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Abstract

Background: Avian host species have different roles in the amplification and maintenance of West Nile virus (WNV)
, therefore identifying key taxa is vital in understanding WNV epidemics. Here, we present a comprehensive case
study conducted on red-footed falcons, where host-vector, vector-virus and host-virus interactions were
simultaneously studied to evaluate host species contribution to WNV circulation qualitatively.

Results: Mosquitoes were trapped inside red-footed falcon nest-boxes by a method originally developed for the
capture of blackflies and midges. We showed that this approach is also efficient for trapping mosquitoes and that
the number of trapped vectors is a function of host attraction. Brood size and nestling age had a positive effect on
the number of attracted Culex pipiens individuals while the blood-feeding success rate of both dominant Culex
species (Culex pipiens and Culex modestus) markedly decreased after the nestlings reached 14 days of age. Using RT-
PCR, we showed that WNV was present in these mosquitoes with 4.2% (CI: 0.9–7.5%) prevalence. We did not detect
WNV in any of the nestling blood samples. However, a relatively high seroprevalence (25.4% CI: 18.8–33.2%) was
detected with an enzyme-linked immunoabsorbent assay (ELISA). Using the ELISA OD ratios as a proxy to antibody
titers, we showed that older seropositive nestlings have lower antibody levels than their younger conspecifics and
that hatching order negatively influences antibody levels in broods with seropositive nestlings.

Conclusions: Red-footed falcons in the studied system are exposed to a local sylvatic WNV circulation, and the risk
of infection is higher for younger nestlings. However, the lack of individuals with viremia and the high WNV
seroprevalence, indicate that either host has a very short viremic period or that a large percentage of nestlings in
the population receive maternal antibodies. This latter assumption is supported by the age and hatching order
dependence of antibody levels found for seropositive nestlings. Considering the temporal pattern in mosquito
feeding success, maternal immunity may be effective in protecting progeny against WNV infection despite the
short antibody half-life measured in various other species. We conclude that red-footed falcons seem to have low
WNV host competence and are unlikely to be effective virus reservoirs in the studied region.

Keywords: Culicidae, Transmission ecology, Mosquito trap, Arthropod vector, Passive immunity, Host competence,
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Background
West Nile virus (WNV) is the most widespread member of
the arthropod-borne group of the genus Flavivirus, family
Flaviviridae [1]. Virus strains belonging to genetic lineages
1 and 2 have been causing an increasing number of epi-
demics in North America [2–4] and Europe [5–12]. Today,

WNV is considered one of the most important pathogens
causing viral neurological disease in humans [13].
The virus is maintained in an enzootic cycle between

vectors and avian hosts, while humans [14], equines [15]
and other vertebrate taxa are predominantly dead-end
hosts [16]. Therefore, to assess human infection risks and
predict the spatio-temporal patterns of disease outbreaks
it is vital to better understand the complex avian host-
mosquito vector transmission ecology of WNV [17, 18]. A
wide array of bird species have been identified as potential
virus amplifying hosts [19]. Competent arthropod vectors
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also belong to a range of taxa [20, 21];, however, ornitho-
philic mosquitoes (Diptera: Culicidae) are established to
be the group predominantly responsible for maintaining
the sylvatic cycle of the virus.
Pathogenicity in birds seems to be rather species-specific,

and the effect of infection ranges from subclinical to rapid
development of fatal neuropathy [22]. WNV can also have
a substantial negative impact on an avian population and
may even demand attention in the conservation manage-
ment of high priority species [22, 23]. However, morbidity
and mortality rates do not necessarily reflect the epidemio-
logical role of a host species [24]. A more sophisticated ap-
proach is to evaluate or quantify host competence, i.e. the
ability of a host to generate infection in another susceptible
host [25, 26]. Recent studies focusing on WNV host com-
petence were able to pinpoint avian “superspreader” and
“supersuppressor” species in North America, and through
these, they were able to explain the geographical variation
in human spillover rates [26]. In the complex WNV host-
vector system, host competence is a function of the magni-
tude and length of viremia, vector contact rates and host
mortality rates [25]. Estimating these parameters for indi-
vidual species, however, requires a combination of labora-
tory experiments and field studies which may not be
feasible for endangered species. Here, we present a case
study where we implemented a comprehensive study de-
sign using various methods simultaneously to evaluate host
competence of a high conservation value species in WNV
circulation under natural conditions.
The studied avian host was the red-footed falcon

