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Background and aims: Internet addiction (IA) was recently defined as a disorder tagging both the impulse control and
the reward systems. Specifically, inhibitory deficits and reward bias were considered highly relevant in IA. This
research aims to examine the electrophysiological correlates and autonomic activity [skin conductance response
(SCR) and heart rate] in two groups of young subjects (N= 25), with high or low IA profile [tested by the Internet
Addiction Test (IAT)], with specific reference to gambling behavior.Methods: Oscillatory brain activity (delta, theta,
alpha, beta, and gamma) and autonomic and behavioral measures [response times (RTs) and error rates (ERs)] were
acquired during the performance of a Go/NoGo task in response to high-rewarding (online gambling videos and video
games) or neutral stimuli. Results:A better performance (reduced ERs and reduced RTs) was revealed for high IAT in
the case of NoGo trials representing rewarding cues (inhibitory control condition), probably due to a “gain effect”
induced by the rewarding condition. In addition, we also observed for NoGo trials related to gambling and video
games stimuli that (a) increased low-frequency band (delta and theta) and SCR and (b) a specific lateralization effect
(more left-side activity) delta and theta in high IAT. Discussion: Both inhibitory control deficits and reward bias
effect were considered to explain IA.
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INTRODUCTION

Addiction refers to a process whereby a behavior, which can
function both to produce pleasure and provide escape from
internal discomfort, and is employed in a pattern character-
ized by (a) recurrent failure to control the behavior and (b)
continuation of the behavior, despite significant nega-
tive consequences (Goodman, 1990). Two main cognitive
functions have been emphasized as major components
in the development and persistence of addictive states
(e.g., Luijten et al., 2014). Indeed, the incentive salience
properties of the addiction-related stimuli as well as a deficit
in inhibitory skills are core mechanisms of addictive behav-
ior (the dual-process model; Field & Cox, 2008; Wiers et al.,
2007). On the one hand, the phenomenon of increased
salience may be due to an impaired mechanism of reward,
able to induce a sort of “reward bias” for potential rewarding
cues, such as substance, but also video games or gambling
stimuli (Park & Lee, 2011; Yen et al., 2012). Reward
motivation significantly correlates with drug addiction
(Balconi, Finocchiaro, & Canavesio, 2014; Knyazev,
2010). The reward deficit syndrome was proposed as a
possible contributing factor to the development of sub-
stance abuse disorders (Cao, Su, Liu, & Gao, 2007), since

addiction may be related to greater receptiveness to the
reinforcing effect of drugs and other similar rewarding
stimuli (Logan, Cowan, & Davis, 1984; Vitaro, Arseneault,
& Tremblay, 1999). On the other hand, altered inhibitory
skills have led authors to consider addiction as an impulse
control disorder (Dell’Osso et al., 2008; Dong, Lu, Zhou, &
Zhao, 2010; Shapira, Goldsmith, Keck, Khosla, & McElroy,
2000).

Response inhibition, as assessed through Go/NoGo
tasks, can be defined as the act of withholding or terminating
a behavioral response, and is considered to be governed by a
cognitive inhibitory process (Logan et al., 1984). A strong
relationship between reduced impulse control and addictive
behaviors, such as pathological gambling, substance, and
alcohol abuse, was evidenced (Barnes, Welte, Hoffman, &
Dintcheff, 2005; Moeller et al., 2001; Vitaro et al., 1999).
Accordingly, it was shown in substance abusers [heroin
addicts (Yang, Xiong, Kojic, & Cynader, 2009), cocaine
users (Waters, Marhe, & Franken, 2012), alcohol users
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(Noël et al., 2007), and tobacco smokers] that they (a) show
a drug cue-reactivity, manifested by a processing enhance-
ment in the brain striatal regions related to motivation and
reward and (b) typically fail to inhibit drug-oriented behav-
ior even when the consequences are deleterious.

Addictions “without substances,” also called behavioral
addictions [like gambling or Internet addiction (IA)] show
similar patterns (Luijten et al., 2014). In this paper, we focus
on IA, which was classified as one category of behavioral
addiction, representing a specific impairment that involves
online and/or offline computer misuse (Grant, Potenza,
Weinstein, & Gorelick, 2010; Han, Lyoo, & Renshaw,
2012; Zhou et al., 2011). At the neurocognitive level, it is
suggested that the “bad balance” between these two com-
ponents, that is, reward sensitivity and impulsiveness, may
have an important role to play in explaining IA (Caseras,
Avila, & Torrubia, 2003). IA was considered as an impulse
disorder or at least related to impulse control disorder (Beard
& Wolf, 2001; Dawe & Loxton, 2004). There is consistent
evidence at this respect both at the structural and functional
levels (see Kuss & Griffiths, 2012 for review). Current data
indicate that, compared with controls, brain regions associ-
ated with reward, addiction, craving, and emotion [such as
nucleus accumbens, amygdala, insula, and orbitofrontal
cortex (OFC)] are increasingly activated during game play
and presentation of game cues while furthermore, Internet
addicts were found to have decreased gray matter volume in
regions mediating cognitive control [such as supplementary
motor area and dorsolateral prefrontal cortex (DLPFC)]. As
impairment in inhibitory control is classically considered as
the cornerstone of addictive states, most electroencephalo-
gram (EEG) studies in IA focused on the reflective system,
while concerning the automatic-affective system, it has to be
underlined that current data remain very preliminary due to
the small number of available studies (see D’Hondt &
Maurage, 2017 for review).

Brain imaging studies also stressed the importance of the
prefrontal cortex (PFC) in addictive behaviors mainly
through its involvement in a higher-order executive function
as well as its regulatory function on limbic rewarding
regions (Balconi & Finocchiaro, 2015; Baler & Volkow,
2006; Bechara, 2005; Chen et al., 2015; Dawe & Loxton,
2004; Knyazev, 2010). More specifically, addictive states
were defined by (a) hyperactivity in the emotional system,
mediated by frontal and medial structures, such as OFC,
anterior cingulate cortex, and amygdala, which exaggerated
the rewarding impact of external reinforcing cues; (b)
anomalous brain activity in DLPFC, which predicted the
long-term consequences of a given action (Balconi &
Finocchiaro, 2015); and (c) dysfunctions in the mesolimbic
dopaminergic reward system, which can support condi-
tioned attention allocation for dependence-associated
stimuli rendering them especially salient (Adinoff, 2004),
as already reported in substance abusers and impulsive
individuals (Adinoff, 2004; Limbrick-Oldfield, van Holst,
& Clark, 2013; Scheres, Milham, Knutson, & Castellanos,
2007). In this view, PFC was implicated in reward bias and
whereas the left PFC was shown to be more implicated in
approach-related and rewarding conditions, the right PFC
was found to be more involved in withdrawal-related moti-
vations and inhibitory mechanisms (Balconi & Mazza,

2009, 2010; Davidson, 2004; Harmon-Jones, 2004). Both
approach and withdrawal motivations are paralleled by the
reward and punishment contingencies, as shown in a recent
EEG study, which revealed a specific more left (reward-
related) or right (punishment-related) higher brain responsive-
ness (Balconi, Brambilla, & Falbo, 2009a; Balconi, Falbo, &
Conte, 2012).

