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Abstract. In Hungary, wind erosion is one of the most se-

rious natural hazards. Spatial and temporal variation in the

factors that determine the location and intensity of wind ero-

sion damage are not well known, nor are the regional and lo-

cal sensitivities to erosion. Because of methodological chal-

lenges, no multi-factor, regional wind erosion sensitivity map

is available for Hungary. The aim of this study was to develop

a method to estimate the regional differences in wind erosion

sensitivity and exposure in Hungary.

Wind erosion sensitivity was modelled using the key fac-

tors of soil sensitivity, vegetation cover and wind erodibil-

ity as proxies. These factors were first estimated separately

by factor sensitivity maps and later combined by fuzzy logic

into a regional-scale wind erosion sensitivity map. Large ar-

eas were evaluated by using publicly available data sets of

remotely sensed vegetation information, soil maps and mete-

orological data on wind speed. The resulting estimates were

verified by field studies and examining the economic losses

from wind erosion as compensated by the state insurance

company. The spatial resolution of the resulting sensitivity

map is suitable for regional applications, as identifying sen-

sitive areas is the foundation for diverse land development

control measures and implementing management activities.

1 Introduction

One of the most serious natural hazards in the Carpathian

Basin, resulting from land use practices, is wind erosion on

arable lands. The incidence of wind erosion and the rate of

the damage are determined by several environmental factors,

such as soil texture, lithology, climate, vegetation and human

land use effects. Variations in these factors result in differ-

ent regional and local sensitivities to wind erosion. Accord-

ing to the “Map of potential wind erosion of Hungary” by

Lóczy et al. (2012), 26.5 % of Hungary is affected strongly

or moderately by wind erosion, where the critical wind speed

of erosive winds is lower than 8.5 m s−1. They find that in

17.1 % of the country, where sand and loamy sandy soils

cover the surface and the critical friction velocity is lower

than 6.5 m s−1, the effects of wind erosion are high, more-

over approximately 9.4 % of the country is moderately af-

fected, where sandy loam soils occur and the critical friction

velocity is 6.5–8.5 m s−1. However, this map is based only

on soil texture class and critical wind speed, whereas other

factors are neglected. Thus, this map does not provide a full

picture of the hazard.

Estimating wind erosion hazard is a major challenge due to

the limited calculation methods for larger areas. However, a

strong demand exists for effective methods of regional-scale

analysis to estimate wind erosion hazards and sensitivities,

since regional scale is suitable for environmental, landscape

or spatial planning applications of agricultural and environ-

mental programs (Jaedicke et al., 2008).

Therefore, the aim of this study was to develop a method

to identify the areas exposed to wind erosion in Hungary. No

multi-factor, regional scale wind erosion sensitivity map ex-

ists for Hungary due to the deficiency of suitable methods.

The available wind erosion map described above considers

only the soil texture and the critical friction velocity of the

grain sizes of the soil types (Lóki and Négyesi, 2009; Sz-

abó et al., 1994), and it has not been verified to explain the

full picture of wind erosion hazard. The general lack of field

measurements and the complexity of the required data sets
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(e.g. soil moisture) and measurement techniques inhibit the

detailed mapping of wind erosion hazard.

Whereas most of the regional-scale analyses originated

from the plot-sized models, our research involves a regional-

scale calculation requiring data at a resolution of approxi-

mately 100× 100 m. The parameters and relationships on the

scale of plots specify the range and the thresholds of each fac-

tor, but these relationships cannot be used at regional scales

(Zobeck et al., 2000).

To achieve the goal of providing a regional-scale wind ero-

sion sensitivity map the main influential factors, such as soil

erodibility, vegetation and wind speed characteristics, were

estimated separately in factor sensitivities and in combina-

tion via a fuzzy logic method (Klir and Yuan 1995; Shi et al.,

2010; Borrelli et al., 2014) into a regional-scale wind erosion

sensitivity map for Hungary. The verification of this type of

regional-scale analysis is difficult, however, it is still impor-

tant, thus the reality of the created sensitivity map was tested

by field studies and data of economic losses.

1.1 Wind erosion modelling in local and regional scale

Bagnold (1941) identified the basic relationship between soil

texture and wind characteristics and worked out a method

for calculating the rate of wind erosion. This concept was

developed further by creating and improving the wind ero-

sion equations (WEQ – Wind Erosion Equation and RWEQ –

Revised Wind Erosion Equation) and by deriving other rela-

tionships using different methodologies, for example, WEPS

– the Wind Erosion Prediction System, the Australian Land

Erodibility Model (AUSLEM) (Fryrear, 1998; Fryrear et al.,

1998; Woodruff and Siddoway, 1965) and the USDA Na-

tional Agronomy Manual 502 standard (Hagen, 2004; NAM,

2002; Webb et al., 2006). These models were developed

based on extensive field measurements and experiments, but

several limiting factors, e.g. regarding the exact wind path

length or the surface roughness, are missing due to the lack

of accurate measuring or estimation methods. These equa-

tions and models can be tailored to local conditions based

on extensive empirical experience at small scales, but only

when accurate data are available. Several methods exist and

are widely applied, but each method has methodological lim-

itations (NAM, 2002).

