no consistent effect on height), these associations are
also suggestive of pleiotropy. Interestingly, analogous to the effects of severe mutations in
POMC and MC4R on height and weight23,24, the BMI-increasing alleles of the variants near
these genes were associated with decreased (POMC) and increased (MC4R) height,
respectively (Supplementary Table 2).

Potential functional roles and pathways analyses
Although associated variants typically implicate genomic regions rather than individual
genes, we note that some of the 32 loci include candidate genes with established connections
to obesity. Several of the 10 previously identified loci are located in or near genes that
encode neuronal regulators of appetite or energy balance, including MC4R12,25, BDNF26,
and SH2B111,27. Each of these genes has been tied to obesity, not only in animal models,
but also by rare human variants that disrupt each of these genes and lead to severe
obesity24,28,29. Using the automated literature search programme, Snipper (Online
Methods), we identified various genes within the novel loci with potential biological links to
obesity-susceptibility (Supplementary Note). Among the novel loci, the location of rs713586
near POMC provides further support for a role of neuroendocrine circuits that regulate
energy balance in susceptibility to obesity. POMC encodes several polypeptides including
α-MSH, a ligand of the MC4R gene product30, and rare mutations in POMC also cause
human obesity23,29,31.

In contrast, the locus near GIPR, which encodes a receptor of gastric inhibitory polypeptide
(GIP), suggests a role for peripheral biology in obesity. GIP, which is expressed in the K cell
of the duodenum and intestine, is an incretin hormone that mediates incremental insulin
secretion in response to oral intake of glucose. The variant associated with BMI is in strong
LD (r2 = 0.83) with a missense SNP in GIPR (rs1800437, Glu354Gln) that has recently been
shown to influence the glucose and insulin response to an oral glucose challenge 21.
Although no human phenotype is known to be caused by mutations in GIPR, mice with
disruption of Gipr are resistant to diet-induced obesity32. The association of a variant in
GIPR with BMI suggests that there may be a link between incretins/insulin secretion and
body weight regulation in humans as well.
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To systematically identify biological connections among the genes located near the 32
confirmed SNPs, and to potentially identify new pathways associated with BMI, we
performed pathway-based analyses using MAGENTA33. Specifically, we tested for
enrichment of BMI genetic associations in biological processes or molecular functions that
contain at least one gene from the 32 confirmed BMI loci (Online Methods). Using
annotations from the KEGG, Ingenuity, PANTHER, and Gene Ontology databases, we
found evidence of enrichment for pathways involved in the platelet-derived growth factor
(PDGF) signaling (PANTHER, P = 0.0008, FDR = 0.0061), translation elongation
(PANTHER, P = 0.0008, FDR = 0.0066), hormone or nuclear hormone receptor binding
(Gene Ontology, P < 0.0005, FDR < 0.0085), homeobox transcription (PANTHER, P =
0.0001, FDR = 0.011), regulation of cellular metabolism (Gene Ontology, P = 0.0002, FDR
= 0.031), neurogenesis and neuron differentiation (Gene Ontology, P < 0.0002, FDR <
0.034), protein phosphorylation (PANTHER, P = 0.0001, FDR = 0.045) and numerous other
pathways related to growth, metabolism, immune and neuronal processes (Gene Ontology, P
< 0.002, FDR < 0.046) (Supplementary Table 5).

Identifying possible functional variants
We used data from the 1000 Genomes Project and the HapMap Consortium to explore
whether the 32 confirmed BMI SNPs were in LD (r2 ≥ 0.75) with common missense SNPs
or copy number variants (CNVs) (Online Methods). Non-synonymous variants in LD with
our signals were present in the BDNF, SLC39A8, FLJ35779/HMGCR, QPCTL/GIPR,
MTCH2, ADCY3, and LBXCOR1 genes. In addition, the rs7359397 signal was in LD with
coding variants in several genes including SH2B1, ATNX2L, APOB48R, SULT1A2, and
AC138894.2 (Table 1, Fig. 3, Supplementary Table 6 and Supplementary Fig. 2).
Furthermore, two SNPs tagged common CNVs. The first CNV was previously identified
and is a 45-kb deletion near NEGR19. The second CNV is a 21-kb deletion that lies 50kb
upstream of GPRC5B; the deletion allele is tagged by the T-allele of rs12444979 (r2 = 1)
(Fig. 3). Although the correlations with potentially functional variants does not prove that
these variants are indeed causal, these provide first clues as to which genes and variants at
these loci might be prioritized for fine-mapping and functional follow-up.