However, with specific reference to IA, limited studies
explored the relationship between addiction, impulsivity,
and brain activity by focusing on EEG (Kamarajan et al.,
2004). Ample range of brain oscillations were previously
used to test brain correlates of different types of addiction
(Balconi & Finocchiaro, 2015; Balconi, Finocchiaro, &
Canavesio, 2015; Finocchiaro & Balconi, 2015). Specifi-
cally, delta band responses were assumed to mediate signal
detection and decision-making (Başar, Başar-Eroğlu,
Karakaş, & Schürmann, 1999, 2001; Schürmann, Başar-
Eroglu, Kolev, & Başar, 2001), whereas theta functions
were mainly attributed to different cognitive processes, such
as inhibitory mechanisms (Başar, Başar-Eroğlu, et al., 2001;
Harper, Malone, & Bernat, 2014; Klimesch, Doppelmayr,
Stadler, et al., 2001; Klimesch, Doppelmayr, Yonelinas,
et al., 2001). It was also found that in some specific
addiction behavior (i.e., alcohol dependence), patients
showed significant reduction in delta and theta power during
NoGo trials as compared with controls. This reduction was
prominent at the frontal region and suggests a deficient
inhibitory control and information-processing mechanism.
Furthermore, both higher frequency bands (i.e., beta and
gamma) have been found to be associated with response
inhibition. Two EEG studies assessed reflective system in
IA about online computer gaming by investigating resting-
state activities, which reflect non-task-related cognitive
mechanisms (Andrews-Hanna, Reidler, Huang, & Buckner,
2010; Greicius & Menon, 2004). A first study showed a
decreased absolute power in the beta band (Choi et al.,
2013) in IA, previously related with task-related impulsivity
observed in attention-deficit hyperactivity disorder patients
(Snyder & Hall, 2006). IA also presented increased absolute
gamma band power. Moreover, changes in gamma band
have also been associated with impulsivity (Barry, 2009).
Resting-state fast-wave brain activity thus appears to be
associated with impulsivity in online computer gaming.

Finally, systemic blood pressure, pulse rate, and skin
conductance were considered potential biological markers
of arousal modulation related to the salience of a specific
context or cue (Tupak et al., 2014). Among the others, skin
conductance response (SCR) provides a useful measure of
the limbic function (Furmark, Fischer, Wik, Larsson, &
Fredrikson, 1997; Lang, Davis, & Öhman, 2000). The
significance of this measure for arousal modulation and
attentional functions was previously demonstrated (Balconi
& Pozzoli, 2008; Balconi, Brambilla, & Falbo, 2009b) as it
may be considered a useful marker of the salience/relevance
of some cues. Indeed, autonomic measures are generally
related to the attentional and motivational significance of
the eliciting context. The advantage of acquiring both
the autonomic (arousal-related) and the central (EEG
cortical-related) activities in studying IA stands in the
possibility to better elucidate the reciprocal interplay of
the two compartments and to better describe the existence
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of anomalous response behavior to the external stimuli.
Indeed, recent research underlined the anomalous res-
ponse by SCR in pathological decision-making (Bechara
& Damasio, 2002; Dixon, Harrigan, Sandhu, Collins, &
Fugelsang, 2010; Trotzke, Starcke, Pedersen, Müller, &
Brand, 2015). However, whether and how web addiction is
related to rewarding mechanisms in response to Go/NoGo on
one hand and how impulse control deficits are related to
reward mechanisms on the other hand are actually unex-
plained (Kamarajan et al., 2008). Moreover, no previous
research monitored these three levels (electrophysiological
correlates, autonomic measures, and behavioral performance)
all together to furnish a complete overview of the control and
reward deficits (Balconi & Finocchiaro, 2016). To test this
reward bias and control deficits based on IA construct in this
research, attentional inhibitory task (Go/NoGo task) was
performed. Internet Addiction Inventory (IAI, Young,
1998) was applied to distinguish between high IA or low
IA profile, during the performance in response to specific
potentially rewarding cues (videos representing online
gambling and video games) or neutral contexts (as sport
game). Second, cortical oscillations (frequency bands) were
considered as predictive components to explain a potential
web addiction profile. Moreover, systemic SCR and heart rate
(HR) were recorded as potential biological markers of deficit
in inhibitory control and rewarding mechanisms.

Therefore, we hypothesized that an inhibitory control
deficit should be reported for increased IA profile (higher
IA), mainly for NoGo trials regarding gambling cues
(inhibitory control condition). In this case, a behavioral
attentional bias was expected [reduced response times (RTs)
and reduced error rates (ERs) for gambling category]. In
addition, we expected a decreased low-frequency bands
(mainly delta and theta) and increased SCR and HR in
higher IA when compared with lower ones. These modula-
tions were seen as, respectively, a marker of deficit in the

inhibitory system, as a rewarding bias as well as a signal of
the arousing power of the gambling category. In addition, a
frontal EEG asymmetry was expected, related to appetitive
rewarding conditions (rewarding cues), with a heightened
reward bias reflected in a left frontal activity (more reward-
related, suggesting that the activation of one system will
result in the inhibition of the former).

METHODS

Participants

A total of 25 volunteers participated in this study (M= 24.77,
SD= 0.99, age range= 20–25 years, 15 women). All subjects
were undergraduate students at the Catholic University of the
Sacred Heart, Milan and were right-handed, with normal or
corrected-to-normal visual acuity. Exclusion criteria were
history of psychopathology for the subjects or immediate
family members. No specific neurological or psychiatric
pathologies were observed by clinical colloquium. Other
addictive behaviors were excluded from the sample. A specific
questionnaire was submitted to explore the drug use by
the subjects to complete the Internet Addiction Test (IAT)
measurement.

Measures

In the experimental task, the stimuli consisted of two capital
white letters (M and W; size of 500 × 400 mm) in Times
New Roman font and three background pictures (gambling-
related, video games-related, and neutral contexts) (Figure 1)
displayed on a 15-in. monitor. A total of 20 volunteers,
matched for age and sex with the experimental group,
evaluated these pictures for gambling- and video games-
related context, considering four dimensions: relevance,

Figure 1. Go/NoGo task. Each trail consisted of the presentation of a background picture (neutral, gambling, and video games) for 500 ms,
then the letter M or W appeared in the center of this picture for 200 ms. All the sessions were randomized
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familiarity, valence, and arousing power (for more proce-
dure details, see Balconi & Finocchiaro, 2016). On this
basis, 18 pictures were selected and categorized into three
types: six neutral stimuli, six gambling-related stimuli, and
six pictures for video games-related condition.