The models and calculations that have been used for plot-

sized analyses (e.g. WEQ, WEPS, RWEQ) are mainly effec-

tive only at the scale of the plots analysed (Funk et al., 2004;

NAM, 2002). These approaches are typically process-based

models that consider several factors (e.g. surface roughness

or wind path length), and the output result can be the amount

of dust flux or even the rate of deflation. However, the ap-

plied mathematical and physical relationships cannot be sim-

ply scaled up to regional applications (NAM, 2002; Webb et

al., 2006).

The importance of the contributing factors depends on the

scale of the investigation; thus, at larger scales, different fac-

Figure 1. Location of the study area.

tors and different relationships can emerge (Kirkby et al.,

1996). However, even at regional scale, the amount of soil

loss caused by wind erosion is dependent on climate, soil and

vegetation parameters. Moreover, agricultural techniques can

have a significant effect (Gomes et al., 2003; Leenders et al.,

2005; Tibke, 1988). The few existing calculation methods for

regional-scale analyses are primarily derived from the plot-

sized WEQ or RWEQ models. For example, the method of

Zobeck et al. (2000) employed data on soil erosion from field

investigations. The applied agro-techniques and agricultural

land use units were simply scaled up using GIS methods to

calculate the regional wind erosion potential. Other methods

integrate data from atmospheric models and soil properties.

In the study of Shao and Leslie (1997) measured wind trans-

port data from a one-week survey, were scaled up to the con-

tinental scale of Australia by GIS methods, resulting in esti-

mates that were generally problematic, because of the spatial

validity of the data. By testing the calibration of RWEQ on

Syrian study sites up to 150 ha in size, it was possible to ac-

quire regional-scale results of good quality (Buschiazzo et

al., 1999; Fryrear et al., 1998; Youssef et al.; 2012). Never-

theless, the plot-sized models have intense data requirements

that are difficult to meet even on the local scale. The need

for a regional-scale model that uses less input data is clear

(Böhner et al., 2003).

2 Study area

In Hungary (Fig. 1), large areas are covered by unconsoli-

dated sandy and silty sediments, mostly of Pleistocene flu-

vial, lacustrine or aeolian origin (Mezősi, 2011). More than

60 % of the relatively flat area is under agriculture, and the

vegetation cover opens and closes on annual and seasonal

schedules according to the agricultural crop rotation.

The yearly mean precipitation is 500–700 mm; the average

temperature is 10–11 ◦C (1961–1990) (Péczely, 1998). The

countrywide yearly average wind speed (between 2000 and

2009) is 2–4 m s−1 (Fig. 2a) and varies throughout the year.

The monthly average wind speed (between 1998 and 2008)

increases continuously in the first months of the year, and

the highest monthly average wind speed is characteristically

in March and April (MET, 2012a). The average wind speed

reaches its maximum in April and number of days on which

the maximum wind speed is over 10 m s−1 is also the high-

est in this month (MET, 2012a) (Fig. 2b). The average wind
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Figure 2. (a) Yearly average (in the period of 2000–2009) wind

speed and dominant wind direction in Hungary (arrow lengths do

not indicate wind speed, only the direction of dominant wind is

shown) (source: MET, 2012b) and (b) the monthly average wind

speeds at Budapest between 1998 and 2008 (source: MET, 2012c).

speed in the months most vulnerable to soil erosion (March-

April) is 3.0–3.2 m s−1. The main wind direction of winds

above 5 m s−1 (which are important in inducing erosion) is

towards the north-west (Lyles and Krauss, 1971) (Fig. 2a).

The changes in precipitation in the last century have also had

a negative effect on wind erosion, as precipitation has de-

creased most during the spring months, with the rate of de-

crease of nearly 20 % between 1901 and 2010 (Lakatos et al.,

2012). The lithological, climatic, vegetation and agricultural

factors of the area are parameters that influence the extent of

the wind erosion hazard.

3 Data and methods

3.1 Data

Calculation methods from plot-sized models cannot be ap-

plied without modification and new combinations of data sets

at a regional scale. However, the identified relationships be-

tween parameters are also relevant to the regional scale. Thus

at a regional scale, the three controlling factors of soil, cli-

mate and vegetation cover are important for arable land as

follows:

– Soil: the texture, grain size distribution and calcium car-

bonate content (soils with high CaCO3 are more erodi-

ble) determine the soil erosion sensitivity;

– Climatic parameters: wind speed and wind energy deter-

mine the wind transport capacity and therefore the sus-

ceptibility to erosive winds (Fryrear et al., 1998; Mun-

son et al., 2011);

– Vegetation cover: the percentage cover determines the

openness and therefore the sensitivity of the vegetation;

– Land cover: land cover data was used to exclude forests

and urbanised areas, where wind erosion is not a rele-

vant problem in Hungary.

The data layers used during this analysis are soil, vegeta-

tion, wind and land use, and their scale, period of origin and

source are described in Table 1. Soil data were available from

Table 1. Data sources for estimating regional wind erosion hazard.