As many of the 32 BMI loci harbor multiple genes, we examined whether gene expression
(eQTL) analyses could also direct us to positional candidates. Gene expression data were
available for human brain, lymphocytes, blood, subcutaneous and visceral adipose tissue,
and liver34–36 (Online Methods, Table 1 and Supplementary Table 7). Significant cis-
associations, defined at the tissue-specific level, were observed between 14 BMI-associated
alleles and expression levels (Table 1 and Supplementary Table 7). In several cases, the
BMI-associated SNP was the most significant SNP or explained a substantial proportion of
the association with the most significant SNP for the gene transcript in conditional analyses
(Padj>0.05). These significant associations included NEGR1, ZC3H4, TMEM160, MTCH2,
NDUFS3, GTF3A, ADCY3, APOB48R, SH2B1, TUFM, GPRC5B, IQCK, SLC39A8,
SULT1A1, and SULT1A2 (Table 1 and Supplementary Table 7), making these genes higher
priority candidates within the associated loci. However, we note that some BMI-associated
variants were correlated with the expression of multiple nearby genes, making it difficult to
determine the most relevant gene.

Evidence for the existence of additional associated variants
Because the variants identified by this large study explain only 1.45% of the variance in
BMI (2–4% of genetic variance based on an estimated heritability of 40–70%), we
considered how much the explained phenotypic variance could be increased by including
more SNPs at various degrees of significance in a polygene model using an independent
validation set (Online Methods)37. We found that including SNPs associated with BMI at
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lower significance levels (up to P > 0.05) increased the explained phenotypic variance in
BMI to 2.5%, or 4% to 6% of genetic variance (Fig. 4a). In a separate analysis, we estimated
the total number of independent BMI-associated variants that are likely to exist with similar
effect sizes to the 32 confirmed here (Online Methods)38. Based on the effect size and allele
frequencies of the 32 replicated loci observed in stage 2 and the power to detect association
in the combined stage 1 and stage 2, we estimated that there are 284 (95% CI: 132–510) loci
with similar effect sizes as the currently observed ones, which together would account for
4.5% (95% CI: 3.1–6.8%) of the variation in BMI or 6–11% of the genetic variation (based
on an estimated heritability of 40–70%) (Supplementary Table 8). In order to detect 95% of
these loci, a sample size of approximately 730,000 subjects would be needed (Fig. 4b). This
method does not account for the potential of loci of smaller effect than those identified here
to explain even more of the variance and thus provides an estimated lower bound of
explained variance. These two analyses strongly suggest that larger GWA studies will
continue to identify additional novel associated loci, but also indicate that even extremely
large studies focusing on variants with allele frequencies above 5% will not account for a
large fraction of the genetic contribution to BMI.

We examined whether selecting only a single variant from each locus for follow-up led us to
underestimate the fraction of phenotypic variation explained by the associated loci. To
search for additional independent loci at each of the 32 associated BMI loci, we repeated our
GWA meta-analysis, conditioning on the 32 confirmed SNPs. Using a significance threshold
of 5 × 10−6 for SNPs at known loci, we identified one apparently independent signal at the
MC4R locus; rs7227255 was associated with BMI (P = 6.56 × 10−7) even after conditioning
for the most strongly associated variant near MC4R (rs571312) (Fig. 5). Interestingly,
rs7227255 is in perfect LD (r2 = 1) with a relatively rare MC4R missense variant
(rs2229616, V103I, minor allele frequency = 1.7%) that has been associated with BMI in
two independent meta-analyses39,40. Furthermore, mutations at the MC4R locus are known
to influence early-onset obesity24,41, supporting the notion that allelic heterogeneity may be
a frequent phenomenon in the genetic architecture of obesity.

