
                             Elsevier Editorial System(tm) for Procedia 

CIRP 

                                  Manuscript Draft 

 

 

Manuscript Number: PROCIR-D-15-00892R2 

 

Title: FRF Estimation through Sweep Milling Force Excitation (SMFE)  

 

Article Type: SI: 7th HPC 2016 

 

Section/Category: SI: 7th HPC 2016 

 

Keywords: Stability; dynamics; FRF; lobes; chatter. 

 

Corresponding Author: Mr. Alex Iglesias,  

 

Corresponding Author's Institution:  

 

First Author: Alex Iglesias 

 

Order of Authors: Alex Iglesias; Jokin Munoa; Christian Ramírez; Joaquim 

Ciurana; Zoltan Dombovari 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/95356562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia CIRP 00 (2016) 000–000 
  

     www.elsevier.com/locate/procedia 

   

 

 

 

2212-8271 © 2016 The Authors. Published by Elsevier B.V. 

Peer-review under responsibility of the International Scientific Committee of 7th HPC 2016 in the person of the Conference Chair Prof. Matthias Putz. 

7th HPC 2016 – CIRP Conference on High Performance Cutting 

FRF Estimation through Sweep Milling Force Excitation (SMFE) 

A. Iglesias
a,
*, J. Munoa

a
, C. Ramírez

a
, J. Ciurana

b
, Z. Dombovari

c 
 

aDynamics and Control, IK4-Ideko, 20870 Elgoibar, Basque Country, Spain 
bDepartment of Mechanical Engineering and Industrial Construction, Universitat de Girona, 17071 Girona, Spain 

cDeparment of Applied Mechanics, Budapest University of Technology and Economics, Budapest H-1521, Hungary  

* Corresponding author. Tel.: +34-943-748-000; fax: +34-943-743-804. E-mail address: aiglesias@ideko.es 

Abstract 

Inaccurate machine dynamics characterization is thought to be one of the main sources of errors in current cutting stability models. For this 

reason, traditional dynamic characterization procedures have been called into question. A new method for frequency response function (FRF) 

estimation using the real milling force as the input excitation is proposed. It consists of exciting the structure through several cutting tests at 

increasing or decreasing spindle speed while measuring its response. This sweep milling force excitation (SMFE) procedure allows obtaining 

the FRF under real cutting conditions. The results obtained have improved stability prediction with respect to conventional impact tests. 
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1. Introduction 

Self-excited (chatter) vibrations are one of the most critical 

problems in machining processes, since they affect machined 

workpiece quality and tool life, and jeopardize machine 

integrity. Stability models are the main tool to predict 

unstable machining and select suitable process parameters. 

However, currently this technique lacks of reliability to apply 

it intensively in the manufacturing industry [1, 2]. 

In heavy-duty milling with roughing conditions, critical 

modes are usually complex shaped, with many different 

machine components and assembly joints that contribute to 

define the dynamic characteristics of the mechanical system. 

Therefore, stability lobes cannot be used as effectively as in 

aluminum milling due to the resulting inaccuracies [1, 2]. The 

source of inaccuracies is usually attributed to nonlinearities of 

the process or dynamic parameter identification errors [2, 3]. 

Nowadays, impact hammer or shaker testing are the usual 

methods for dynamic parameter identification in industrial 

environments. These traditional techniques to measure the 

FRF are doubtful since the nonlinear response cannot be 

captured through impulse response with hardly repeatable 

force levels in a steady non-operating machine [4]. 

Alternative experimental methods could improve 

significantly model input data quality and therefore enhance 

chatter prediction model reliability [5]. 

The real cutting forces generated by the cutting process 

have been used as input excitation for FRF estimation. Two 

main approaches have been followed. Firstly, discrete 

frequency FRF points have been obtained at different cutting 

speeds, measuring the response at the corresponding speed 

[6]. Secondly, in order to avoid the harmonic content problem 

of the cutting forces, specially designed workpieces with 

randomly distributed slots [7, 8] or variable thickness thin 

walls [9] have been machined to perform this kind of testing. 

This way a random excitation of the system was achieved. 

Both approaches showed significant changes in system 

dynamic parameters in comparison with the standard hammer 

test. 