Factor Source Scale Period

soil AGROTOPO

(1991)

1 : 25.000 –

wind NOAA National

Climatic Data

Center (NOAA,

2012)

point data from

52 meteorolog-

ical stations

March and

April from

2000–2010

vegetation MOD 13 Gridded

Vegetation Indices

(NDVI & EVI)

(USGS, 2012)

250× 250 m March and

April from

2000–2010

land cover CLC 2006

(European

Environment

Agency, 2006)

∼ 100× 100 m 2006

the AGROTOPO spatial soil information system (Agrotopo-

graphical Database, 1991). For wind, data from NOAA Na-

tional Climatic Data Center (NOAA, 2012) were interpolated

across the entire country using kriging interpolation, whereas

vegetation cover data was available from MODIS NDVI. To

exclude those areas where wind erosion is not relevant, the

CORINE land cover classes “forest” (311, 312, 313), “artifi-

cial surfaces” (111, 112, 121, 122, 123, 124, 141, 142) and

“water bodies” (511, 512) (European Environment Agency,

2006) were excluded (Table 1.).

3.2 Methods

A full overview of the methodological framework is given

in Fig. 3. During the analysis, the contributing factors were

modelled based on available or modified data using a sen-

sitivity indicator approach (e.g. the sensitivity of the soil

was determined by the soil erodibility based on soil texture

classes). The sensitivity of the factors was first calculated

separately by using fuzzy analysis (Klir and Yuan, 1995; Shi

et al., 2010; Borrelli et al., 2014). Fuzzy logic was intro-

duced by Zadeh (1965). The fuzzy theory deduced that by

making the membership function operate over the range of

real numbers [0, 1], new procedures could be developed. The

theory proved to be a development of classic (Boolean) logic

(McBratney and Odeh, 1997). Using fuzzy logic in analyses,

the geographical processes can be described much more re-

alistically than with true or false in Boolean logic. The fuzzy

analysis was carried out by IDRISI software. In this software

the relation between two parameters is described by fuzzy

membership functions. The fuzzy membership function can

be linear, exponential, logarithmic or polynomial (Eastman,

2006). These sensitivity values were averaged into a com-

bined factor sensitivity map to avoid the problem of weight-

ing the factors. Using this estimation method, the sensitivity

of an area was not limited to broad classes as highly, mod-

erately or slightly sensitive, and no ranking categories were

set up in advance. By applying fuzzy logic, each unit was
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Figure 3. Overview of the applied methodological framework.

assigned a value between 0 and 1, where 0 means not sensi-

tive and 1 means the maximum sensitivity to wind erosion.

Thus 0.4 means that the area is 40 % sensitive; consequently,

this area can be regarded as somewhat insensitive. Alterna-

tively, but not applied in our study, it would be possible to

produce an empirical matrix with the known threshold values

(vegetation cover < 10, 10–35, > 35 %; wind speed < 3, 3–9,

> 9 m s−1; soil texture: based on NAM (2002)) to estimate

the rate of wind erosion, but such an approach would lose

the quantitative aspect of the method and only a qualitative

estimation would be applied. The resulting map was over-

laid with the CORINE land cover layer to create the overall

regional wind erosion sensitivity map (see Fig. 3 for flow

chart).

3.2.1 Analysis of the soil texture

The soil moisture in Hungary during the spring months

(March–April) is usually low; therefore, wind erosion can

be especially active at this time of year. The erodibility of

the soil was estimated using the texture classes of the Hun-

garian Agrotopographical Map based on the data of the de-

tailed field surveys carried out for the Kreibig soil map 60–

70 years ago at a 1 : 25 000 map scale. This map gives the

most detailed soil distribution available for Hungary and is

still commonly used (Pásztor et al., 2010). However, this

map distinguishes only the basic soil textures (sand, sandy

silt, silty clay); thus, an approximation to the US standards

was adopted when calculating the erodibility index of the

soil texture classes (sand, sandy loam, loam, clay loam and

clay) based on the modelling results of the NAM (2002) and

Klik (2004) as developed initially for plot-size applications

(Table 2). This limited classification of soil texture class also

explains why the digital soil data are interpreted spatially

as a fuzzy information set (Fig. 4). In the case of the soil,

the fuzzy membership function was fitted to an exponen-

tial relation. The X axis of the fuzzy function represents the

soil erodibility index, with values that vary between 0 and

494 t ha−1 yr−1, whereas the Y axis indicates the fuzzy value,

which represents the sensitivity. Low values were given to

clay, high values to fine sand, and the intermediate values

were described by a monotonically increasing J-shaped fuzzy

function. The result of this calculation was a regional-scale

map of the sensitivity of soil to wind erosion.

Figure 4. Adopted soil texture classes for Hungary based on an

agrotopographical map (AGROTOPO, 1991).

Table 2. Erodibility index of the soil texture classes; based on NAM

(2002).