Discussion
Using a two-stage genome-wide association meta-analysis of up to 249,796 individuals of
European descent, we have identified 18 additional loci that are associated with BMI at
genome-wide significance, bringing the total number of such loci to 32. We estimate that
more than 250 (i.e. 284 predicted loci – 32 confirmed loci) common variant loci with effects
on BMI similar to those described here remain to be discovered, and even larger numbers of
loci with smaller effects. A substantial proportion of these loci should be identifiable
through larger GWA studies and/or by targeted follow-up of top signals selected from our
stage 1 analysis. The latter approach is already being implemented through large-scale
genotyping of samples informative for BMI using a custom array (the Metabochip) designed
to support follow-up of thousands of promising variants in hundreds of thousands of
individuals.

The combined effect on BMI of the associated variants at the 32 loci is modest, and even
when we try to account for as-yet-undiscovered variants with similar properties, we estimate
that these common variant signals account for only 6–11% of the genetic variation in BMI.
There is a strong expectation that additional variance and biology will be explained using
complementary approaches that capture variants not examined in the current study, such as
lower frequency variants and short insertion-deletion polymorphisms. There is good reason
to believe (based on our findings at MC4R and other loci – POMC, BDNF, SH2B1 – which
feature both common and rare variant associations) that a proportion of such low-frequency
and rare causal variation will map to the loci already identified by GWA studies.
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A primary goal of human genetic discovery is to improve understanding of the biology of
conditions such as obesity42. One particularly interesting finding in this regard is the
association between BMI and common variants near GIPR, which may indicate a causal
contribution of variation in postprandial insulin secretion to the development of obesity. In
most cases, the loci identified by the present study harbor few, if any, annotated genes with
clear connections to the biology of weight regulation. This reflects our still limited
understanding of the biology of BMI and obesity-related traits and is in striking contrast
with the results from equivalent studies of certain other traits (such as autoimmune diseases
or lipid levels). Thus, these results suggest that much novel biology remains to be
uncovered, and that GWA studies may provide an important entry point. In particular,
further examination of the associated loci through a combination of resequencing and fine-
mapping to find causal variants, and genomic and experimental studies designed to assign
function, could uncover novel insights into the biology of obesity.

In conclusion, we have performed GWA studies in large samples to identify numerous
genetic loci associated with variation in BMI, a common measure of obesity. Because
current lifestyle interventions are largely ineffective in addressing the challenges of growing
obesity43,44, new insights into biology are critically needed to guide the development and
application of future therapies and interventions.
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Figure 1. Genome-wide association results for the BMI meta-analysis
(a) Manhattan plot showing the significance of association between all SNPs and BMI in the
stage 1 meta-analysis, highlighting SNPs previously reported to show genome-wide
significant association with BMI (blue), weight or waist circumference (green), and the 18
new regions described here (red). The 19 SNPs that reached genome-wide significance at
Stage 1 (13 previously reported and 6 new) are listed in Table 1). (b) Quantile-quantile (Q-
Q) plot of SNPs in stage 1 meta-analysis (black) and after removing any SNPs within 1 Mb
of the 10 previously reported genome-wide significant hits for BMI (blue), after additionally
excluding SNPs from the four loci for waist/weight (green) and after excluding SNPs from
all 32 confirmed loci (red). The plot was abridged at the Y-axis (at P < 10−20) to better
visualise the excess of small P-values after excluding the 32 confirmed loci (Supplementary
Fig. 3 shows full-scale Q-Q plot). The shaded region is the 95% concentration band. (c) Plot
of effect size (in inverse normally transformed units (invBMI)) versus effect allele
frequency of newly identified and previously identified BMI variants after stage 1 + stage 2
analysis; including the 10 previously identified BMI loci (blue), the four previously
identified waist and weight loci (green) and the 18 newly identified BMI loci (blue). The
dotted lines represent the minimum effect sizes that could be identified for a given effect-
allele frequency with 80% (upper line), 50% (middle line), and 10% (lower line) power,
assuming a sample size of 123,000 individuals and a α-level of 5×10−8.
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Figure 2. Combined impact of risk alleles on BMI/obesity
(a) Combined effect of risk alleles on average BMI in the population-based Atherosclerosis
Risk in Communities (ARIC) study (n = 8,120 individuals of European descent). For each
individual, the number of “best guess” replicated (n = 32) risk alleles from imputed data
(0,1,2) per SNP was weighted for their relative effect sizes estimated from the stage 2 data.
Weighted risk alleles were summed for each individual and the overall individual sum was
rounded to the nearest integer to represent the individual’s risk allele score (range 16–44).
Along the x-axis, individuals in each risk allele category are shown (grouped ≤21 and ≥38 at
the extremes), and the mean BMI (+/− SEM) is plotted (y axis on right), with the line
representing the regression of the mean BMI values across the risk-allele scores. The
histogram (y-axis on left) represents the number of individuals in each risk-score category.
(b) The area under the ROC curve (AUC) of two different models predicting the risk of
obesity (BMI = ≥30 kg/m2) in the n = 8,120 genotyped individuals of European descent in
the ARIC Study. Model 1, represented by the solid line, includes age, age2, and sex (AUC =
0.515, P = 0.023 for difference from AUCnull = 0.50). Model 2, represented by the dashed
line, includes age, age2, sex, and the n = 32 confirmed BMI SNPs (AUC = 0.0575, P < 10−5