(Falco vespertinus), a species of high international con-
servation concern [27, 28]. WNV has been reported to
cause central nervous disease and mortality in a few
sporadic cases for nestlings, but not in adult birds in
Hungary [29]. Red-footed falcons are long-range trans-
Saharan migrants [30] and may therefore be amongst
the candidate species responsible for large spatial scale
dispersal of WNV. These raptors are also facultative co-
lonial breeders [31–33] and therefore potentially more
vulnerable to rapidly spreading infections [34] compared
to territorially breeding birds. Nestlings and juvenile
birds are thought to be important in viral amplification
[35, 36] as they are localized in the nest and presumably
have a less effective immune response against infections.
We, therefore, concentrated on red-footed falcon broods
and their relationship with vectors and WNV.
Despite its importance, host-vector interaction in WNV

transmission ecology studies is often neglected as there are
no widely accepted methods currently available to quantify
it. Instead, vectors collected with traps that attract mosqui-
toes through visual and/or olfactory cues (e.g. CDC traps)
are used to assess virus presence, quantify virus prevalence
in vectors and as a proxy to potential vector loads on hosts
[37]. Albeit these methods are cheap and easy to implement

they only account for vector abundance, or rather the avail-
ability of mosquitoes reacting to the attractant, but com-
pletely fail to provide information on actual host-vector
contact rates. A more promising method is to use live birds
as baits to attract mosquitoes [38]. However, these are lim-
ited in the possible number of bait-species that can be used
and also fail to account for avoidance strategies of hosts.
Tomás et al. [39] suggested and used an easy yet effective
method to quantify biting midges (Ceratopogonidae) and
blackflies (Simuliidae) in Passerine nest-boxes with the help
of a non-invasive adhesive. If also applicable to trap ornitho-
philic mosquitoes, this method may revolutionize in situ
WNV transmission ecology studies as it allows to directly
measure the vector species composition and the effects of
nestling characteristics on attracted and blood-fed vectors.
Here, we initially aimed to evaluate whether WNV

vectors can be trapped directly in the vicinity of red-
footed falcon broods and whether we can quantify at-
traction patterns, virus prevalence, and blood-feeding
success of vectors attracted by the studied hosts. Simul-
taneously, we aimed to estimate WNV status of falcon
broods through estimating seroprevalence and frequency
of nestlings in viremia, to assess the population level ef-
fects of WNV on the host species, and to evaluate the
potential virus reservoir role of red-footed falcons.

Methods
Study area
Field work was carried out during June and July each year
from 2010 to 2012, at the Vásárhelyi-plains (46°28'16"N,
20°36'17"E) protected an area of the Körös-Maros Na-
tional Park Directorate in southern Hungary. The study
site holds 4 artificial nest-box colonies where over 100
pairs of red-footed falcons breed each year [40], along with
numerous kestrels (Falco tinnunculus), jackdaws (Corvus
monedula) and long-eared owls (Asio otus) [41]. Breeding
parameters of birds using the nest-boxes was collected
within the scope of an ongoing long-term research pro-
gram [40–43]. Therefore, detailed information such as egg
laying dates, clutch size, brood size, and fledging success
was readily available. All broods selected for the study
were breeding in the same type of standard nest-box. The
area is renowned for a large saline lake and other wetlands
that are important stop-over and wintering sites of various
wader and geese species and common cranes (Grus grus).
The surrounding habitat is characterized by a mosaic of
grasslands and arable fields, with an extensive network of
channels and drainage ditches, providing ample possibil-
ities for blood sucking dipterans to breed.