Texture of soil Soil erodibility index (t ha−1 yr−1)

sand 494

sandy loam 409

loam 308

clay loam 196

clay 246

3.2.2 Analysis of wind speed

The sensitivity of an area to wind erosion is determined by

its characteristic wind conditions. In Hungary, the average

monthly wind speed (between 1998 and 2008) is the high-

est in March and April. The average wind speed reaches the

maximum in April, and the number of days on which the

maximum wind speed is over 10 m s−1 is also the highest in

this month (MET, 2012a). Therefore, March and April are the

most important in wind erosion prediction. The calculation

of wind speeds used data from 52 meteorological stations

(NOAA, 2012). In the analysed months (March–April), the

average wind speed varied between 2–4 m s−1 for the period

of 2000–2011. The highest average values occurred along a

north-western to south-eastern gradient, fitted to the plain to-

pography and the dominant wind directions (Fig. 5). The av-

erage wind speeds are nevertheless quite low; thus, the aver-

ages could not be used to determine the spatial distribution

of erosive winds.

We used additional information on the occurrence of high

wind speed days to clarify the occurrence of erosive winds.

Days with a maximum wind speed above 9 m s−1 were used.

The 9 m s−1 threshold value was defined in accordance with

Lóki (2001) as the wind speed that can mobilise the Hungar-

ian chernozem soils. The critical erosion threshold for sandy
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G. Mezősi et al.: Estimation of regional differences in wind erosion sensitivity 101

Figure 5. The number of days (day/months) on which the maximum

wind speed is over 9 m s−1 in March–April in the period of 2000–

2011.

soils and sandy meadow soil is between 5.95 and 6.8 m s−1.

Generally, a critical wind speed higher than 6 m s−1 is a

threshold value with which to define wind erosion. There-

fore, the applied threshold of 9 m s−1 in this study indicates

a high probability of erosion.

The spatial distribution of the number of days in March

and April with a maximum wind speed higher 9 m s−1 in the

period 2000–2011 differs by region in Hungary (Fig. 5). The

number of days varies from 0 to 17 days.

3.2.3 Analysis of the vegetation cover

Vegetation cover is an important factor in wind erosion; if

the vegetation cover exceeds 20–35 %, wind erosion is re-

duced significantly (Armbrust and Bilbro, 1997; Munson et

al., 2011). The vegetation cover in Hungary in the analysed

months (March and April) is usually low in the agricultural

areas because the cultivated fields have little cover to protect

the soils after the winter.

The vegetation cover for the months of greatest wind ero-

sion was calculated based on remote sensing data. MODIS

hyper-spectral images were used, which are available begin-

ning in 2000. For the Carpathian Basin, MODIS images are

available with high temporal and spatial resolution, as im-

ages are prepared at daily intervals at a 250 m spatial res-

olution. The data are freely available in both the raw and

pre-processed state from the USGS LP DAAC Data Pool

database (USGS, 2012). The large pixel size and broad sur-

vey entail some errors (e.g. cloud cover), which were reduced

by the maximum value composite (MVC) method. To avoid

the inaccuracies that arise from using single images, MVC

generates composite images from the best images from 16-

day periods.

From the 16-day composites, only the images of March

(6–21) and April (7–22) were available for the peak wind

erosion hazard period. To estimate the vegetation cover the

Figure 6. NDVI map from 250 m resolution MODIS (average val-

ues from March–April (in the period of 2000–2011) generated from

the 16-day composites).

multispectral NDVI (normalised vegetation index) was used,

as a well-established direct relationship exists between the

vegetation intensity and the NDVI (Huete et al., 2002). Val-

ues close to 0 represent vegetation free surfaces, whereas val-

ues close to 1 represent dense vegetation such as forests. The

NVDI is calculated as follows:

NDVI= (NIR−R)/(NIR+R),

where R is the red spectral range and NIR is the near-infrared

spectral range.

We calculated the average vegetation cover in the haz-

ardous period for the analysed period (2000–2011). The veg-

etation cover represents the density of the vegetation and thus

the sensitivity to wind erosion. This sensitivity was one of the

initial data sets of the analysis (Fig. 6).

3.2.4 Analysis of land cover

For the focal period of the year, the vegetation cover is usu-

ally low for every land cover class; therefore, it is difficult

to distinguish the forests from other land cover types on the

basis of NDVI. Urbanised areas are also difficult to iden-

tify from the NDVI maps. However, wind erosion does not

typically occur in forests or urbanised areas. Therefore, land

cover type was also employed in the analysis. Forests and

urbanised areas were located using the CORINE land cover

map (Table 1). The sensitivity map created on the basis of the

three analysed factors was overlaid to exclude the forests and

urbanised areas.

3.3 Calculation of sensitivity for the considered factors

The sensitivity to the contributing factors was calculated by

using the fuzzy method. To apply the fuzzy method, it is es-

sential to understand the relationships between the influenc-
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Figure 7. The applied exponential fuzzy membership function of

the relation between soil texture (soil erodibility index based on the

modelling results of the NAM (2002) and Klik (2004)) and the sen-

sitivity to wind erosion.

ing factors and the rate of wind erosion. In general, the fuzzy

membership function can be linear, exponential, logarithmic

or polynomial. In the IDRISI Taiga software, these fuzzy

membership functions are called to Linear, J-shape, Sig-

moidal and User-defined, respectively (Clark Labs, Worces-

ter, MA). Three membership functions are explained and in-

tegrated in the following by (a) the relationship of the soil

and wind erosion, (b) the relationship between the frequency

of erosive winds and wind erosion and (c) the vegetation and

wind erosion.