IAT (Young, 1998) was developed according to the
diagnostic criteria of the DSM-IV for pathological gam-
bling, and it was adapted for the diagnosis of IA. It
specifically explores the addiction for the Internet users,
considering both the style of users, their mood during the
Internet use, the impact of Internet use on the life styles, the
quantitative and qualitative features of Internet use, and so
on. Its validity and reliability were largely tested. The
questionnaire consists of 20 items measured with 4-point
Likert scale (ranging from “never” to “always”). The score
was valued according to the cut-off: score between 0 and 30
(none): Internet usage below the average; score between
31 and 49 (mild): an average Internet user, who can
sometimes happen to surf the net a bit too long but without
losing control of the situation; score between 50 and 79
(moderate): the person already has several problems because
of the Internet and it should reflect on the impact these issues
have on his life; and score between 80 and 100 (severe): the
use of the Internet is excessive and causing considerable
problems to the person. The Cronbach’s α coefficient was
from .79 to .93 (49.68). Two subgroups of subjects were
created based on this total score: high IAT with score more
than 60 (N= 12, M = 78.97; SD= 5.43) and low IAT with
score less than 40 (N= 13, M = 37.08; SD= 5.03). Gender
was balanced across group. We successively explored the
specific content (program, applications, etc.) of Internet
users to better characterize their profiles. They showed a
specific penchant for video games (such as sport video
games), gambling situations (such as video-poker or simi-
lar), and social media. Therefore, we were able to better
qualify the nature of their addiction and to put the adequate
stimulus condition.

Procedure

The participants sat on a comfortable chair in front of a PC
screen (1,280 × 1,024 pixel). The PC was placed approxi-
mately 60 cm from the subject, with a visual horizontal
angle of 4° and a vertical angle of 6°. They were instructed
to complete the Go/NoGo task, prior to record EEG data.
The Go/NoGo task was a modified version of the experi-
mental task used by Petit et al. (2012) (see Balconi &
Finocchiaro, 2016 for this version) and it was composed
of four blocks of 120 stimuli per block, which were divided
in 84 Go trials and 36 NoGo trials for each session. The
blocks consisted of randomized presentation of background
pictures from three different contexts: gambling (G), video
games (VG), and neutral (N) for 500 ms. Successively, the
letter M or W appeared in the center of this background
picture for 200 ms, and then the initial background picture
came back for 1,300 ms (Figure 1). Therefore, participant
had a maximum of 1,500 ms to press the button before the
next letter appears. A successive 3,000 ms intertrial interval
was included. The letters were presented in a random order
to ensure the same amount as a percentage of the trials Go
(70%) and NoGo (30%) for each block and category.

Participants were required to press a button as fast as
possible, when they saw the Go stimulus appearing at
the center of the screen and to withhold the response for
the NoGo stimulus. Moreover, they were asked to reduce
moving and blinking during the task to control EEG artifacts
during registration. Each participant completed a total of
480 trials. To familiarize with the task, the participants
completed a short session of 20 trials (70% Go and 30%
NoGo) on a black background. After completing the Go/
NoGo task, the participants were submitted to a debriefing
phase, with the post-evaluation questionnaires (IAT, State-
Trait Anxiety Inventory-Form Y, and Beck Depression
Inventory-II).

Statistical analysis

EEG recordings and data reduction. EEG recordings were
performed with a 32-channel DC amplifier (SynAmps sys-
tem) and acquisition software (NeuroScan 4.2). An Electro-
Cap with Ag/AgCl electrodes was used to record EEG from
active scalp sites referred to the earlobes (10/20 system of
electrode placement) (Jasper, 1958; Pfurtscheller, 1992).
Data were acquired using a sampling rate of 500 Hz, with
a frequency band of 0.01–50 Hz. The onset was considered
the appearance of the image. An offline common average
reference was successively computed to limit the problems
associated with the signal-to-noise ratio (Ludwig et al., 2009;
Pascual-Marqui, 2002). In addition, two electrooculogram
(EOG) electrodes were sited on the outer canthi to detect eye
movements. The impedance of the recording electrodes was
monitored for each subject prior to data collection, and was
always maintained below 5 kΩ. After performing EOG
correction and visual inspection, only artifact-free trials were
considered (rejected epochs 2%). The signal was visually
scored, and portions of the data that contained artifacts were
removed to increase the specificity. Blinks were also visually
monitored. Ocular artifacts (eye movements and blinks) were
corrected using an eye-movement correction algorithm that
employs a regression analysis in combination with artifact
averaging (Pascual-Marqui, Michel, & Lehmann, 1994;
Semlitsch, Anderer, Schuster, & Presslich, 1986). The digital
EEG data were band-pass filtered in the following frequency
bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta
(14–20 Hz), and gamma (20–40 Hz) (band-pass filtering
96 dB/octave roll-off, warm-up filter left and right to 100 ms).
To obtain a signal proportional to the power of the EEG
frequency band, the filtered signal samples were squared
(Palmero-Soler, Dolan, Hadamschek, & Tass, 2007;
Pfurtscheller, 1992). An average absolute power value for
each experimental condition was calculated, using the time
window of 0–500 ms. The fast Fourier transform method
(Hamming window: length 10%) was used to obtain esti-
mates of spectral power (μV2) in the 1 Hz frequency bins for
each electrode site. Spectral power values were averaged
across all epochs within a single baseline and were then
transformed to power density values for the different frequency
bands. All power density values were log-transformed to
normalize the distribution of the data after the subtraction.

Autonomic data. Biopac MP 150 system (Biopac Systems
Inc., Goleta, CA, USA) was used to record the auto-
nomic activity. Electrocardiography (ECG) was recorded
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continuously in lead 1 from two electrodes attached to the
lower wrist, with the positive pole on the left arm and
the negative pole on the right one. One more reference
electrode was placed over the left ankle. The ECG signal
was sampled at 1000 Hz with the Biopac Acknowledge 3.7.1
software (Biopac Systems Inc.) according to the manufac-
turer’s guidelines. ECG was converted to HR in number of
beats per minute. The signal was low-pass filtered at 35 Hz
and high-pass filtered at 0.05 Hz for motor and ocular
artifacts. The electrodes for SCR were attached to the distal
phalanges of the first and second finger of the left hand. SCR
was recorded using two Ag/AgCl electrodes and an isotonic
gel. The signal was sampled at 1000 Hz and low-pass filtered
at 10 Hz for motor, ocular, and biological artifacts. SCR
elicited by each stimulus was continuously registered with a
constant voltage. It was defined as the largest increase in
conductance during image presentation, with a cut-off of at
least 0.4 μS in amplitude with respect to baseline (pre-
stimulus) mean values scored prior to task onset. The highest
peak amplitude of SCR was on average at 4.1 s post-stimulus
onset, within a mean beginning and ending of the peak
included between 3.4 and 4.8 s.

Ethics

All participants gave informed written consent for partici-
pating in the study, and the research was approved by the
Ethical Committee (Department of Psychology) of the
institution, where the work was carried out. The study
procedures were carried out in accordance with the Decla-
ration of Helsinki.

