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Introduction

It has been estimated recently that cereals 
are harvested on 700 million hectares (Mha) 
worldwide (Dunwell, 2014), and also that, 
due to low temperature damage, worldwide 
losses in crop production amount to about 
US$2 billion each year (Sanghera et al., 
2011). In spite of the urgent need for more 
cold- or frost-tolerant cereal varieties, clas-
sical breeding programmes have shown 
limited progress in improving freezing tol-
erance (Thomashow, 1999). This lack of 
success is due mainly to the fact that the 
physiological process, i.e. the cold accli-
mation that leads to the development of 
freezing tolerance, is quite a complex 
quantitative trait. However, the deeper in-
sight provided by different ‘omics’ tech-
nologies has made possible knowledge-based 
engineering of more stress-resistant plants; 
while the recent developments in cereal 
transformation methodology offer the tech-
nology to realize these aims. Since many re-
cently published book chapters and reviews 
summarize our current knowledge on plant 
abiotic stress tolerance, this chapter focuses 

particularly on freezing tolerance, espe-
cially in cereals.

Changes in the Initial Phase of  
Cold Acclimation

Decreasing temperature, day length and the 
alteration in light spectra during the autumn 
period are the three main environmental 
factors that provide signals for temperate 
zone perennial plants to prepare for upcom-
ing frosty conditions (Badawi et al., 2007; 
Franklin, 2009; Sandre et al., 2011). In the 
cold acclimation process, however, only the 
contribution of cold temperature and day 
length are well elaborated, while the effect 
of light quality has not been researched 
 extensively (Franklin and Whitelam, 2007). 
On sensing the changing environmental 
conditions, most of the metabolic processes 
are reprogrammed in a time-dependent manner. 
The first phase is associated with a decrease 
of hydraulic conductivity of roots, resulting 
in decreased water potential in leaves. To 
maintain the appropriate homeostasis of tis-
sues, water status needs to be stabilized by 
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stomata closure, which is regulated by ab-
scisic acid (ABA). It is well documented that 
ABA content increases transiently in the early 
stage of cold stress response (Galiba et al., 
1993). An increased level of ABA was found 
to coincide with the downregulation of other 
stress hormones, salicylic acid and jasmonic 
acid during an early phase of wheat response 
to cold stress (Kosová et al., 2012). The 
interaction among plant hormones is re-
viewed elsewhere (Galiba et al., 2013).

CBF transcription factors

After exposure to low temperature, in paral-
lel with the enhanced ABA level, the tran-
scriptome of those plants capable of cold 
acclimation undergoes a complete reorgan-
ization, as revealed by the up- or downregu-
lation of thousands of genes (Greenup et al., 
2011; Laudencia-Chingcuanco et al., 2011). 
As estimated in Arabidopsis, more than 200 
transcription factors are involved in the re-
configuration, and may serve as regulators 
for acclimation (Thomashow, 2010). The best 
understood cold regulatory pathway is the 
CBF regulon controlled by the C-repeat 
binding factors (CBFs), also called dehydra-
tion-responsive element binding (DREB1) 
factors (Thomashow, 2010; Mizoi et al., 
2012). The CBFs belong to the AP2/EREBP 
(APETALA2/ethylene-responsive element 
binding protein) transcription factor family 
and possess a plant-specific AP2 DNA bind-
ing domain that interacts with the C-repeat 
elements present in the promoter region of 
their target genes (Jaglo et al., 2001). CBF 
expression is induced by different abiotic 
stresses (cold, drought, salt). The function 
of CBF genes has been revealed in many 
plant species. In Arabidopsis, six CBFs have 
been identified, while in the economically 
important cereals, the number of CBFs are 
much higher: 20 in barley (Hordeum vul-
gare L.) (Skinner et al., 2005), 13 in einkorn 
(Triticum monococcum) (Miller et al., 2006) 
and 37 in common wheat (Triticum aes-
tivum L.) (Badawi et al., 2007). CBF genes 
are positioned in clusters on the homeolo-
gous group 5 chromosomes of the Triticeae 
and coincide with the FR-2 quantitative 