Mosquito sampling
We used a modified version of the methods described by
Tomás et al. [39] to estimate the number of vectors
attracted by red-footed falcon broods. Initially, we applied
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5 ml gel adhesive (Johnson’s Baby Oil Gel with Chamomile;
Johnson & Johnson, Dusseldorf, Germany) on one side of
10 × 15 cm transparent (0.2 mm) plastic sheets. We then
secured these sheets (with the gel facing upwards) on the
inner side of the nest-boxes’ roofs for 24 h. The sheets were
secured with board pins in a fashion to create an arc, thus
allowing ample space for flying arthropods to get trapped
(Fig. 1). As opposed to other adhesives, the advantage of
the gel is that it is easily dissolved with petrol, leaving
trapped arthropods unharmed. This allows trapped Culici-
dae specimens to be reliably identified, sexed and it is also
possible to evaluate their feeding status. All collected ani-
mals were stored in 70% ethanol after the gel was dissolved.
The species, sex and feeding status (blood-fed or not) was
identified under a stereomicroscope (Olympus SZ-50,
Olympus Co. Tokyo, Japan).
Sampling was carried out in three consecutive breeding

seasons from 2010 to 2012. Each year we first randomly
selected empty nest-boxes within each colony. These were
used to test whether hematophagous vectors are attracted
to either the nest-box or the adhesive gel alone (56 sam-
ples collected) by comparing the results obtained here
with that in active nests. At the same time, we used a
stratified random sampling approach to select broods
where mosquito traps were placed. Strata considered were
colony and breeding stage, the latter classified into five
groups; before hatching (incubation), 1st week, 2nd week,
3rd week and 4th week after hatching. Red-footed falcons
incubate throughout the night and also brood young nes-
tlings at night. Presumably, mosquitoes react to the incu-
bating parent rather than the eggs themselves. Thus our
analyses may be interpreted as a comparison between a
single adult (incubation), an adult with small nestlings (1st
week) and older nestlings alone.

Weather is a key factor controlling mosquito activity
[44, 45] and consequently WNV infection rates [46].
Therefore, we only selected three days each year for
sampling to minimize variation caused by changes in
ambient temperature and humidity. On each date broods
in various breeding stages were sampled, thus creating a
cross-section of the host population. Altogether a total
of 309 samples collected in 166 clutches were used in
the analyses (Table 1).

Assessing WNV prevalence in vectors
WNV prevalence has been shown to cumulate in verte-
brate hosts late in the summer [47], therefore to minimize
laboratory costs and to maximize the probability of detect-
ing WNV presence we only used mosquitoes trapped in
the late breeding stage in 2011. We first grouped the sam-
ples by species, sex and according to the nest-box, the ani-
mals were trapped in. Specimens that were blood filled
were excluded from the analyses to avoid inconclusive re-
sults. A total of 779 mosquitoes of three species (Culex
pipiens, Culex modestus and Coquillettidia richiardii)
were investigated, the majority being Cx. pipiens (725 in-
dividuals). We then selected every 6th specimen from
these subsets for individual WNV identification. The
remaining animals were pooled (5 × 4 = 20 individuals/
pool) and also analysed [Cx. pipiens: 145 individuals, 29
pools; Cx. modestus: 3 pools (20 + 20 + 7 individuals); Cq.
richiardii: 1 pool (7 individuals)]. Samples were tested for
the presence of WNV nucleic acid (RNA) by a reverse-
transcriptase - polymerase chain reaction (RT-PCR) using
the primer pair FL1-f and FL1-r as described earlier [48].
Specific PCR products were sequenced directly from both
ends with the same primers [48].

WNV seroprevalence in red-footed falcon nestlings
We used 42 broods that were also selected for mosquito
abundance sampling to assess WNV seroprevalence in the
studied population. The samples were chosen to represent
both the spatial heterogeneity of breeding pairs (colonies)
and temporal heterogeneity of the egg laying dates. Blood
samples of 0.8–1.0 ml were taken by basilic venipuncture
from fledgelings (n = 139) reaching the second half of the
breeding stage (17–24 days) in 2011. Sera were separated
from coagulated blood samples and stored at -20 °C until
processing. The remaining serum and cellular elements
were stored at -80 °C until being further processed by sim-
ultaneous RNA and DNA extraction using the Roche
High Pure Viral Nucleic Acid kit (Lewes, United King-
dom). Serum samples were tested for the presence of anti-
WNV antibodies using the ID Screen® West Nile Compe-
tition ELISA kit (ID VET, Montpellier, France), according
to the manufacturers’ instructions. This diagnostic kit de-
tects IgY antibodies by competitive ELISA directed against
the Pr-E envelope protein of the West Nile virus. We used