RESULTS

ERs

The behavioral measures of ERs (number of errors out of
the total of trials) were subjected to a three-way repeated-
measures ANOVA, with between-subject IAT (2), and the
within-subject factors Go/NoGo (2) and stimuli (3) applied to
the ERs. We preliminarily applied a distinct analysis com-
paring the two categories (incorrect stop/go, considering the
respective percentage). Since no significant differences were
found, we considered the total ERs in the final second
analysis. Errors associated with inhomogeneity of variance
were controlled by decreasing the degrees of freedom using
the Greenhouse–Geisser epsilon. Post-hoc analysis (contrast
analysis for ANOVA, with Bonferroni corrections for multi-
ple comparisons) was applied in case of significant effects.
The significant effects were found for stimuli [F(2, 24)=
10.16, P= .001, η2= .40] and IAT × Go/NoGo × stimuli
[F(2, 72)= 11.23, P= .001, η2= .42] (Figure 2a). As
revealed by post-hoc analysis (contrast analyses for repeated
measure ANOVA), reduced ERs were found for gambling
and video games [F(2, 24)= 9.56, P= .001, η2= .39, respec-
tively] than neutral stimuli. About the interaction effect,
simple effects revealed decreased ERs for video games
[F(1, 24)= 9.30, P= .001, η2= .38] and gambling stimuli
[F(1, 24)= 8.97, P= .001, η2= .33] in Go condition for high
IAT more than low IAT. Similarly, decreased ERs were

found for video games [F(1, 24)= 8.70, P= .001, η2= .33]
and gambling stimuli [F(1, 24)= 8.55, P= .001, η2= .32] in
NoGo condition for high IAT more than low IAT.

RTs

RTs were subjected to a three-way repeated-measures
ANOVA (IAT × Go/NoGo × stimuli).

The significant effects were found for stimuli [F(2, 24)=
9.43, P= .001, η2= .38] and IAT × Go/NoGo × stimuli
[F(2, 48)= 10.07, P= .001, η2= .40] (Figure 2b). Lower
RTs were found for gambling and video games than neutral
stimuli. About the significant interaction effect, simple
effects revealed lower RTs for video games [F(1, 24)=
9.51, P= .001, η2= .36] and gambling stimuli [F(1, 24)=
7.56, P= .001, η2= .30] in NoGo condition for high IAT
more than low IAT.

Brain oscillations

Each frequency band was subjected to a five-way ANOVA,
in which the IAT (2), Go/NoGo (2), lateralization (2), stimuli
(3), and localization (4) were applied to the dependent
variable of band power. Localization (four sites: frontal,
central, temporo-parietal, and occipital) and lateralization
(three sides: left, central, and right) were calculated.

a)

b)

Figure 2. (a) ER values as a function of stimulus type and
Go/NoGo task. (b) RT values as a function of stimulus type

and Go/NoGo task. *P ≤ .01
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Specifically, we measured left, central, and right frontal (F3,
Fz, and F4), middle-central (Cz, C3, and C4), temporo-
parietal (P3/T7, Pz, and P4/T8), and occipital (Oz, O1, and
O2) brain activity.

For delta, significant stimuli [F(1, 24)= 8.90, P= .001,
η2= .37] main effect was found (Figure 3a). Indeed, delta
power was higher for NoGo than Go condition. Moreover,
IAT × Go/NoGo × stimuli × lateralization × localization
[F(1, 96)= 9.18, P= .001, η2 = .38] interaction effect was
significant. Specifically, as shown by post-hoc comparisons,
delta increased in response to NoGo condition for gambling
stimuli [F(1, 24)= 7.09, P= .001, η2= .34] and video
games [F(1, 24)= 8.32, P= .001, η2= .37] than neutral
stimuli in high IAT. Moreover, delta was more frontally
and left distributed than the other cortical sites for gambling
and video games in high IAT (for all paired comparisons,
P ≤ .001).

For theta, significant IAT [F(1, 24)= 8.98, P= .001,
η2= .37] and localization [F(1, 24)= 7.61, P= .001, η2= .35]
main effects were observed. As shown in Figure 3b, theta
power was higher for NoGo than Go condition and it was
more frontally distributed. Moreover, IAT × stimuli ×
Go/NoGo × lateralization × localization [F(1, 96)= 10.77,
P= .001, η2= .41] interaction effect was significant. Speci-
fically, as shown by post-hoc comparisons, theta increased
in response to NoGo condition for gambler stimuli
[F(1, 21)= 8.31, P= .001, η2= .37] and video games
[F(1, 21)= 6.09, P= .001, η2= .373] than neutral stimuli
within the left hemisphere in high IAT.

For alpha, beta, and gamma, no significant effects were
found.

Autonomic measures

HR and SCR measures were analyzed with two-way repeated-
measures ANOVAs (IAT × Go/NoGo × stimuli). For
SCR interaction effect, IAT × Go/NoGo × stimuli was
significant [F(1, 48)= 8.12, P= .001, η2= .36] (Figure 4).
Increased SCR values were found for high IAT in NoGo for
gambler stimuli [F(1, 24)= 8.16,P= .001, η2= .36] and video
games [F(1, 24)= 7.88, P= .001, η2= .33] than neutral
stimuli. For HR, no effect was statistically significant. In
addition, high IAT showed increased SCR in NoGo for
gambling stimuli [F(1, 24)= 7.15, P= .001, η2= .33] and
video games [F(1, 24)= 7.12, P= .001, η2= .33] when com-
pared with low IAT.

DISCUSSION

This research aimed at exploring the deficits observed
for the rewarding and the inhibitory control mechanisms
in IA. Cortical brain oscillations, autonomic activity, and
behavioral measures were simultaneously considered to ana-
lyze the impaired behavior in response to online stimuli
(gambling, video games, and neutral cues), when a decisional
process (Go/NoGo task) was submitted. A main effect
was found in relationship with brain oscillations (an increase

a) c)

b) d)