trait locus (QTL) for freezing tolerance 
(Vágújfalvi et al., 2003, 2005; Miller et al., 
2006; Tondelli et al., 2006; Båga et al., 2007; 
Francia et al., 2007). CBFs in Triticeae are 
regulated in a complex way, influenced by 
genotype, induction-temperature and light- 
regulated factors (Campoli et al., 2009). 
Analysis of 201 rye (Secale cereale L.) geno-
types showed that single nucleotide poly-
morphisms (SNPs) in ScCBF15 and ScCBF12 
genes were significantly associated with 
frost tolerance (Li et al., 2011). An einkorn 
mapping population was generated (Miller 
et al., 2006) and subjected to frost tests 
(Knox et al., 2008) and it was shown that 
three CBF genes (TmCBF12, TmCBF14 and 
TmCBF15) were responsible for the in-
creased frost tolerance, and this improve-
ment was related to higher expression levels 
of COR14b and DHN5 genes (Knox et al., 
2008). In hexaploid wheat, three CBF genes: 
TaCBF14, TaCBF15 and TaCBF16 were also 
induced by cold treatment; moreover, their 
enhanced expression was correlated with 
the level of frost tolerance (Vágújfalvi et al., 
2005). In a comparative transcriptome ana-
lysis, six wheat CBFs – among them CBF14 – 
were found to be differentially expressed in 
the cold-acclimated winter wheat lines rela-
tive to the non-acclimated controls, thus 
suggesting a possible gain of function muta-
tion that led to an increased level of frost 
tolerance. These mutations are considered 
as potential markers for frost survival (Sutton 
et al., 2009). The association analysis between 
genetic variants of CBFs and freezing toler-
ance revealed that two nucleotide substitu-
tions in HvCBF14 were statistically associated 
with freezing tolerance in a large European 
barley germplasm collection, suggesting that 
there was some degree of specificity among 
the different CBFs, and that HvCBF14 was the 
most relevant one for frost tolerance (Fricano 
et al., 2009).

The role of the individual CBF genes in 
temperate cereals is poorly understood, and 
their function has been tested by transform-
ation methods in only a few experiments. 
Based on the above-mentioned results, 
TaCBF14 and TaCBF15 were isolated and 
overexpressed in spring barley to prove 
their function. The analysis showed that these 
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transgenes indeed improved frost tolerance 
(Soltész et al., 2013). The expression of sev-
eral target genes, regulated by the CBFs 
(HvCOR14b, HvDHN5 and HvDHN8), was 
enhanced in transgenic lines (Soltész et al., 
2013). The overexpression of the barley HvCBF4 
gene in transgenic rice resulted in increased 
tolerance to low temperature, drought and 
high salinity (Oh et al., 2007). Overexpres-
sion of the wheat CBF2 gene led to improved 
frost tolerance and enhanced expression of 
downstream genes in transgenic tobacco 
( Takumi et al., 2008). Constitutive overex-
pression of HvCBF2A in spring barley led to 
greater freezing tolerance, as well as to en-
hanced transcript levels of HvCOR14b and 
HvDHN5 (Jeknič et al., 2014).

The experiments cited above show that 
members of the CBF transcription factor fam-
ily are effective in improving freezing toler-
ance in diverse genetic backgrounds. In the 
future, the use of inducible or tissue- specific 
promoters may help to avoid the secondary 
effects (late flowering, retarded development) 
often found in transgenic plants overexpress-
ing these genes.

OsMYB4 transcription factors

The MYB (myeloblastosis) transcription fac-
tor family is present in all eukaryotes, but 
plants encode a considerably larger number 
of MYB genes compared to fungi and animals 
(Katiyar et al., 2012). The MYB DNA-binding 
domain contains approximately 52 amino 
acid residues, and based on the number of 
adjacent MYB repeats, MYB transcription 
factors are classified into four major groups, 
namely 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB, 
containing one, two, three and four MYB re-
peats, respectively. The process of classifica-
tion of MYBs is still in progress.  Recently a 
genome-wide analysis led to the identifica-
tion of 155 and 197 MYB genes in rice and 
Arabidopsis, respectively (Katiyar et al., 
2012). The authors classified MYB transcrip-
tion factors into four distinct groups namely 
‘MYB-related genes’, ‘MYB-R2R3’, ‘MYB- R1R2R3’ 
and ‘atypical MYB genes’ based on the pres-
ence of one, two, three and four MYB repeats, 
respectively.

In plants, MYB transcription factors 
play a key role in plant development, hor-
mone signal transduction, secondary me-
tabolism, disease resistance and abiotic 
stress tolerance (Baldoni et al., 2013). From 
the different MYB classes, the R2R3-type 
OsMYB4 transcription factor of rice has been 
shown to play a special role in the regulation 
of several metabolic pathways during the ac-
climation to different abiotic stresses.