Fig. 1 The device used to trap mosquitoes attracted by falcon
broods. The upper side of the plastic sheet is covered with an
adhesive gel that traps insects landing on the surface. The
sheets were left in this position for 24 h
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2 ELISA plates for the analyses. Obtained optical density
(OD) values were transformed into OD ratios (i.e. Compe-
tition Rate = (OD sample / OD Negative control) × 100). These
ratios were then handled and analysed with two different
approaches. First, we elaborated the recommendations of
the manufacturer and defined cut off levels of the test as
positive (competition rate ≤ 40%); doubtful (40% < competi-
tion rate ≤ 50%); and negative (competition rate > 50%).
Secondly, we considered OD ratio as a proxy for antibody
levels (e.g. [49, 50]) and analysed these values on a con-
tinuous scale (see Statistical analyses). Blood samples were
also tested for the presence of WNV nucleic acid (RNA)
with the same technique described above.

Statistical analyses
To understand the relationship between blood-sucking
dipteran abundance and host traits we used generalized
linear mixed effects models (GLMM) with Poisson dis-
tribution and log link function [51–53]. In the next step,
we used GLMMs with binomial distribution and logit
link function to assess how the ratio of blood filled para-
sites is affected by these variables. Random factors were
the date of sampling, Nest ID and Colony ID for all
aforementioned models. All dipteran species were ana-
lysed in separate models.
To estimate the WNV seroprevalence in red-footed

falcon nestlings, we applied the methods described in
Messam et al. [54]. We used the same procedure to esti-
mate WNV prevalence in the vector species, using only
the non-pooled samples for the analysis.
We used linear mixed effects (LME) models [51, 55]

to estimate the relationship between WNV ELISA OD
ratios and nestling characteristics. First, we selected
ELISA-positive nestlings and modelled their OD ratios
as a function of nestling age measured in days. We then
selected all nestlings in broods with at least one WNV-
seropositive nestling and assessed their hatching order
based on weight (measured with 300 g spring scale to
the nearest 2 g), the length of central tail feathers (mea-
sured with a ruler to the nearest 1 mm), wing chord
(measured with a ruler to the nearest 1 mm) and wing
bone (measured with a caliper to the nearest 0.1 mm)
lengths recorded at the time of sampling. This hatching

order was subsequently used as a predictor for nestling
OD ratios. The Nest ID and the ELISA Plate ID were
used as random factors in case of both LME models. We
also ran the models with the full set of nestlings and ob-
tained numerically similar results.
We used the decrease of deviance and the likelihood

ratio test (LR) to select non-significant variables in case
of all models described above. All analyses were carried
out in R, version 3.2.3 [56] using the following packages;
dplyr [57], epiR [58], epitools [59], nlme [60], lme4 [53],
car [61], effects [62] lmeans [63].

Results
Host-dependent mosquito attraction and blood-feeding
success patterns
We trapped a total of 11,592 mosquitoes belonging to 4
species from red-footed falcon nest-boxes, namely Culex
pipiens Linnaeus, 1758 (n = 10,203), Culex modestus
Ficalbi, 1889 (n = 1332), Coquillettidia richiardii Ficalbi,
1889 (n = 56), Ochlerotatus dorsalis (Meigen, 1830)
(n = 1). All trapped individuals were females. As the lat-
ter two species had orders of magnitude lower abun-
dance compared to Cx. pipiens and Cx. modestus we
excluded them from further analyses. We did not trap
any mosquitoes in control nest-boxes; however, other ar-
thropods like canopy dwelling or non-parasitic nest sub-
strate feeding species were trapped in small numbers.
Brood size and the breeding stage had a significant effect

(Poisson GLMM, LR χ2 test; brood size χ2 = 132.06, df = 1,
P < 0.001, breeding stage χ2 = 181.39, df = 1, P < 0.001) on
the number of Cx. pipens in nest-boxes. Considering the
latter variable, the number of individuals significantly in-
creased after hatching, peaked at the 2nd week, and from
here on it significantly decreased until fledging. (Table 2,
Fig. 2a). Meanwhile, the ratio of blood-fed Cx. pipiens indi-
viduals was also significantly affected by breeding stage (Bi-
nomial GLMM, LR χ2 test, breeding stage χ2 = 29.83, df = 1,
P < 0.001; brood size χ2 = 0.05, df = 1, P = 0.82); the prob-
ability of finding a blood-engorged mosquito was highest in
the 1st and 2nd week after hatching, and later significantly
decreased for the second half of the nestling stage (Table 3,
Fig. 2b). In the case of Cx. modestus, brood size significantly
increased while breeding stage did not affect (Poisson