Figure 3. Delta (a and b) and theta (c and d) power modulation as a function of high/low IAT, stimulus type, and Go/NoGo task. *P ≤ .01
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in delta and theta low-frequency bands) and autonomic
measures (increased SCR), when a more controlled behavior
was required (NoGo condition) in response to rewarding
cues (gambling and video games). This specific effect was
modulated by IAT, with increased delta and theta for high
IAT subjects. They also showed a better performance
(reduced ERs and RTs) in NoGo condition (mainly for
RTs) for rewarding cues. Moreover, EEG confirmed a
prefrontally lateralized activation effect within the left
hemisphere. Indeed, for the EEG component, frequency
band data (theta and delta modulation) indicated that
rewarding cues (gambling and video games) led to an
increased activity over the left PFC more for high IAT.
About the first effect, high IAT revealed an increased low-
frequency response in concomitance to inhibitory process,
when NoGo task was performed. The observed increase in
delta, and in the low-frequency bands activity in general, is
consistent with previous observations with Go/NoGo task
data (Barry, 2009; Kamarajan et al., 2004, 2006; Kirmizi-
Alsan et al., 2006; Yamanaka & Yamamoto, 2010), as well
as other control-related processes, such as response error
and feedback processing (Bernat, Nelson, Steele, Gehring,
& Patrick, 2011; Cavanagh, Zambrano-Vazquez, & Allen,
2012; Cohen, Elger, & Ranganath, 2007; Gehring &
Willoughby, 2004; Trujillo & Allen, 2007; Yordanova,
Falkenstein, Hohnsbein, & Kolev, 2004). This increased
brain activity for low-frequency bands was found in
response to specific categories, such as gambling and video
games stimuli. The significant impact of such categories
may reveal the necessity for the subjects to highly control
and suppress their behavior in response to specific, more
“sensitive” Internet contexts and potentially “rewarding”
categories compared with neutral ones. It was also underlied
that delta band activity was associated with some cognitive
functions, including reward processing (Bernat et al., 2011;
Nelson, Patrick, Collins, Lang, & Bernat, 2011). In addition,
it was showed that delta modulation depends on activity of
motivational systems and participates in salience detection
(Knyazev, 2007). Therefore, theta and delta may be respon-
sive-relevant rewarding cues and their modulation may be
related to a reward bias. In terms of the significance of delta
and theta reduction, impulsivity was also previously indi-
cated as a crucial contributing factor for this variation in

low-frequency bands. Specifically, neurocognitive models
of addiction disorders often implicate impulsivity as a major
component, and they reported a significant role for low-
frequency bands as cortical marker of this deficit in impulse
control. This result may also stress that NoGo condition with
potentially “rewarding” cues may more consistently and
directly activate the subjective necessary resources needed
to “inhibit” or suppress automatic responses.

A systematic lateralization effect was observed for
delta and theta in the case of rewarding condition for high
IAT subjects. We suggest that, in line with the approach–
withdrawal model, prefrontal EEG asymmetry is related to
appetitive rewarding cues, with heightened approach and
reward bias tendencies reflected in relative left-frontal
activity (Balconi et al., 2014). Thus, the specific cortical
localization we found may suggest the consistent over-
implication of the cortical left PFC system and a concomi-
tant predominance of this brain area in regulating the
rewarding behavior in the high IAT subjects. Moreover,
the cortical hyperresponsiveness in NoGo condition would
imply a frontal lobe dysfunction in terms of processing of
rewarding stimuli and the controlled behavior toward them.

Similarly, the behavioral measures (ERs and RTs) were
affected by IAT category, stimulus type and task. In fact, a
reduction of ERs and RTs was revealed in response to both
Go and NoGo condition when the subjects processed video
games and even more gambling stimuli. This “facilitation
effect” was revealed for high IAT, with an increased perfor-
mance for more salient stimuli. Therefore, the subjective
performance may present a more “immediate” and “impul-
sive” response and, in concomitance, a better outcome for
the most salient category (gambling and video games). This
fact could be due to a general increased motivation to
respond to high-relevant cues, such as video games and
gambling stimuli. This important motivational effect was
previously reported (van Holst, van Holstein, van den Brink,
Veltman, & Goudriaan, 2012). These results are also in line
with the supposition that addicted individuals commonly
exhibit a decreased ability to control the desire to obtain
drugs (i.e., inhibitory control), despite knowledge about
the aversive consequences following drug intake or the low
expectation of actual pleasure expected from the drug
(i.e., decision-making and reward consequences) (Balconi
& Finocchiaro, 2016; Schoenbaum, Roesch, & Stalnaker,
2006).

The autonomic measures as a whole also showed that
subjective responses to rewarding cues (gambling and video
games) vary eliciting different autonomic patterns. Specifi-
cally, SCR was higher for rewarding cues than neutral when
inhibitory behavior was required (NoGo). SCR variation is
the phasic sympathetic activity that operates such as an
index of the arousal and salience dimension of motivation
(Amrhein, Mühlberger, Pauli, &Wiedemann, 2004; Balconi
et al., 2009a; Balconi, Grippa, & Vanutelli, 2015; Bradley,
Cuthbert, & Lang, 1993). In addition, it may elucidate the
“emotional cost” induced by the necessity to inhibit their
response by subjects more sensitive to rewarding stimuli as
high IAT. The present data may partially appear in contrast
with previous results, which found a specific decreased SCR
in concomitance with “dysfunctional” decisions (as in the

Gambling

Video games

Neutral

Figure 4. SCR measures as a function of high/low IAT, stimulus
type, and Go/NoGo task. *P ≤ .01
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IOWA gambling task) compared with normal subjects who
generally show an increased SCR (Bechara & Damasio,
2002; Trotzke et al., 2015). However, it should be noted that
in these previous experiments, the anticipatory SCR was
generally acquired as a biological signal of functional or
dysfunctional behavior in decision-making. In contrast, in
this research, an SCR modulation was acquired and
observed during the task execution and, for this reason, it
should be better considered as a marker of the subject
engagement and arousal modification in response to more
potentially rewarding and desired condition instead of a sort
of anticipatory signal. Future research should better eluci-
date this point, more directly comparing pre- and post-task
SCR variations as an index of potentially different cognitive
and emotional mechanisms.

CONCLUSIONS

To summarize, the present data stressed the importance of
both rewarding effect and inhibitory mechanism that highly
influence the IAT subjects’ responses. Sensitivity to reward
and deficit in inhibitory control may have acted as crucial
variables in determining the “addiction behavior” in high
IAT, when they had to process stimuli that may potentially
elicit a compulsive and uncontrolled behavior to obtain the
rewarding condition. Therefore, high sensitivity to IAT
construct could be considered as a marker of both dysfunc-
tional reward processing and cognitive control mechanisms.
More generally, a direct relationship among impulsivity,
reward-related behavior, and IA may be suggested, specifi-
cally for high IAT. The three levels of analysis, which are
brain correlates, autonomic modulation, and behavioral
performance, showed significant consistence each other,
showing the direct complementarity between more central
and peripheral measures.