a. The relationship between the mechanical properties of

the soil and the rate of wind erosion is exponential, as

has been verified on the basis of the plot-sized mea-

surements (Li et al., 2005; Skidmore, 1994). The re-

lationship between the two factors is “J-shaped” and

monotonically increasing (Fig. 7). The X axis of the

fuzzy function represents the soil erodibility index, with

values varying between 0 and 494 t ha−1 yr−1, and the

Y axis represents the fuzzy value, which indicates the

sensitivity. Low values were given to clay texture, high

values to fine sand texture, and the intermediate values

between the end values were described by a monoton-

ically increasing J-shape fuzzy function. This relation-

ship indicates that the higher the measured t ha−1 yr−1

value of the soil, the higher the sensitivity to wind ero-

sion will be (with 0= no sensitivity and 1= 100% or

highest sensitivity).

b. The relation between the wind speed and the rate of

wind erosion is logarithmic (Böhner et al., 2003; Li et

al., 2005). However, due to the available data, the fre-

quency of erosive winds (number of days with a maxi-

mum daily wind speed > 9 m s−1) was used. In this case,

the relation between the frequency and wind erosion is

linear. Thus, the higher the frequency of the 9 m s−1

wind, the greater the sensitivity to wind erosion. For the

Figure 8. The applied linear fuzzy membership function of the re-

lation between the frequency of erosive winds and the sensitivity to

wind erosion. To define the frequency of erosive winds, days with a

maximum wind speed above 9 m s−1 were used.

Figure 9. Relation between the vegetation cover and the sensitivity

to wind erosion (NAM, 2002). The vegetation cover was calculated

on the basis of a well-established direct relationship exists between

the vegetation intensity and the NDVI (Huete et al., 2002).

wind parameter, the fuzzy membership function is “lin-

ear” and monotonously increasing (Fig. 8).

c. The relation between the vegetation cover and the rate

of wind erosion, however, is reciprocal (1/x), where the

increasing vegetation density causing reduction of the

sensitivity of wind erosion. The rate of wind erosion

is strongly reduced if the vegetation cover is higher

than 20–35 % (Armbrust and Bilbro, 1997; Munson et

al., 2011; NAM, 2002). If the vegetation cover exceeds

60 %, the sensitivity is 0. Thus, the greater the percent

vegetation cover, the smaller the sensitivity to wind ero-

sion. The fuzzy membership function is “J-shaped” and

monotonically decreasing (Fig. 9).

Integration of the sensitivity layers using fuzzy analysis:

The overall fuzzy analysis for the soil, climate and vegeta-

tion factors was carried out by IDRISI Taiga software (Clark

Nat. Hazards Earth Syst. Sci., 15, 97–107, 2015 www.nat-hazards-earth-syst-sci.net/15/97/2015/
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Figure 10. Sensitivity of soil texture to wind erosion based on soil

erodibility index.

Labs, Worcester, MA). A sensitivity map of wind erosion

was created separately for each factor, and a summary map

was produced by averaging the effects of all of the factors.

Thus, in the final sensitivity assessment, each factor was

given equal weight.

4 Results and discussion

By using the above-described relations between the rate of

wind erosion and the contributing factors, sensitivity maps

were produced first for each factor. These maps show the

spatial distribution of the sensitivity of the single factors con-

tributing to wind erosion. Simply averaging the factors was

practical for a regional-scale analysis because the relations

between the factors are not documented with physical or field

measurements in this scale. Moreover, the aim in this study

was to avoid the usage of empirical methods based on the

weighting of factors.

4.1 Sensitivity of soil to wind erosion

The sensitivity map of soil to wind erosion clearly shows the

distribution of the soil texture classes. High-sensitivity areas

are located in the blown sand areas of the country: in the

north-eastern region, on the Danube–Tisza interfluve and in

a smaller area in the south-western region. The lowest sen-

sitivity values occur on the former floodplain of the Tisza

River and its tributaries and in some areas in the mountains

(Fig. 10).

4.2 Regional distribution of erosive winds

The highest frequency of the erosive winds, and thus the

highest sensitivity, occurs in the north-western part of the

country. High sensitivity can also be observed in southeast

direction, in accordance with the dominant wind direction of

the region. The lower frequency of the erosive winds occurs

Figure 11. Sensitivity of the areas in response to the occurrence of

erosive winds.

on the north-eastern region, and spatially varying frequency

occurs in the south-western part of the country due to its di-

verse topography (Fig. 11).

4.3 Density of the vegetation cover and sensitivity to

wind erosion

The vegetation cover-based sensitivity map indicates the

highest sensitivity for the water surfaces, as these are open

surfaces that have no vegetation (Fig. 12). Forests have lower

sensitivity; however, during this period, the NDVI index is

low for forests because the trees have yet to bud. Thus, the re-

ceived sensitivity value from NDVI is not valid. To avoid the

error of the final sensitivity map based on the NDVI calcula-

tion, water surfaces and forest should be excluded using the

CORINE land cover map. On arable land, vegetation cover

is usually not extensive but is highly variable in this period

of the year.