In this work the actual milling force is used as the input 

excitation to estimate the FRF. The difference with previous 

works is that, in this case, the cutting speed is steadily 

decreased or increased in order to perform a frequency sweep 
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excitation. Thus, the frequency range of interest is excited in a 

continuous way. Moreover, a rotary dynamometric tool holder 

is used to measure cutting forces. The advantage of the rotary 

dynamometric tool holder is that the cutting span is not limited 

by a dynamometric plate. This speeds up the process and 

makes the procedure feasible for dynamic parameter 

estimation in an industrial workshop. 

2. FRF estimation procedure: SMFE method 

Previous researches using the real cutting force as input 

excitation for FRF estimation tried to avoid the typical 

harmonic content of the milling force. However, in this work 

this harmonic content will be the input excitation used to 

obtain the FRF through the sweep milling force excitation 

(SMFE) method, analyzing the frequency response function in 

an analogue way as a chirp excitation case. 

2.1. Selection of the excitation parameters 

First of all, the frequency range of interest is defined. The 

main modes involved in the process stability must be within 

this range, in order to perform a complete dynamic 

characterization. The milling rotating speed is varied 

continuously over a defined range, in such way that the tooth 

passing frequency and/or its first harmonics are swept over 

the desired frequency range. These harmonics should have 

high energy content in order to apply a strong excitation. An 

interrupted cutting process, with a small width of cut, is 

therefore used for this purpose. Fig. 1 shows the spectrogram 

of two different tools when performing the SMFE method. 

The main tooth passing harmonic  is swept from the 

beginning to the end of the frequency range of interest (12-

42Hz in this case). This explains the different spindle speed 

range selected for each tool. Depending on the number of 

inserts of each tool, there are other harmonics exciting the 

frequency range of interest partially. 

 

 

Fig. 1. Spectrogram of the vibration acceleration signal in the SMFE method 

for 2 different tools: (a) D=125mm, Z=6; (b) D=32, Z=1. : tooth passing 

frequency; g: rotation frequency. 

2.2. Test plan definition 

The frequency response function Φ(f) relates the input 

excitation and the output response and can be calculated by 

different methods. In this case the Φ1 estimate will be used: 
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where GrF is the cross spectrum between the output r and 

the input F and GFF is the power spectrum of the input F. 

According to previous works [10], single-block DFT 

computation along the entire sweep data collection leads to a 

good FRF estimation. The cross and power spectra are 

computed as: 
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where Na is the number of averages.  

The cutting force is divided into three spatial components. 

The system is regarded as a MIMO system, where multiple 

inputs and multiple outputs are produced with each cutting 

speed sweep. 
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As there are nine unknowns to solve, at least three different 

cutting tests must be performed in order to solve the system. 

If a 90º lead angle tool is used, the axial force Fz can be 

neglected and a 2-input 2-output system is obtained. In this 

case, at least two cutting tests are needed to obtain as many 

equations as unknown terms [11]. 

It has to be considered that the different cutting tests must 

be independent from each other, modifying the ratio of 

amplitudes or phases between the different force terms Fx, Fy 

and Fz. When two dimensions are considered, an easy way to 

accomplish this condition is changing the cutting strategy 

from down-milling to up-milling direction, whereas for three 

directions, at least three cutting tests are needed. A good 

option for this case is performing cutting tests in down-

milling, up-milling and central-milling, as defined in Fig. 2: 

 

Fig. 2. Cutting tests outline. Three different cutting tests are performed in 

order to obtain the 9 terms of [] matrix: down-milling cut, up-milling cut 

and central-milling cut. 

The frequency response functions will be calculated from 

the cutting tests. Therefore, the force must be measured by 
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means of a dynamometric plate or a dynamometric tool 

holder, whereas the response could be measured by means of 

accelerometers. Initial value time domain simulations are 

useful in order to define the parameters of cutting tests to 

perform. 

2.3. Test performance and post-processing 

The cutting test plan for 3-axis system defined in section 

2.2 is performed and the measured data post-processed, 

solving the system of 9 equations and 9 unknowns of the 3x3 

[] matrix: 
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                                                      (4) 

A higher number of tests could be carried out in order to 

have a redundant system and increase the accuracy of the 

solution. 