However, some limitations may be adduced in this
research. Indeed, first, the limited number of subjects does
not allow an ample generalization of the present data.
Second, a more exhaustive analysis of the cortical localiza-
tion of brain oscillations effect should be provided in future
research also using neuroimaging or hemodynamic mea-
sures. Third, other experimental tasks should be provided to
explore the contribution of control and inhibitory mechan-
isms in IA, also considering other kind of stimuli to be
included and potentially related to addiction behavior. In
addition, the engagement of subjects in Go and NoGo tasks
should be better explored, considering the role of the
emotional behavior in response to more or less rewarding
conditions. Finally, the intrinsic link among the cognitive
behavior (Go–NoGo performance), the SCR modulation
and the brain oscillation variations should be better tested
to discover the causal effect of one on another level and their
possible causal relationship.
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Gamma, alpha, delta, and theta oscillations govern cognitive
processes. International Journal of Psychophysiology, 39(2),
241–248. doi:10.1016/S0167-8760(00)00145-8

Beard, K. W., & Wolf, E. M. (2001). Modification in the proposed
diagnostic criteria for Internet addiction. CyberPsychology &
Behavior, 4(3), 377–383. doi:10.1089/109493101300210286

Bechara, A. (2005). Decision making, impulse control and loss of
willpower to resist drugs: A neurocognitive perspective.
Nature Neuroscience, 8(11), 1458–1463. doi:10.1038/nn1584

Bechara, A., & Damasio, H. (2002). Decision-making and addic-
tion (part I): Impaired activation of somatic states in substance
dependent individuals when pondering decisions with negative
future consequences. Neuropsychologia, 40(10), 1675–1689.
doi:10.1016/S0028-3932(02)00015-5

Bernat, E. M., Nelson, L. D., Steele, V. R., Gehring, W. J., &
Patrick, C. J. (2011). Externalizing psychopathology and gain–
loss feedback in a simulated gambling task: Dissociable
components of brain response revealed by time-frequency
analysis. Journal of Abnormal Psychology, 120(2), 352–364.
doi:10.1037/a0022124

Bradley, M. M., Cuthbert, B. N., & Lang, P. J. (1993). Pictures as
prepulse: Attention and emotion in startle modification.
Psychophysiology, 30(5), 541–545. doi:10.1111/j.1469-8986.
1993.tb02079.x

Cao, F., Su, L., Liu, T., & Gao, X. (2007). The relationship
between impulsivity and Internet addiction in a sample of
Chinese adolescents. European Psychiatry, 22(7), 466–471.
doi:10.1016/j.eurpsy.2007.05.004

Caseras, X., Avila, C., & Torrubia, R. (2003). The measurement of
individual differences in behavioural inhibition and behavioural
activation systems: A comparison of personality scales. Person-
ality and Individual Differences, 34(6), 999–1013. doi:10.1016/
S0191-8869(02)00084-3

Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. (2012).
Theta lingua franca: A common mid‐frontal substrate for action

monitoring processes. Psychophysiology, 49(2), 220–238.
doi:10.1111/j.1469-8986.2011.01293.x

Chen, C. Y., Huang, M. F., Yen, J. Y., Chen, C. S., Liu, G. C., Yen,
C. F., & Ko, C. H. (2015). Brain correlates of response
inhibition in Internet gaming disorder. Psychiatry and Clinical
Neurosciences, 69(4), 201–209. doi:10.1111/pcn.12224

Choi, J. S., Park, S. M., Lee, J., Hwang, J. Y., Jung, H. Y., Choi,
S. W., Kim, D. J., Oh, S., & Lee, J. Y. (2013). Resting-state
beta and gamma activity in Internet addiction. International
Journal of Psychophysiology, 89(3), 328–333. doi:10.1016/j.
ijpsycho.2013.06.007

Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward
expectation modulates feedback-related negativity and EEG
spectra. NeuroImage, 35(2), 968–978. doi:10.1016/j.
neuroimage.2006.11.056

Davidson, R. J. (2004). What does the prefrontal cortex “do” in
affect: Perspectives on frontal EEG asymmetry research. Bio-
logical Psychology, 67(1), 219–234. doi:10.1016/j.biopsycho.
2004.03.008

Dawe, S., & Loxton, N. J. (2004). The role of impulsivity in the
development of substance use and eating disorders. Neurosci-
ence & Biobehavioral Reviews, 28(3), 343–351. doi:10.1016/j.
neubiorev.2004.03.007

Dell’Osso, B., Hadley, S., Allen, A., Baker, B., Chaplin, W. F., &
Hollander, E. (2008). Escitalopram in the treatment of impul-
sive-compulsive Internet usage disorder: An open-label trial
followed by a double-blind discontinuation phase. The Journal
of Clinical Psychiatry, 69(3), 452–456. doi:10.4088/JCP.
v69n0316

D’Hondt, F., &Maurage, P. (2017). Electrophysiological studies in
Internet addiction: A review within the dual-process frame-
work. Addictive Behaviors, 64, 321–327. doi:10.1016/j.addbeh.
2015.10.012

Dixon, M. J., Harrigan, K. A., Sandhu, R., Collins, K., &
Fugelsang, J. A. (2010). Losses disguised as wins in modern
multi‐line video slot machines. Addiction, 105(10), 1819–
1824. doi:10.1111/j.1360-0443.2010.03050.x

Dong, G., Lu, Q., Zhou, H., & Zhao, X. (2010). Impulse inhibition
in people with Internet addiction disorder: Electrophysiological
evidence from a Go/NoGo study. Neuroscience Letters,
485(2), 138–142. doi:10.1016/j.neulet.2010.09.002

Field, M., & Cox, W. M. (2008). Attentional bias in addictive
behaviors: A review of its development, causes, and conse-
quences. Drug and Alcohol Dependence, 97, 1–20.
doi:10.1016/j.drugalcdep.2008.03.030

Finocchiaro, R., & Balconi, M. (2015). Reward-system effect and
“left hemispheric unbalance”: A comparison between drug
addiction and high-BAS healthy subjects on gambling behav-
ior. Neuropsychological Trends, 17(17), 37–45. doi:10.7358/
neur-2015-017-fino

Furmark, T., Fischer, H., Wik, G., Larsson, M., & Fredrikson, M.
(1997). The amygdala and individual differences in human fear
conditioning. Neuroreport, 8(18), 3957–3960. doi:10.1097/
00001756-199712220-00021

Gehring, W. J., & Willoughby, A. R. (2004). Are all medial
frontal negativities created equal? Toward a richer empirical
basis for theories of action monitoring. In M. Ullsperger &
M. Falkenstein (Eds.), Errors, conflicts, and the brain.
Current opinions on performance monitoring (pp. 14–20).
Leipzig, Germany: Max Planck Institute of Cognitive
Neuroscience.