4.4 Early spring wind erosion sensitivity for Hungary

The result of the calculation of sensitivity for the early spring

period, when the wind erosion hazard is the highest, primar-

ily shows the effect of soil texture and secondly the occur-

rence of erosive winds and the average vegetation cover in

the period of 2000–2011 (Fig. 13). Accordingly, the highest

sensitivity values occurred on the alluvial fans of the ancient

Danube and Tisza and in the region of the Transdanubian

Mountains, which are exposed to the north-western wind and

covered by fluvio-aeolian loess and sand. However, the veg-

etation cover can significantly modify the sensitivity value at

the local level.

The resulting sensitivity values were analysed on the basis

of the proportion of the areas characterised by different value

intervals (Table 3). The area was calculated in 0.1 sensitiv-

ity intervals. Areas with a sensitivity value higher than 0.4
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Figure 12. Sensitivity of the areas to wind erosion based on the

vegetation cover.

Table 3. Spatial distribution of the sensitivity to wind erosion (cal-

culated by soil, vegetation and wind speed data).

Fuzzy value intervals Area (%) Sensitivity

0.0–0.1 10.14 Low

0.1–0.2 39.93

0.2–0.3 29.51 Medium

0.3–0.4 6.15

0.4–0.5 3.78

0.5–0.6 7.42

0.6–0.7 3.06 High

0.7–0.8 0.01

0.8–0.9 0.004

are regarded hazardous. This sensitivity category covers ap-

proximately 14.27 % of the country. This result agrees with

the results of previous research, as Lóki (2005) and Lóczy

et al. (2012) categorised 17.1 % of the country as strongly

prone to wind erosion hazards.

There is a practical demand for estimates of t ha−1 soil

loss values on the basis of the sensitivity map. However,

the uncertainty in the estimates of several of the contribut-

ing factors, the applied method and their cumulative effects

is hardly quantified and these factors can highly modify the

actual rate of soil losses. Uncertainties can arise on the one

hand from the applied data sets. These data sets are low res-

olution data sets (e.g. MODIS satellite images have 250 m

resolution, wind speed data are available only on 52 stations)

which are suitable for regional scale estimations, however the

spatial variability of the local conditions has a much smaller

scale, thus the results are not valid on a local scale. On the

other hand uncertainty arises from the applied fuzzy mem-

bership functions and the integration of the sensitivity layers

even if the applied fuzzy logic reduces the uncertainty com-

Figure 13. Wind erosion sensitivity at a regional level with a land

cover mask to exclude forests and urbanised areas and the study

sites for validation where field survey data are available (a Apát-

falva, b Kömpöc, c Tisza plain).

pared to rough classification. Moreover the same t ha−1 soil

loss value can be produced by different combinations of the

contributing factors.

In Hungary, only a few field survey analyses have been

carried out; thus, the results of this analysis cannot ade-

quately statistically corroborate the results of the plot-sized

field survey results.

On the basis of these field measurements, the average

rate of wind erosion varies between 30 and 240 t ha−1 yr−1

(Borsy, 1986; Lóki, 2003; Szatmári, 2004). The occurrence

of the maximum value necessitates that the vegetation cover

is below 35 %, the wind speed exceeds 9 m s−1 and the soil

texture is sand or silty sand.

Because land cover is an important modifying factor of the

rate of wind erosion in our regional analysis, the CORINE

land cover database was used to select the urbanised areas,

other built-up areas, water surfaces and forests where wind

erosion does not usually occur. The sensitivity map was over-

laid with these selected areas to include only the agricultural

land prone to wind erosion (Fig. 13).

4.5 Testing and verifying the results in Hungary

Verifying the regional results is difficult because only a few

documented field surveys are available that measure wind

erosion activity and its dynamics in Hungary. These mea-

surement examples were carried out using different measure-

ment techniques. Because of the lack of field data and the di-

versity of measurement techniques applied, a statistical ver-

ification or validation of the field survey data and our new

sensitivity map is not possible. The results in Fig. 13 can

only be compared locally to documented plot data. To test

the model results, three study sites were selected (Fig. 13).
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These study sites were arable lands with poor sandy soils,

solonetz meadow soils and chernozems.

a. At the first site, at Apátfalva (located near the

Hungarian-Romanian border), field measurements were

made on open, non-vegetated chernozem soil plots

(Fig. 13a). The sensitivity values for this area varied be-

tween 0.19 and 0.27. Field measurements of sediment

transport were conducted using a high-efficiency out-

door wind tunnel. The estimated average soil loss varied

between 25 and 175 t ha−1, but these high values oc-

curred at very high 14–15 m s−1 wind speeds. The re-

sults underscore the previous results suggesting that the

volume of transported soil increases exponentially with

increasing wind speed (Farsang et al., 2011).

b. The second study site is located near Kömpöc (Danube–

Tisza Interfluve), where plot-sized measurements have

been applied using saltiphone and erosion pegs since

1997 (Fig. 13b). On the unconsolidated sandy soil, 40–

150 t ha−1 soil was eroded by 5–6 m s−1 winds. The

maximum value was 230 t ha−1 which was measured

at a much higher wind speed. Measurement was not

continuous; only the effects of 3–5 wind erosion events

were measured (Mezősi and Szatmári, 1998; Szatmári,

2004). The sensitivity value in this area is 0.57 on the

new map (Fig. 13).

c. The third site represents compacted soil with high clay

content and is located on the Tisza Plain (Fig. 13c).