2.4. Measurement quality check 

It is important to check the following indicators, in order to 

make sure that the [] matrix obtained is reliable. 

• Condition number. 

When the set of equations to solve the system is built, it is 

important to check the conditioning of the coefficient matrix 

in order to make sure that the system is completely 

independent. A low condition number will be proof of a well-

conditioned matrix. 

 Coherence function. 

The coherence function, which gives an estimate of the 

quality of the measurement by analyzing the repeatability of 

the performed averages, is defined as: 
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3. Experimental tests 

Real SMFE experiments have been carried out on the 3+2 

axes SV milling machine. The forces in the three axes x, y and 

z have been measured with a dynamometric tool holder 

(Kistler 9124B1111) and a dynamometric plate (Kistler 

9257BA) attached to the machined workpiece, whereas the 

response in the spindle head has been measured by means of 

three accelerometers. Every cutting test has an approximate 

duration of 30s and three different cutting tests are performed 

in order to completely define the matrix in equation (4). 

Finally, every test is repeated four times and frequency 

averaging is carried out in order to minimize noise. 

Two different tools have been used for SMFE 

implementation. The purpose was to test different ratios 

between the applied cutting forces in the Cartesian axes, due 

to their different insert geometry (Table 1). 

The cutting conditions used for each type of tool vary, due 

to their different diameter to number of teeth D/Z ratio, in 

order to excite the same frequency region (Table 2). 

Table 1. Tools used for SMFE experimental tests. 

Tool Picture 
Diameter 

(D) 

Number 

of inserts 

Lead 

angle () 
Tool reference 

1 

 

125 2 45 
Sandvik R245-

080Q27-12M 

2 

 

125 6 0-11 

Hitachi 

GFH476 

ASF5125RM 

Table 2. Cutting conditions for SMFE. 

Tool 
N range 

(rpm) 

ap 

(mm) 

fz 

(mm/z) 

Width of 

cut (%D) 
Cutting direction 

1 1260-360 1 0.2 12.5 

x- Down-milling 

x- Up-milling 

x- Central-milling 

2 400-120 0.2 0.2 12.5 

x- Down-milling 

x- Up-milling 

x- Central-milling 

The FRFs obtained through the SMFE method considering 

simultaneously the signals from both tools at the same time 

have been compared to standard hammer and shaker tests (see 

Fig. 3). In x direction, the hammer FRF presents lower 

dynamic stiffness and a single peak, in opposition to the two 

peaks shown in the other two FRFs. In y direction, the FRF 

through the SMFE method differs slightly from the FRFs 

obtained through traditional methods. 

Fig. 3: Comparison of the SMFE FRFs with traditionally obtained FRFs: 

SMFE FRF with tool 1&2, hammer FRF and shaker FRF. a) xx; b) yy, c) 

Coherencex; d) Coherencey. 

The coherence of the FRF is slightly poorer than typical 

hammer or shaker coherences but it is still acceptable in the 

frequency range of interest, as it can be appreciated in Fig. 3c 

and Fig. 3d. 

The theoretical stability lobes can be calculated according 

to the zeroth order approximation (ZOA) model [12]. The 

conditions of the cutting process that has been simulated are 
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shown in Table 3. With these conditions the first lobe related 

to the low frequency modes limits the stability and therefore, 

it is suitable to compare the new FRF estimation method 

developed versus the traditional methods to obtain the FRF. 

Table 3. Cutting parameters for stability lobe calculation. 

Tool 

Diameter 

(D) 

Number of 

flutes (Z) 
Picture 

Lead angle 

() 
Tool reference 

125mm 12 

 

45 
Sandvik R245-

125Q40-12M 

Cutting conditions & cutting force coefficients 

Width of cut  

(mm) 

fZ 

(mm/z) 

Feed 

direction 

N 

 (rpm) 

Kt 

(N/mm2) 

Kr  

(1) 

Ka 

(1) 

118mm 

(Down-

milling) 

0.2 x- 

180-200-

250-300-

360 

1889.1 0.411 0.193 

Real cutting tests were carried out under the same cutting 

conditions. The comparison of the theoretical and 

experimental results is shown in Fig. 4. The lobes calculated 

by means of the traditional FRF estimation procedures 

overestimate machine’s cutting capability, whereas the lobes 

calculated by means of the SMFE FRF match reasonably well 

with the experimental tests. The average experimental vs. 

simulation error in depth of cut a with the lobes obtained from 

the SMFE FRFs is 34%, whereas in the lobes obtained from 

the standard FRFs the average error grows up to 51%. 