The function of OsMYB4 transcription 
factors was first revealed with the aid of 
Arabidopsis transgenic lines exposed to 
different stresses (cold, frost, drought, salt, 
ultraviolet (UV), ozone, viruses, bacteria and 
fungi). Not just improved tolerance/resist-
ance to these conditions but also the activa-
tion of signal transduction processes involved 
in many different stress responses was shown 
in these transgenic lines (Vannini et al., 2004, 
2006; Mattana et al., 2005). The importance 
of this gene was also demonstrated by the 
transformation of Arabidopsis and apple. 
The enhanced freezing and dehydration 
tolerance observed was considered a likely 
consequence of the accumulation of com-
patible osmolytes (Pasquali et al., 2008). The 
involvement of this transcription factor in 
the stress regulation process was also dem-
onstrated indirectly, since several effector 
genes, such as COR15a, COR78 and D1-pyrroline- 
5-carboxylate synthase (P5CS), also showed 
moderate induction in the Arabidopsis 
transgenic lines (Vannini et al., 2004, 2006; 
Mattana et al., 2005).

The expression of OsMYB4 transcript 
at three different levels in a Nipponbare rice 
genetic background shows that expression 
at a supraoptimal level leads to the misex-
pression of alternative targets with develop-
mental side effects that affect panicle 
development (Park et al., 2010). Using tran-
sient expression assays, Baldoni et al. (2013) 
demonstrated that OsMyb4 was able to re-
press the activity of not only a paralogous 
gene, namely Os02g41510, but its own pro-
moter, too. This ‘feedback control’ mechan-
ism might explain the complexity of the 
transcript dynamics of the OsMyb4 trans-
genic plants, as well as the unexpected de-
velopmental alterations that were described 
by Park et al. (2010).
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The function of OsMyb4 was proved 
mainly in Arabidopsis. Until now, the ef-
fectiveness of this gene in cereals has been 
shown only in barley. Under the control of 
the stress-induced promoter COR15a, the 
overexpression of OsMYB4 gave improved 
cold tolerance in the spring barley Golden 
Promise. Transgenic lines had higher resist-
ance to hypoxia and cold stress during ger-
mination. This work suggests a possible role 
of OsMYB4 in the development of flooding 
tolerance and in the facilitation of germin-
ation under unfavourable conditions (Soltész 
et al., 2012).

Considering the results described above, 
we agree with the conclusion drawn by Park 
et al. (2010): ‘Transcription factors down-
stream to OsMYB4 appear to be the more 
ideal tools for regulon engineering because 
their individual effects are confined to spe-
cific defense mechanisms leading to posi-
tive net gains.’

Changes During Prolonged  
Cold  Acclimation

Under prolonged cold conditions, the pro-
cess of metabolic change continues, such as 
the accumulation of protective proteins, es-
pecially dehydrins, the downregulation of 
ABA levels and an elevation of positive 
regulators of cell division and growth (i.e. 
cytokinins, gibberellins and auxin) (Galiba 
et al., 2013; Vanková et al., 2014). These 
changes lead to the adaptation to low tem-
perature, with a readjustment of metabolic 
activity to the less favourable conditions. 
According to recent views, the ‘master’ of 
these processes is the CBF regulon (Kurepin 
et al., 2013). Genes specific to this pathway 
encode, for example, other transcription 
factors, cold-regulated (Cor)/late embryo-
genesis abundant (Lea) genes, osmoprotect-
ant biosynthesis proteins, carbohydrate 
metabolism-related proteins, sugar transport 
proteins, etc. (Vitámvás and Prásil, 2008; 
Zhou et al., 2011).

More importantly, apart from the regu-
lation of the above-mentioned protective 
mechanisms, the CBF regulon affects plant 
development, especially by preventing growth 

and inducing a dwarf, compact phenotype, 
together with increased photosynthetic per-
formance, typically associated with cold- 
acclimated plants (reviewed by Kurepin et al., 
2013). The CBF transcription factor was found 
to downregulate levels of active gibberellins 
by stimulating genes for the gibberellin- 
inactivating enzymes (GA 2-oxidases) and 
also by stabilizing DELLA proteins (named 
after the conserved Asp-Glu-Leu-Leu-Ala 
N-terminal motif using their one- letter codes), 
which are repressors of the gibberellin sig-
nalling pathway (Achard et al., 2008; Soltész 
et al., 2013). The other important feature 
during cold acclimation is the maintenance 
of appropriate energy balance. Cold-hardy 
species, such as winter crops and Arabidop-
sis thaliana, exhibit an increase in photo-
synthetic capacity through the upregulation 
of carbon metabolism during cold acclima-
tion (Hurry et al., 1995; Hüner et al., 1998; 
Stitt and Hurry, 2002; Dahal et al., 2012). 
This process leads to global reprogramming 
of photosynthetic carbon metabolism (Gray 
and Heath, 2005). The cold acclimation- 
induced stimulation in photosynthetic 
 capacity is correlated positively with the 
development of freezing tolerance, as well 
as with an increased resistance to low 
temperature-induced photoinhibition in 
winter rye and winter wheat (Gray et al., 
1996;  Pocock et al., 2001). Most likely, the 
photosynthetic carbon metabolism-related 
acclimation process is also linked, at least 
partly, to the CBF regulon. It was shown re-
cently that the expression of AtCBF3 ap-
peared to be governed by chloroplast 
excitation pressure modulated by either 
low temperature or high light (Bode, 2013). 
Moreover, overexpression of CBFs in differ-
ent plant species mimics the cold acclima-
tion process, and the enhanced 
photosynthetic performance associated 
with cold acclimation ( Savitch et al., 2005; 
Yang et al., 2010; Dahal et al., 2012; Lee and 
Thomashow, 2012).  Accordingly, we de-
scribe below the most important metabol-
ites where accumulation during the cold 
acclimation process is characteristic, and 
which are overwhelmingly used as markers 
to prove the enhanced freezing tolerance of 
the genetically modified plants.
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Carbohydrates