342 | Journal of Behavioral Addictions 6(3), pp. 334–344 (2017)

Balconi et al.

http://dx.doi.org/10.1080/13576500902886056
http://dx.doi.org/10.1080/13576500902886056
http://dx.doi.org/10.1080/00207450601047119
http://dx.doi.org/10.1080/00207450601047119
http://dx.doi.org/10.1016/j.molmed.2006.10.005
http://dx.doi.org/10.1037/0893-164X.19.2.165
http://dx.doi.org/10.1016/j.biopsycho.2008.10.009
http://dx.doi.org/10.1016/S0304-3940(98)00934-3
http://dx.doi.org/10.1016/S0167-8760(00)00145-8
http://dx.doi.org/10.1089/109493101300210286
http://dx.doi.org/10.1038/nn1584
http://dx.doi.org/10.1016/S0028-3932(02)00015-5
http://dx.doi.org/10.1037/a0022124
http://dx.doi.org/10.1111/j.1469-8986.1993.tb02079.x
http://dx.doi.org/10.1111/j.1469-8986.1993.tb02079.x
http://dx.doi.org/10.1016/j.eurpsy.2007.05.004
http://dx.doi.org/10.1016/S0191-8869(02)00084-3
http://dx.doi.org/10.1016/S0191-8869(02)00084-3
http://dx.doi.org/10.1111/j.1469-8986.2011.01293.x
http://dx.doi.org/10.1111/pcn.12224
http://dx.doi.org/10.1016/j.ijpsycho.2013.06.007
http://dx.doi.org/10.1016/j.ijpsycho.2013.06.007
http://dx.doi.org/10.1016/j.neuroimage.2006.11.056
http://dx.doi.org/10.1016/j.neuroimage.2006.11.056
http://dx.doi.org/10.1016/j.biopsycho.2004.03.008
http://dx.doi.org/10.1016/j.biopsycho.2004.03.008
http://dx.doi.org/10.1016/j.neubiorev.2004.03.007
http://dx.doi.org/10.1016/j.neubiorev.2004.03.007
http://dx.doi.org/10.4088/JCP.v69n0316
http://dx.doi.org/10.4088/JCP.v69n0316
http://dx.doi.org/10.1016/j.addbeh.2015.10.012
http://dx.doi.org/10.1016/j.addbeh.2015.10.012
http://dx.doi.org/10.1111/j.1360-0443.2010.03050.x
http://dx.doi.org/10.1016/j.neulet.2010.09.002
http://dx.doi.org/10.1016/j.drugalcdep.2008.03.030
http://dx.doi.org/10.7358/neur-2015-017-fino
http://dx.doi.org/10.7358/neur-2015-017-fino
http://dx.doi.org/10.1097/00001756-199712220-00021
http://dx.doi.org/10.1097/00001756-199712220-00021


Goodman, A. (1990). Addiction: Definition and implications.
British Journal of Addiction, 85(11), 1403–1408. doi:10.1111/j.
1360-0443.1990.tb01620.x

Grant, J. E., Potenza, M. N., Weinstein, A., & Gorelick, D. A.
(2010). Introduction to behavioral addictions. The American
Journal of Drug and Alcohol Abuse, 36(5), 233–241.
doi:10.3109/00952990.2010.491884

Greicius, M. D., & Menon, V. (2004). Default-mode activity
during a passive sensory task: Uncoupled from deactivation
but impacting activation. Journal of Cognitive Neuroscience,
16(9), 1484–1492. doi:10.1162/0898929042568532

Han, D. H., Lyoo, I. K., & Renshaw, P. F. (2012). Differential
regional gray matter volumes in patients with on-line game
addiction and professional gamers. Journal of Psychiatric
Research, 46(4), 507–515. doi:10.1016/j.jpsychires.2012.
01.004

Harmon-Jones, E. (2004). Contributions from research on anger
and cognitive dissonance to understanding the motivational
functions of asymmetrical frontal brain activity. Biological
Psychology, 67(1), 51–76. doi:10.1016/j.biopsycho.2004.
03.003

Harper, J., Malone, S. M., & Bernat, E. M. (2014). Theta and delta
band activity explain N2 and P3 ERP component activity in a
go/no-go task. Clinical Neurophysiology, 125(1), 124–132.
doi:10.1016/j.clinph.2013.06.025

Jasper, H. H. (1958). The ten twenty electrode system of the
international federation. Electroencephalography and Clinical
Neurophysiology, 10, 371–375. doi:10.1016/0013-4694(58)
90053-1

Kamarajan, C., Porjesz, B., Jones, K. A., Choi, K., Chorlian, D. B.,
Padmanabhapillai, A., Rangaswamy, M., Stimus, A. T., &
Begleiter, H. (2004). The role of brain oscillations as functional
correlates of cognitive systems: A study of frontal inhibitory
control in alcoholism. International Journal of Psychophysi-
ology, 51(2), 155–180. doi:10.1016/j.ijpsycho.2003.09.004

Kamarajan, C., Porjesz, B., Jones, K., Chorlian, D., Padmanabha-
pillai, A., Rangaswamy, M., Stimus, A. T., & Begleiter, H.
(2006). Event-related oscillations in offspring of alcoholics:
Neurocognitive disinhibition as a risk for alcoholism. Biological
Psychiatry, 59(7), 625–634. doi:10.1016/j.biopsych.2005.08.017

Kamarajan, C., Rangaswamy, M., Chorlian, D. B., Manz, N.,
Tang, Y., Pandey, A. K., Roopesh, B. N., Stimus, A. T., &
Porjesz, B. (2008). Theta oscillations during the processing of
monetary loss and gain: A perspective on gender and impul-
sivity. Brain Research, 1235, 45–62. doi:10.1016/j.brainres.
2008.06.051

Kirmizi-Alsan, E., Bayraktaroglu, Z., Gurvit, H., Keskin, Y. H.,
Emre, M., & Demiralp, T. (2006). Comparative analysis of
event-related potentials during Go/NoGo and CPT: Decompo-
sition of electrophysiological markers of response inhibition
and sustained attention. Brain Research, 1104(1), 114–128.
doi:10.1016/j.brainres.2006.03.010

Klimesch, W., Doppelmayr, M., Stadler, W., Pöllhuber, D.,
Sauseng, P., & Roehm, D. (2001). Episodic retrieval is
reflected by a process specific increase in human electroen-
cephalographic theta activity. Neuroscience Letters, 302(1),
49–52. doi:10.1016/S0304-3940(01)01656-1

Klimesch, W., Doppelmayr, M., Yonelinas, A., Kroll, N. E.,
Lazzara, M., Roehm, D., & Gruber, W. (2001). Theta syn-
chronization during episodic retrieval: Neural correlates of

conscious awareness. Cognitive Brain Research, 12(1), 33–
38. doi:10.1016/S0926-6410(01)00024-6

Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory
control mirrored in brain oscillations. Neuroscience & Biobe-
havioral Reviews, 31(3), 377–395. doi:10.1016/j.neubiorev.
2006.10.004

Knyazev, G. G. (2010). Antero-posterior EEG spectral power
gradient as a correlate of extraversion and behavioral inhibi-
tion. The Open Neuroimaging Journal, 4(1), 114–120.
doi:10.2174/1874440001004010114

Kuss, D. J., & Griffiths, M. D. (2012). Internet and gaming
addiction: A systematic literature review of neuroimaging
studies. Brain Sciences, 2(4), 347–374. doi:10.3390/
brainsci2030347

Lang, P. J., Davis, M., & Öhman, A. (2000). Fear and anxiety:
Animal models and human cognitive psychophysiology. Jour-
nal of Affective Disorders, 61(3), 137–159. doi:10.1016/
S0165-0327(00)00343-8