Regarding chatter frequency fc error, the average error from 

the SMFE FRF prediction is 5.4%, whereas the average error 

from the hammer FRF prediction is 5.6%. 

Fig. 4. Comparison of lobes obtained from SMFE FRFs with lobes obtained 

from standard FRFs: lobe from SMFE FRF with tool 1&2, lobe from hammer 

FRF and lobe from shaker FRF. a) chatter frequency fc; b) depth of cut a. 

Experimental stable tests (green circles) and unstable tests (red crosses). 

In conclusion, these experiments validate the expected 

higher accuracy of the new dynamic characterization method 

developed in this work (SMFE method). 

4. Conclusions 

A new simple and fast methodology for FRF estimation 

using the milling force itself as input excitation (SMFE 

method) has been developed. This method provides a closer 

excitation to the real in-process conditions than traditional 

FRF estimation methods like hammer or shaker tests. The 

methodology consists of exciting the structure through several 

independent interrupted milling cuts, with proportional 

ascending or descending cutting speed, in order to perform a 

frequency sweep over the frequency range of interest by 

means of the cutting harmonics. 

The obtained FRFs through SMFE method do not differ 

dramatically from traditional FRF methods (hammer and 

shaker). However these slight differences may have a 

considerable effect on stability lobes. Thus stability lobes 

calculated through SMFE FRFs show a more restrictive 

cutting limit that matches the experimental tests more 

accurately, although a slight deviation with respect to the 

experimental tests still remains. 
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1. Introduction 

Self-excited (chatter) vibrations are one of the most critical 

problems in machining processes, since they affect machined 

workpiece quality and tool life, and jeopardize machine 

integrity. Stability models are the main tool to predict 

unstable machining and select suitable process parameters. 

However, currently this technique lacks of reliability to apply 

it intensively in the manufacturing industry [1, 2]. 

In heavy-duty milling with roughing conditions, critical 

modes are usually complex shaped, with many different 

machine components and assembly joints that contribute to 

define the dynamic characteristics of the mechanical system. 

Therefore, stability lobes cannot be used as effectively as in 

aluminum milling due to the resulting inaccuracies [1, 2]. The 

source of inaccuracies is usually attributed to nonlinearities of 

the process or dynamic parameter identification errors [2, 3]. 

Nowadays, impact hammer or shaker testing are the usual 

methods for dynamic parameter identification in industrial 

environments. These traditional techniques to measure the 

FRF are doubtful since the nonlinear response cannot be 

captured through impulse response with hardly repeatable 

force levels in a steady non-operating machine [4]. 

Alternative experimental methods could improve 

significantly model input data quality and therefore enhance 

chatter prediction model reliability [5]. 

The real cutting forces generated by the cutting process 

have been used as input excitation for FRF estimation. Two 

main approaches have been followed. Firstly, discrete 

frequency FRF points have been obtained at different cutting 

speeds, measuring the response at the corresponding speed 

[6]. Secondly, in order to avoid the harmonic content problem 

of the cutting forces, specially designed workpieces with 

randomly distributed slots [7, 8] or variable thickness thin 

walls [9] have been machined to perform this kind of testing. 

This way a random excitation of the system was achieved. 

Both approaches showed significant changes in system 

dynamic parameters in comparison with the standard hammer 

test. 

In this work the actual milling force is used as the input 

excitation to estimate the FRF. The difference with previous 

works is that, in this case, the cutting speed is steadily 

decreased or increased in order to perform a frequency sweep 
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excitation. Thus, the frequency range of interest is excited in a 

continuous way. Moreover, a rotary dynamometric tool holder 

is used to measure cutting forces. The advantage of the rotary 

dynamometric tool holder is that the cutting span is not limited 

by a dynamometric plate. This speeds up the process and 

makes the procedure feasible for dynamic parameter 

estimation in an industrial workshop. 