Table 1 Number of mosquito sampling events in nest-boxes according to year and breeding stage. Control samples derive from
boxes where no breeding occurred in the given year. WNV prevalence estimates in mosquitoes and seroprevalence estimates in
nestlings was carried out in 2011

Year Breeding stage

Incubation period 1st week 2nd week 3th week 4th week No. of controls Total no. of sampling events

2010 1 7 13 15 1 6 37

2011 34 10 16 27 20 19 107

2012 58 34 23 36 14 31 165

total 93 51 52 78 35 56 309
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GLMM, LR χ2 test; brood size χ2 = 24.6, df = 1, P < 0.001;
breeding stage χ2 = 2.17, df = 1, P = 0.71) the number of
attracted mosquitoes (Table 2, Fig. 3a). The pattern of the
ratio of blood-fed Cx. modestus (Fig. 3b) individuals resem-
ble the pattern of Cx. pipiens (Fig. 2b). However, the data
did not allow to completely replicate the same analysis as
only 2 blood-fed Cx. modestus individuals were trapped in
the incubation period (Table 3, Fig. 3b).

WNV prevalence in vectors
We found 1 pooled and 6 individual Cx. pipiens (n = 145)
samples to be WNV-positive, corresponding to a 4.2%
(95% CI: 0.9–7.5%) virus prevalence assuming perfect test
detection (calculated only for individual samples). The
positive samples were found in three nest-boxes, each in a
different colony, indicating WNV carrying mosquito

presence throughout the study site. One nest-box had 5
WNV-positive individual Cx. pipiens samples while the
remaining 1 individual and 1 pooled sample were from
different nest-boxes and different colonies. Sequence ana-
lysis determined that the detected virus belongs to the
genetic lineage 2 of WNV and it is closely related to the
WNV isolates from the study year and previous years [8].

WNV seropositivity in red-footed falcons
Our results showed relatively high seroprevalence among
red-footed falcon nestlings; 35 of the sampled 134 individ-
uals were ELISA-positive, while 10 were classified as
doubtful (25.4% ± 3.7% SE, CI: 18.8–33.2%). However, we
did not detect WNV by RT-PCR in any of the nestling
blood samples, suggesting that none of the individuals
were viraemic at the time of sampling. Of the 42 broods,

Table 2 Comparisons of the effect of breeding stage on overall mosquito abundance using consecutive contrasts for Poisson
GLMMs. The reported values show the mean differences in abundance between the corresponding breeding stage pairs (see also
Figs. 2a, 3a)

Species Variable Contrast levels Difference in abundance SE P-value

Cx. pipiens Breeding stage 1st week vs incubation 2.92 1.8 0.106

2nd week vs 1st week 12.76 4.75 0.007

3rd week vs 2nd week -6.31 2.55 0.013

4th week vs 3rd week -4.64 1.98 0.02

Cx. modestus Breeding stage 1st week vs incubation -0.25 0.322 0.43

2nd week vs 1st week 0.11 0.21 0.58

3rd week vs 2nd week -0.05 0.18 0.77

4th week vs 3rd week 0.22 0.19 0.25

Abbreviation: SE standard error

a b

Fig. 2 Model estimates (± 95% CI) of the effects of the breeding stage on the number of attracted (a) and proportion of blood filled mosquitoes
(b) of Cx. pipiens individuals (see also Tables 2, 3). The values presented here were transformed for the corresponding response scale and
calculated for mean brood size. The highest number of attracted mosquitoes was in the second week after hatching, and this also coincided with
the peak of blood-feeding success
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16 had at least one seropositive nestling. We found no evi-
dence of large scale spatial pattern of the observed sero-
positivity, as the ratio of seropositive broods did not differ
significantly between colonies (Fischer’s exact test:
P = 0.94). Moreover, we could not detect any temporal
pattern either, as there was no significant difference in
mean egg laying date between broods without seropositive
and broods with at least one seropositive nestling (Welch
t-test: t = -0.1095, df = 34.601, P = 0.91). However, the
OD ratio significantly decreased with increasing nestling
age among ELISA-positive nestlings (LME LR χ2 test;
nestling age χ2 = 4.97, df = 1, P = 0.02) indicating that
older seropositive nestlings have lower antibody levels.
We also found a significant decrease in OD ratios corre-
sponding with within brood hatching order among broods
with at least a single ELISA-positive nestling (LME LR χ2

test; hatching order χ2 = 5.36, df = 1, P = 0.02) (Fig. 4).
This shows that nestlings hatching later in a brood had
higher antibody levels.