The relationship between the material eroded by various

wind speeds and the grain-size distribution of the soil

was measured with a sand-collector in field conditions

and in a wind tunnel (Blaskó et al., 1995). Most of the

material transported by the 7.4 m s−1 wind speed was

fine sand (0.1 mm grain-size), whereas 10–40 t ha−1 of

sediment was transported by extreme wind speeds. The

sensitivity value in this area was 0.21 on the newly cre-

ated map. Thus, the highest measured soil loss in the

field occurred where the sensitivity map also indicated

a high sensitivity to wind erosion. Therefore, the results

of our research are in accordance with data from the

field.

A second method for validation of the results uses data

on the economic losses caused by wind erosion. A map of

the locations and rates of economic loss between 1977 and

1988, based on data from the state insurance company, was

published by Szabó et al. (1994). We overlaid our sensitivity

map with the map of losses to compare the results (Fig. 14).

The areas with great economic losses and the areas with

high or moderate sensitivity to wind erosion were compared.

The two maps corresponded closely, and the economic losses

were mainly recorded in areas defined as highly or moder-

ately sensitive. Thus, the results of this research are in agree-

ment with the record of damage from wind erosion. Accord-

Figure 14. Economic losses based on the data from the state in-

surance company from the period 1977–1986 (source: Szabó et al.,

1994) overlaid with the three regional sensitivity classes.

ingly, both of the validation methods support the results of

the sensitivity map presented here.

5 Conclusions

The existing methods for estimating the rate of wind erosion

on a regional level are mostly based on the geoinformatical

or statistical extension of plot-based investigations. As these

data are not always appropriate for scaling up, researchers

have called for new parameters or new relationships for the

development of regional models (Zobeck et al., 2000). In the

present study, the sensitivity to wind erosion at a regional

level was estimated using a newly developed method.

The risk of wind erosion was assessed using soil sensi-

tivity, vegetation cover and wind erodibility. A MODIS data

series with 250 m spatial resolution, a soil map at 1 : 25 000

and wind speed data from 52 meteorological stations were

used in the evaluation. Soil moisture was indirectly incorpo-

rated via vegetation density and soil data from the plot-scale

erodibility factor.

The novelty in the assessment of wind erosion susceptibil-

ity presented here is found primarily in the integration of the

contributing factors. Climate, vegetation and soil erodibility

factors were integrated by fuzzy logic to avoid the problem of

weighting. Based on field investigations, the function-based

relationships between soil erodibility and the given param-

eters were verified. As demonstrated here in the analysis of

soil erosion sensitivity, these factors are relevant at a regional

scale; thus, other parameters of plot-scale investigations (e.g.

surface roughness, wind barriers and wind path length) were

not taken into consideration.

The areas prone to or affected by wind erosion were iden-

tified, but we could not make a quantitative estimate of the

potential erosion because of the cumulative uncertainties of
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the parameters. However, wind erosion risk could be defined

even at the plot scale. The highest wind erosion risk was iden-

tified in the Danube-Tisza Interfluve and in Nyírség due to

the sandy soils in these areas. Similarly, a high sensitivity

was detected in western Hungary, where the soil is mainly

loess and loam and where more frequent and stronger winds

contribute to the high sensitivity. Two critical factors affect-

ing soil erosion include the intensive agriculture in western

Hungary (mainly with wheat and maize production) and the

non-vegetated soils during the spring months, when the wind

erosion risk is highest.

Projections of future climate suggest that soil moisture

will decrease in response to increased drought in the medium

term, which will also influence areas with high wind erosion

(Blanka et al., 2013; Mezősi et al., 2013). In the future, this

method should be verified with further field measurements on

the plot level and by quantitatively incorporating additional

data.

The resolution of the sensitivity map presented here is suit-

able for regional management recommendations and devel-

oping programmes to reduce wind erosion and supplements

the detailed quantitative risk mapping at the plot scale. The

combination of these approaches can contribute to improved

land management practices.

Acknowledgements. The publication was supported by the Euro-

pean Union and co-funded by the European Social Fund. Project

title: “Broadening the knowledge base and supporting the long-term

professional sustainability of the Research University Centre of

Excellence at the University of Szeged by ensuring the rising

generation of excellent scientists”. Project no. TÁMOP-4.2.2/B-

10/1-2010-0012.

Edited by: B. D. Malamud

Reviewed by: two anonymous referees

References

Agrotopographical Database, available at: http://maps.rissac.hu/

agrotopo_en/ (last access: 28 February 2013), 1991.

Armbrust, D. V. and Bilbro, J. D.: Relating plant canopy character-

istics to soil transport capacity by wind, Agron. J., 89, 157–162,

1997.

Bagnold, R. A.: The Physics of Blown Sand and Desert Dunes,

Methuen, London, 1–109, 1941.