2. FRF estimation procedure: SMFE method 

Previous researches using the real cutting force as input 

excitation for FRF estimation tried to avoid the typical 

harmonic content of the milling force. However, in this work 

this harmonic content will be the input excitation used to 

obtain the FRF through the sweep milling force excitation 

(SMFE) method, analyzing the frequency response function in 

an analogue way as a chirp excitation case. 

2.1. Selection of the excitation parameters 

First of all, the frequency range of interest is defined. The 

main modes involved in the process stability must be within 

this range, in order to perform a complete dynamic 

characterization. The milling rotating speed is varied 

continuously over a defined range, in such way that the tooth 

passing frequency and/or its first harmonics are swept over 

the desired frequency range. These harmonics should have 

high energy content in order to apply a strong excitation. An 

interrupted cutting process, with a small width of cut, is 

therefore used for this purpose. Fig. 1 shows the spectrogram 

of two different tools when performing the SMFE method. 

The main tooth passing harmonic  is swept from the 

beginning to the end of the frequency range of interest (12-

42Hz in this case). This explains the different spindle speed 

range selected for each tool. Depending on the number of 

inserts of each tool, there are other harmonics exciting the 

frequency range of interest partially. 

 

 

Fig. 1. Spectrogram of the vibration acceleration signal in the SMFE method 

for 2 different tools: (a) D=125mm, Z=6; (b) D=32, Z=1. : tooth passing 

frequency; g: rotation frequency. 

2.2. Test plan definition 

The frequency response function Φ(f) relates the input 

excitation and the output response and can be calculated by 

different methods. In this case the Φ1 estimate will be used: 
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where GrF is the cross spectrum between the output r and 

the input F and GFF is the power spectrum of the input F. 

According to previous works [10], single-block DFT 

computation along the entire sweep data collection leads to a 

good FRF estimation. The cross and power spectra are 

computed as: 
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where Na is the number of averages.  

The cutting force is divided into three spatial components. 

The system is regarded as a MIMO system, where multiple 

inputs and multiple outputs are produced with each cutting 

speed sweep. 
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As there are nine unknowns to solve, at least three different 

cutting tests must be performed in order to solve the system. 

If a 90º lead angle tool is used, the axial force Fz can be 

neglected and a 2-input 2-output system is obtained. In this 

case, at least two cutting tests are needed to obtain as many 

equations as unknown terms [11]. 

It has to be considered that the different cutting tests must 

be independent from each other, modifying the ratio of 

amplitudes or phases between the different force terms Fx, Fy 

and Fz. When two dimensions are considered, an easy way to 

accomplish this condition is changing the cutting strategy 

from down-milling to up-milling direction, whereas for three 

directions, at least three cutting tests are needed. A good 

option for this case is performing cutting tests in down-

milling, up-milling and central-milling, as defined in Fig. 2: 

 

Fig. 2. Cutting tests outline. Three different cutting tests are performed in 

order to obtain the 9 terms of [] matrix: down-milling cut, up-milling cut 

and central-milling cut. 

The frequency response functions will be calculated from 

the cutting tests. Therefore, the force must be measured by 
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means of a dynamometric plate or a dynamometric tool 

holder, whereas the response could be measured by means of 

accelerometers. Initial value time domain simulations are 

useful in order to define the parameters of cutting tests to 

perform. 

2.3. Test performance and post-processing 

The cutting test plan for 3-axis system defined in section 

2.2 is performed and the measured data post-processed, 

solving the system of 9 equations and 9 unknowns of the 3x3 

[] matrix: 
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A higher number of tests could be carried out in order to 

have a redundant system and increase the accuracy of the 

solution. 

2.4. Measurement quality check 

It is important to check the following indicators, in order to 

make sure that the [] matrix obtained is reliable. 

• Condition number. 

When the set of equations to solve the system is built, it is 

important to check the conditioning of the coefficient matrix 

in order to make sure that the system is completely 

independent. A low condition number will be proof of a well-

conditioned matrix. 

 Coherence function. 