Discussion
Here, we comprehensively investigated vector attraction
patterns, blood-feeding success rate, WNV prevalence and
host serum seroprevalence under natural conditions in a
colonial raptor. Initially, we verified that our modified ver-
sion of the trap described by Tomás et al. [39] was effect-
ive in collecting Culicidae species and that the trapped
individuals were attracted by the hosts. The two most
common mosquito species (Cx. pipens and Cx. modestus)
attracted by red-footed falcon broods are well known
WNV vectors [38, 64]. The number of these vector indi-
viduals showed a positive linear relationship with the

Table 3 Comparisons of the effect of breeding stage on overall mosquito blood-feeding success using consecutive contrasts
for Binomial GLMMs. The reported values show the differences in mean probabilities of blood-feeding success between the
corresponding breeding stage pairs (see also Figs. 2b, 3b)

Species Variable Contrast levels Difference in blood-feeding success SE P-value

Cx. pipiens Breeding stage 1st week vs incubation 0.034 0.01 0.031

2nd week vs 1st week 0.002 0.01 0.86

3rd week vs 2nd week -0.044 0.01 < 0.001

4th week vs 3rd week 0.007 0.01 0.447

Cx. modestusa Breeding stage 2nd week vs 1st week 0.021 0.02 0.48

3rd week vs 2nd week -0.065 0.02 0.001

4th week vs 3rd week 0.011 0.02 0.53
ablood-feeding success was not estimated during incubation due to sample size constraints
Abbreviation: SE standard error

a b

Fig. 3 Model estimates (± 95% CI) of the effects of the nestling age on the number of attracted (a) and proportion of blood filled mosquitoes (b)
of Cx. modestus individuals (see also Tables 2,3). The values presented here were transformed for the corresponding response scale and calculated
for mean brood size. Nestling age did not have a significant effect on the total number of attracted mosquitoes. However, blood-feeding success
patterns peaked in the second week after hatching
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number of nestlings in a brood, indicating that each nest-
ling may receive similar vector loads regardless of brood
size. Mosquitoes use multiple olfactory cues and skin em-
anations to locate vertebrate hosts [65]. Presumably, larger
broods produce increased host stimuli attracting the in-
sects from a larger area, hence the observed pattern.
We also demonstrated nestling age dependent vector

attraction and blood-feeding success rate. First, our re-
sults indicated that Cx. pipiens is disproportionately
attracted to nestling age categories where the adult birds
are absent compared to age categories where adult pres-
ence is presumed (incubation and the 1st week after
hatching). It is possible that albeit an incubating adult is
larger than the nestlings, a single bird with a complete
plumage may be emitting less intensive cues compared
to a brood of semi-grown nestlings Secondly, blood-
feeding success rates are considerably higher for both
Culex species in the first two weeks after hatching, and
subsequently drop in later breeding stages. This decrease
in both attraction and blood-feeding success coincides
with the development of body and flight feathers. The
gradual shift from downy feathers to juvenile plumage
presumably decreases the body surface where mosqui-
toes may feed [66] and by acting as a better insulator
may also decrease host attractiveness. Furthermore, it
may also be adaptive for mosquitoes to select for young
nestlings as the probability of successful blood-feeding
may be higher compared to that on fledglings.