Blanka, V., Mezõsi, G., and Meyer, B.: Projected changes in the

drought hazard in Hungary due to climate change, Idõjárás: Q. J.

Hungarian Meteorol. Serv., 117, 219–237, 2013.

Blaskó, L., Karuczka, A. Nyiri, L., and Zsembeli, J.: Kötött talajok

széleróziós érzékenységének vizsgálata, Agrokémia és talajtan,

44, 497–503, 1995.

Böhner, J., Schäfer, W., Conrad, O., Gross, J., and Ringeler, A.:

The WEELS model: methods, results and limitations, Catena, 52,

289–308, 2003.

Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants,

M. and Montanarella, L.: Towards a pan-European assessment

of land susceptibility to wind erosion, Land. Degrad. Dev.,

doi:10.1002/ldr.2318, online first, 2014.

Borsy, Z.: Research in areas of blown sand, in: Physical Geography

and Geomorphology in Hungary, edited by: Pécsi, M. and Lóczy,

D., Geographical Research Institute of the Hungarian Academy

of Sciences, Budapest, 77–82, 1986.

Buschiazzo, D. E., Zobeck, T. M., and Aimar, S. B.: Wind erosion

in loess soils of the semiarid Argentinian pampas, Soil Sci., 164,

133–138, 1999.

Eastman, J. R.: IDRISI Andes tutorial, Worcester, MA, Clark Uni-

versity, 2006.

European Environment Agency: CORINE Land Cover Technical

Guide: Addendum, EEA, Copenhagen, 2006.

Farsang, A., Szatmári, J., Négyesi, G., Bartus, M., and

Barta, K.: Csernozjom talajok szélerózió okozta tápanyag-

áthalmozódásának becslése szélcsatorna-kísérletekkel,

Agrokémia és talajtan, 60, 87–102, 2011.

Fryrear, D. W.: Mechanics, measurement and modeling of wind ero-

sion, Adv. Geoecol., 31, 291–300, 1998.

Fryrear, D. W., Saleh, A., Bilbro, J. D., Schomberg, H. M., Stout, J.

E., and Zobeck, T. M.: Revised Wind Erosion Equation (RWEQ),

Wind Erosion and Water Conservation Research Unit, Techni-

cal Bulletin 1. Southern Plains Area Cropping Systems Research

Laboratory, USDA-AR S., available at: http://www.csrl.ars.usda.

gov/wewc/rweq/app.pdf (last access: 3 September 2013), 1998.

Funk, R., Skidmore, E. L., and Hagen, L. J.: Comparison of wind

erosion measurements in Germany with simulated soil losses by

WEP S, Environ. Modell. Softw., 19, 177–183, 2004.

Gomes, L., Arrue, J. L., Lopez, M. V., Sterk, G., Richard, D., Gra-

cia, R., Sabre, M., Gaudichet, A., and Frangi, J. P.: Wind erosion

in a semiarid agricultural area of Spain: the WEL- SONS project,

Catena, 52, 235–256, 2003.

Hagen, L. J.: Evaluation of the wind erosion prediction system

(WEPS) erosion submodel on cropland fields, Environ. Modell.

Softw., 19, 171–176, 2004.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Fer-

reira, L. G.: Overview of the radiometric and biophysical perfor-

mance of the MODIS vegetation indices, Remote Sens. Environ.,

83, 195–213, 2002.

Jaedicke, C., Solheim, A., Blikra, L. H., Stalsberg, K., Sorteberg,

A., Aaheim, A., Kronholm, K., Vikhamar-Schuler, D., Isak-

sen, K., Sletten, K., Kristensen, K., Barstad, I., Melchiorre,

C., Høydal, Ø. A., and Mestl, H.: Spatial and temporal vari-

ations of Norwegian geohazards in a changing climate, the

GeoExtreme Project, Nat. Hazards Earth Syst. Sci., 8, 893–904,

doi:10.5194/nhess-8-893-2008, 2008.

Kirkby, M. J., Imeson, A. C., Bergkamp, G., and Cammeraat, L.

H.: Scaling up processes and models from the field plot to the

watershed and regional areas, J. Soil Water Conser., 51, 391–396,

1996.

Klik, A.: Wind erosion assessment in Austria using wind erosion

equation and GIS, in: Agricul- tural Impacts on Soil Erosion

and Soil Biodiversity: Developing Indicators for Policy Analysis,

edited by: Francaviglia, R., Proceedings from an OECD Expert

Meeting, Rome, 145–154, 2004.

Klir, G. J. and Yuan, B.: Fuzzy sets and fuzzy logic, Prentice Hall,

New Jersey, 1995.

Nat. Hazards Earth Syst. Sci., 15, 97–107, 2015 www.nat-hazards-earth-syst-sci.net/15/97/2015/

http://maps.rissac.hu/agrotopo_en/
http://maps.rissac.hu/agrotopo_en/
http://dx.doi.org/10.1002/ldr.2318
http://www.csrl.ars.usda.gov/wewc/rweq/app.pdf
http://www.csrl.ars.usda.gov/wewc/rweq/app.pdf
http://dx.doi.org/10.5194/nhess-8-893-2008
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