The coherence function, which gives an estimate of the 

quality of the measurement by analyzing the repeatability of 

the performed averages, is defined as: 
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3. Experimental tests 

Real SMFE experiments have been carried out on the 3+2 

axes SV milling machine. The forces in the three axes x, y and 

z have been measured with a dynamometric tool holder 

(Kistler 9124B1111) and a dynamometric plate (Kistler 

9257BA) attached to the machined workpiece, whereas the 

response in the spindle head has been measured by means of 

three accelerometers. Every cutting test has an approximate 

duration of 30s and three different cutting tests are performed 

in order to completely define the matrix in equation (4). 

Finally, every test is repeated four times and frequency 

averaging is carried out in order to minimize noise. 

Two different tools have been used for SMFE 

implementation. The purpose was to test different ratios 

between the applied cutting forces in the Cartesian axes, due 

to their different insert geometry (Table 1). 

The cutting conditions used for each type of tool vary, due 

to their different diameter to number of teeth D/Z ratio, in 

order to excite the same frequency region (Table 2). 

Table 1. Tools used for SMFE experimental tests. 

Tool Picture 
Diameter 

(D) 

Number 

of inserts 

Lead 

angle () 
Tool reference 

1 

 

125 2 45 
Sandvik R245-

080Q27-12M 

2 

 

125 6 0-11 

Hitachi 

GFH476 

ASF5125RM 

Table 2. Cutting conditions for SMFE. 

Tool 
N range 

(rpm) 

ap 

(mm) 

fz 

(mm/z) 

Width of 

cut (%D) 
Cutting direction 

1 1260-360 1 0.2 12.5 

x- Down-milling 

x- Up-milling 

x- Central-milling 

2 400-120 0.2 0.2 12.5 

x- Down-milling 

x- Up-milling 

x- Central-milling 

The FRFs obtained through the SMFE method considering 

simultaneously the signals from both tools at the same time 

have been compared to standard hammer and shaker tests (see 

Fig. 3). In x direction, the hammer FRF presents lower 

dynamic stiffness and a single peak, in opposition to the two 

peaks shown in the other two FRFs. In y direction, the FRF 

through the SMFE method differs slightly from the FRFs 

obtained through traditional methods. 

Fig. 3: Comparison of the SMFE FRFs with traditionally obtained FRFs: 

SMFE FRF with tool 1&2, hammer FRF and shaker FRF. a) xx; b) yy, c) 

Coherencex; d) Coherencey. 

The coherence of the FRF is slightly poorer than typical 

hammer or shaker coherences but it is still acceptable in the 

frequency range of interest, as it can be appreciated in Fig. 3c 

and Fig. 3d. 

The theoretical stability lobes can be calculated according 

to the zeroth order approximation (ZOA) model [12]. The 

conditions of the cutting process that has been simulated are 
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shown in Table 3. With these conditions the first lobe related 

to the low frequency modes limits the stability and therefore, 

it is suitable to compare the new FRF estimation method 

developed versus the traditional methods to obtain the FRF. 

Table 3. Cutting parameters for stability lobe calculation. 

Tool 

Diameter 

(D) 

Number of 

flutes (Z) 
Picture 

Lead angle 

() 
Tool reference 

125mm 12 

 

45 
Sandvik R245-

125Q40-12M 

Cutting conditions & cutting force coefficients 

Width of cut  

(mm) 

fZ 

(mm/z) 

Feed 

direction 

N 

 (rpm) 

Kt 

(N/mm2) 

Kr  

(1) 

Ka 

(1) 

118mm 

(Down-

milling) 

0.2 x- 

180-200-

250-300-

360 

1889.1 0.411 0.193 

Real cutting tests were carried out under the same cutting 

conditions. The comparison of the theoretical and 

experimental results is shown in Fig. 4. The lobes calculated 

by means of the traditional FRF estimation procedures 

overestimate machine’s cutting capability, whereas the lobes 

calculated by means of the SMFE FRF match reasonably well 

with the experimental tests. The average experimental vs. 

simulation error in depth of cut a with the lobes obtained from 

the SMFE FRFs is 34%, whereas in the lobes obtained from 

the standard FRFs the average error grows up to 51%. 