It has to be emphasized that our method to quantify
mosquito attraction and blood-feeding patterns hinder
the estimation of true host-vector contact rates. None-
theless, it allows us to speculate that younger red-footed
falcon nestlings are at higher risk of infection by vector-
borne pathogens.
We also showed that the very mosquitoes attracted to the

nests harbour WNV. Although the virus was only present
in Cx. pipiens, this is likely due to the fact that this species
was an order of magnitude more abundant than Cx. modes-
tus. The obtained prevalence estimate (~4%, 95% CI: 0.9–
7.5%) is in the range of that found in North America for
Lineage 1 strains [9, 67–70] but somewhat higher than esti-
mated for Hungary in general [71] and the Czech Republic
[12]. However, this estimate does not indicate large scale
amplification of the virus, despite the fact that the attributes
of the studied host-vector system (coloniality, a large num-
ber of potential vectors and hosts) would, in theory, allow
for effective virus circulation and accumulation. Nonethe-
less, it is likely that this prevalence estimate indicates a
stable WNV sylvatic cycle at the study site.
Although we confirmed WNV presence in vectors dir-

ectly attracted by red-footed falcon nestlings, the virus
was not present in detectable amounts in blood samples
of the exposed birds. Despite the lack of viremia, we found
that a considerable proportion (~25%) of these nestlings
was WNV-seropositive. These seemingly contradicting
observations may arise if either all seropositive nestlings
were infected soon after hatching and/or the duration of
detectable viremia was remarkably short. This scenario is
however unlikely based on estimates in viremia magnitude
and length of large falcons [72] and a comparative study
on multiple species [73]. More probable is that the major-
ity, if not all, seropositive nestlings had maternally derived
antibodies against WNV [37, 74]. This is also corrobo-
rated by two additional results. First, age dependent in-
crease in ELISA OD ratios, indicate that Ig levels decay
with the days elapsed from hatching as opposed to in-
creasing and/or stagnation in infected birds [72]. Sec-
ondly, ELISA OD ratios decreased with hatching order,
showing that younger nestlings have higher Ig values in
nests with at least one seropositive nestling. Red-footed
falcons typically hatch 1–2 days apart in a clutch, there-
fore, both results show that the time-scale of maternally
derived antibody decay can be measured in days [75–77].
However, antibody decrease in free ranging birds with the
active immune response is detectable over months [78].
Nemeth et al. [79] argued that the rapid decay of maternal
antibodies in nestling house sparrows is unlikely to offer
effective protection to offspring [79].
If successful blood-feeding probability is nestling age-

dependent, it is possible that the efficiency of passive im-
munity is not exclusively linked to the half-life of mater-
nal antibodies.

Fig. 4 ELISA OD ratios according to hatching order in broods where
at least one ELISA-seropositive nestling was found. The black line
shows a significant mean decrease in OD ratios (i.e. increase in
antibody levels) according to LME model parameter estimate.
The grey areas along the y axis depict ELISA classification categories
as recommended by the manufacturer. Note that the OD ratio values
were jittered along the x-axis. The results show that nestlings that
hatched later (i.e. closer to the time of sampling) may have higher
antibody levels
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Conclusions
Understanding vector-borne arboviral infection systems in
avian hosts requires a comprehensive approach that en-
tails studying host-vector and vector-pathogen interac-
tions. Using a specific trap placed in the vicinity of the
brood, culicid vectors directly attracted by the studied
hosts can be quantified in natural conditions, and these
samples can also be used to estimate viral loads of vectors.
WNV has an established sylvatic cycle and poses a direct
threat to red-footed falcon nestlings. The array of soft evi-
dence presented here points to the prediction that either
nestlings have very short viremia or that a large propor-
tion of red-footed falcon females breeding in the studied
population allocates WNV antibodies to their eggs. This
also leads to the prediction that the breeding adults have
been infected by the virus either at the breeding site or
during their wintering period in Africa. Considering the
host-vector contact rate patterns, yolk transfer of anti-
bodies may be an efficient measure to protect nestlings
with naive immune systems from the clinical effects of a
WNV infection. The highest risk of contact with a poten-
tial WNV vector is in the first two weeks after hatching
when maternal antibodies are expected to be sufficiently
high based on estimated decay patterns in other birds. In
any case, our results do not allow us to explicitly rule out
either of the following two competing theories, i.e. that
the observed patterns are either caused by very short
viremia or by maternal transfer of antibodies. However,
red-footed falcon nestlings are likely to have low WNV
host competence under both scenarios and are less likely
to be key hosts maintaining the sylvatic cycle of the virus,
at least during their breeding season.
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