Limbrick-Oldfield, E. H., van Holst, R. J., & Clark, L. (2013).
Fronto-striatal dysregulation in drug addiction and pathological
gambling: Consistent inconsistencies? NeuroImage: Clinical,
2, 385–393. doi:10.1016/j.nicl.2013.02.005

Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability
to inhibit simple and choice reaction time responses: A model
and a method. Journal of Experimental Psychology: Human
Perception and Performance, 10(2), 276–291. doi:10.1037/
0096-1523.10.2.276

Ludwig, K. A., Miriani, R. M., Langhals, N. B., Joseph, M. D.,
Anderson, D. J., & Kipke, D. R. (2009). Using a common
average reference to improve cortical neuron recordings from
microelectrode arrays. Journal of Neurophysiology, 101(3),
1679–1689. doi:10.1152/jn.90989.2008

Luijten, M., Machielsen, M. W. J., Veltman, D. J., Hester, R., de
Haan, L., & Franken, I. H. A. (2014). Systematic review of
ERP and fMRI studies investigating inhibitory control and
error processing in people with substance dependence and
behavioural addictions. Journal of Psychiatry & Neuroscience,
39(3), 149–169. doi:10.1503/jpn.130052

Moeller, F. G., Dougherty, D. M., Barratt, E. S., Schmitz, J. M.,
Swann, A. C., & Grabowski, J. (2001). The impact of impul-
sivity on cocaine use and retention in treatment. Journal of
Substance Abuse Treatment, 21(4), 193–198. doi:10.1016/
S0740-5472(01)00202-1

Nelson, L. D., Patrick, C. J., Collins, P., Lang, A. R., & Bernat,
E. M. (2011). Alcohol impairs brain reactivity to explicit loss
feedback. Psychopharmacology, 218(2), 419–428. doi:10.1007/
s00213-011-2323-3

Noël, X., Van der Linden, M., d’Acremont, M., Bechara, A., Dan,
B., Hanak, C., & Verbanck, P. (2007). Alcohol cues increase
cognitive impulsivity in individuals with alcoholism. Psycho-
pharmacology, 192, 291–298. doi:10.1007/s00213-006-0695-6

Palmero-Soler, E., Dolan, K., Hadamschek, V., & Tass, P. A.
(2007). swLORETA: A novel approach to robust source
localization and synchronization tomography. Physics in Med-
icine & Biology, 52(7), 1783–1800. doi:10.1088/0031-9155/
52/7/002

Park, S., & Lee, J. H. (2011). How cognitive reappraisal of anger
influences risk-taking behavior. Social Behavior and Person-
ality: An International Journal, 39(3), 411–418. doi:10.2224/
sbp.2011.39.3.411

Journal of Behavioral Addictions 6(3), pp. 334–344 (2017) | 343

Web addiction in the brain

http://dx.doi.org/10.1111/j.1360-0443.1990.tb01620.x
http://dx.doi.org/10.1111/j.1360-0443.1990.tb01620.x
http://dx.doi.org/10.3109/00952990.2010.491884
http://dx.doi.org/10.1162/0898929042568532
http://dx.doi.org/10.1016/j.jpsychires.2012.01.004
http://dx.doi.org/10.1016/j.jpsychires.2012.01.004
http://dx.doi.org/10.1016/j.biopsycho.2004.03.003
http://dx.doi.org/10.1016/j.biopsycho.2004.03.003
http://dx.doi.org/10.1016/j.clinph.2013.06.025
http://dx.doi.org/10.1016/0013-4694(58)90053-1
http://dx.doi.org/10.1016/0013-4694(58)90053-1
http://dx.doi.org/10.1016/j.ijpsycho.2003.09.004
http://dx.doi.org/10.1016/j.biopsych.2005.08.017
http://dx.doi.org/10.1016/j.brainres.2008.06.051
http://dx.doi.org/10.1016/j.brainres.2008.06.051
http://dx.doi.org/10.1016/j.brainres.2006.03.010
http://dx.doi.org/10.1016/S0304-3940(01)01656-1
http://dx.doi.org/10.1016/S0926-6410(01)00024-6
http://dx.doi.org/10.1016/j.neubiorev.2006.10.004
http://dx.doi.org/10.1016/j.neubiorev.2006.10.004
http://dx.doi.org/10.2174/1874440001004010114
http://dx.doi.org/10.3390/brainsci2030347
http://dx.doi.org/10.3390/brainsci2030347
http://dx.doi.org/10.1016/S0165-0327(00)00343-8
http://dx.doi.org/10.1016/S0165-0327(00)00343-8
http://dx.doi.org/10.1016/j.nicl.2013.02.005
http://dx.doi.org/10.1037/0096-1523.10.2.276
http://dx.doi.org/10.1037/0096-1523.10.2.276
http://dx.doi.org/10.1152/jn.90989.2008
http://dx.doi.org/10.1503/jpn.130052
http://dx.doi.org/10.1016/S0740-5472(01)00202-1
http://dx.doi.org/10.1016/S0740-5472(01)00202-1
http://dx.doi.org/10.1007/s00213-011-2323-3
http://dx.doi.org/10.1007/s00213-011-2323-3
http://dx.doi.org/10.1007/s00213-006-0695-6
http://dx.doi.org/10.1088/0031-9155/52/7/002
http://dx.doi.org/10.1088/0031-9155/52/7/002
http://dx.doi.org/10.2224/sbp.2011.39.3.411
http://dx.doi.org/10.2224/sbp.2011.39.3.411


Pascual-Marqui, R. D. (2002). Standardized low-resolution brain
electromagnetic tomography (sLORETA): Technical details.
Methods and Findings in Experimental Clinical Pharma-
cology, 24(Suppl. D), 5–12.

Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994).
Low resolution electromagnetic tomography: A new method
for localizing electrical activity in the brain. International
Journal of Psychophysiology, 18(1), 49–65. doi:10.1016/
0167-8760(84)90014-X

Petit, G., Kornreich, C., Noël, X., Verbanck, P., & Campanella, S.
(2012). Alcohol-related context modulates performance of
social drinkers in a visual Go/No-Go task: A preliminary
assessment of event-related potentials. PLoS One 7, e37466.
doi:10.1371/journal.pone.0037466

Pfurtscheller, G. (1992). Event-related synchronization (ERS): An
electrophysiological correlate of cortical areas at rest. Electro-
encephalography and Clinical Neurophysiology, 83(1), 62–69.
doi:10.1016/0013-4694(92)90133-3

Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X.
(2007). Ventral striatal hyporesponsiveness during reward
anticipation in attention-deficit/hyperactivity disorder. Biolog-
ical Psychiatry, 61(5), 720–724. doi:10.1016/j.biopsych.
2006.04.042

Schoenbaum, G., Roesch, M. R., & Stalnaker, T. A. (2006).
Orbitofrontal cortex, decision-making and drug addiction.
Trends in Neurosciences, 29(2), 116–124. doi:10.1016/j.
tins.2005.12.006
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