Regarding chatter frequency fc error, the average error from 

the SMFE FRF prediction is 5.4%, whereas the average error 

from the hammer FRF prediction is 5.6%. 

Fig. 4. Comparison of lobes obtained from SMFE FRFs with lobes obtained 

from standard FRFs: lobe from SMFE FRF with tool 1&2, lobe from hammer 

FRF and lobe from shaker FRF. a) chatter frequency fc; b) depth of cut a. 

Experimental stable tests (green circles) and unstable tests (red crosses). 

In conclusion, these experiments validate the expected 

higher accuracy of the new dynamic characterization method 

developed in this work (SMFE method). 

4. Conclusions 

A new simple and fast methodology for FRF estimation 

using the milling force itself as input excitation (SMFE 

method) has been developed. This method provides a closer 

excitation to the real in-process conditions than traditional 

FRF estimation methods like hammer or shaker tests. The 

methodology consists of exciting the structure through several 

independent interrupted milling cuts, with proportional 

ascending or descending cutting speed, in order to perform a 

frequency sweep over the frequency range of interest by 

means of the cutting harmonics. 

The obtained FRFs through SMFE method do not differ 

dramatically from traditional FRF methods (hammer and 

shaker). However these slight differences may have a 

considerable effect on stability lobes. Thus stability lobes 

calculated through SMFE FRFs show a more restrictive 

cutting limit that matches the experimental tests more 

accurately, although a slight deviation with respect to the 

experimental tests still remains. 
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as tools 1 and 2. Please clarify conditions. 
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The lead angle is near 0 degrees, but it varies according to the depth of cut due to the 
shape of the insert. The variable range has been written in the table “0-11º”. This tool uses 
high feed inserts which have very small lead angle. This lead angle grows slightly as depth 
of cut is increased. 

 
Is a in table 2 the width of cut or depth of cut?, both are very small for milling operations with 125 
mm diameter tools! 
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chatter while doing the dynamic characterisation tests. It is also remarkable that Tool 2 is a 
high feed tool and the maximum depth of cut of its inserts is only  2mm. 
This methodology assumes that a single dynamic characterisation, with specific cutting 
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used for the FRF estimation value is not influential. 

 
Are the coefficients K1, Kr, Kf in table 3 related to the other parameters mentioned in the paper or 
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They stand for the cutting force coefficients. The title “cutting force coefficients” has been 
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In table 3 is the "Engagement" the width of cut? "down milling" for 118/125 is almost irrelevant. 
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depth of cut and spindle speed combination. 
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Table 1 describes used the tool characteristics for the SMFE method test whereas Table 2 
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1,2 and 3 stands for the different cutting tests used to apply the SMFE method. They have 
been substituted by “Cutting test #1”, “Cutting test #2” and “Cutting test #3” in Fig. 2. 
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The results presented in Fig. 3 and 4 are unfortunately not definite. The estimated FRFs seem to 
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functions look like? 

 
Considering that the SMFE method relies on experimental inputs obtained with the 
operating machine, the noise level does not seem so high to the authors. It is, of course, 
higher than in the FRFs obtained through traditional methods in idle conditions but the 
signal to noise ratio is sufficiently high as it can be deduced from the coherence graphs, 
which have been added now to Fig. 3. FRF in y direction seems very noisy, but it has this 
shape due to the high number of modes of the machine at these low frequencies. 

 
Your experiments are a little confusing. We can get better FRF estimation due to the proper 
linearization, but you used another tool for the stability tests than for the FRF estimation, implying 
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can affect the dynamic behaviour. Some examples of these effects are the bearing preload 
change due to centrifugal forces in rotation, tool and workpiece contact effect, process 
damping, machine control effect… The cutting force itself could also introduce some kind of 
non-linearity through the cutting force coefficients and, as the reviewer claims, variable 
FRFs with the cutting force level should be considered in that case. For the sake of 
simplification, this cutting force dependency is ignored and a constant FRF is assumed. 
Therefore, it is also assumed that the FRF obtained through the SMFE method can be 
extrapolated to different tool geometries from those used for characterisation. This is a 
crucial assumption, since the great advantage of this method is the possibility of using a 
single FRF characterisation for every milling tool, since low frequency structural modes are 
independent from the used tool. 
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