for difference from AUCnull = 0.50). The difference between both AUCs is significant (P <
10−4).
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Figure 3. Regional plots of selected replicating BMI loci with missense and CNV variants
SNPs are plotted by position on chromosome against association with BMI (−log10 P-value).
The SNP name shown on the plot was the most significant SNP after stage 1 meta-analysis.
Estimated recombination rates (from HapMap) are plotted in cyan to reflect the local LD
structure. The SNPs surrounding the most significant SNP are color-coded to reflect their
LD with this SNP (taken from pairwise r2 values from the HapMap CEU database,
www.hapmap.org). Genes, position of exons, and direction of transcription from UCSC
genome browser (http://genome.ucsc.edu) are noted. Hashmarks represent SNP positions
available in the meta-analysis. (a, b, c) Missense variants noted with their amino acid
change for the gene noted above the plot. (d) Structural haplotypes and BMI association
signal in the GPRC5B region. A 21 kb deletion polymorphism is associated with 4 SNPs
(r2=1.0) that comprise the best haplogroup associating with BMI. Plots were generated using
LocusZoom (http://csg.sph.umich.edu/locuszoom).
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Figure 4. Phenotypic variance explained by common variants
(a) Variance explained is higher when SNPs not reaching genome-wide significance are
included in the prediction model. The y-axis represents the proportion of variance explained
at different P-value thresholds from stage 1 meta-analysis. Results are given for three studies
(RSII, RSIII, QIMR), which were not included in the meta-analysis, after exclusion of all
samples from The Netherlands (for RSII and RSIII) and the United Kingdom (for QIMR)
from the discovery analysis for this sub-analysis. The dotted line represents the weighted
average of the explained variance of three validation sets. (b) Cumulative number of
susceptibility loci expected to be discovered, including those we have already identified and
others that have yet to be detected, by the expected percentage of phenotypic variation
explained and sample size required for a one-stage GWA study assuming a GC correction is
utilized. The projections are based on loci that achieved a significance level of P < 5×10−8 in
the joint analysis of stage 1 and stage 2 and the distribution of their effect sizes in stage 2.
The dotted red line corresponds to the expected phenotypic variance explained by the 22 loci
that are expected to be discovered in a one-stage GWAS with the sample size of stage 1 of
this study.
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Figure 5. Second signal at the MC4R locus contributing to BMI
SNPs are plotted by position in a 1 Mb window of chromosome 18 against association with
BMI ( log10 P-value). Panel (a) highlights the most significant SNP in stage 1 meta-analysis,
panel (b) the most significant SNP after conditional analysis where the model included the
most strongly associated SNP from panel A as a covariate. Estimated recombination rates
(from HapMap) are plotted in cyan to reflect the local LD structure. The SNPs surrounding
the most significant SNP are color-coded to reflect their LD with this SNP (taken from
pairwise r2 values from the HapMap CEU database, www.hapmap.org). Genes, exons, and
direction of transcription from UCSC genome browser (genome.ucsc.edu) are noted.
Hashmarks at the top of the figure represent positions of SNPs in the meta-analysis.
Regional plots were generated using LocusZoom (http://csg.sph.umich.edu/locuszoom).
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