As described above, there is a positive cor-
relation between photosynthetic perform-
ance and cold acclimation. Consequently, 
there must also be some correlation between 
the carbohydrate content of the different 
plant tissues and the manifestation of the ac-
tual freezing tolerance. Indeed, early studies 
on spring and overwintering crops have 
shown that freezing tolerance is correlated 
strongly with the capacity to increase sol-
uble carbohydrate pools during cold hard-
ening (Tognetti et al., 1990; Öquist et al., 
1993; Hurry et al., 1995). Furthermore, field 
studies have shown that plants become vul-
nerable to freezing injury when the fructan 
pool becomes depleted and simple sugars 
can no longer be released into the cytosol 
and intracellular liquid (Olien and Clark, 
1993). Association between freezing tolerance 
and carbohydrate accumulation was also 
demonstrated using genetic tools. QTLs 
controlling traits associated with winter 
hardiness in barley, including field survival, 
LT50 (temperature lethal to 50% of a test 
population), growth habit and crown fructan 
content, were mapped to chromosome 7 
(Hayes et al., 1993). The positive correlation 
between carbohydrate accumulation and 
freezing tolerance was also revealed in ex-
periments using chromosome substitution 
analysis in wheat (Galiba et al., 1997; Vágú-
jfalvi et al., 1999). It was shown that 5A and 
5D chromosomes not only increased freez-
ing tolerance but also increased the accumu-
lation of carbohydrates in a time-dependent 
manner (Vagújfalvi et al., 1999). These re-
sults are in agreement with the recent view, 
summarized below, regarding the role of 
fructans in freezing tolerance (see details in 
recent excellent reviews by Livingston et al., 
2009, and Yoshida and  Kawakami, 2013).

Fructans are water-soluble carbohy-
drates that accumulate in vacuoles and act 
as storage carbohydrates in a large number 
of plant species. Wheat also uses fructan as 
a temporal photoassimilate instead of starch 
in plastids. Temperate grasses accumulate a 
levan type of fructan, which is composed 
primarily of β(2→1)- and β(2→1)-linked 
fructosyl units, which are biosynthesized 

by sucrose:sucrose 1-fructosyltransferase 
(1-SST wft2, AB029888), sucrose:fructan 
6-fructosyltransferase (6-SFT wft1, AB029887; 
Kawakami and Yoshida, 2002) and fructan:-
fructan 1-fructosyltransferase enzymes, while 
it is degraded by fructan exohydrolase (FEH) 
(Gallagher et al., 2007; Yoshida and Tamura, 
2011).

Transgenic approaches proved to be very 
useful in verifying the role of key enzymes 
in fructan metabolism, and also in monitor-
ing the changes in physiology-related traits. 
Transgenic perennial ryegrass (Lolium per-
enne) that overexpressed wheat 1-SST and 
6-SFT genes under the control of the consti-
tutive CaMV 35S promoter accumulated an 
increased level of fructan. These transgenic 
plants also had increased tolerance to freez-
ing at the cellular level (Hisano et al., 2004). 
Transgenic perennial ryegrass overexpress-
ing onion 1-SST and 6G-FFT (fructan:fructan 
6G-fructosyltransferase) genes showed in-
creased fructan levels up to threefold higher 
in leaf and stem tissues compared to the 
wild type (Gadegaard et al., 2008). Rice plants 
overexpressing wheat 6-SFT and 1-SST genes 
accumulated more fructans in the leaves 
and in the stems, and 1-SST transgenic rice 
seedlings exhibited enhanced chilling toler-
ance as well (Kawakami et al., 2008). In a 
study where rye 1-SST and wheat 6-SFT 
genes were overexpressed under the control 
of a wheat aleurone layer-specific promoter 
(ns-LTP) in triticale plants, it was shown that 
the transgenic lines accumulated some 50% 
less starch and 10–20 times more fructan in 
the dry seed compared to the wild type. These 
fructans were metabolized rapidly during 
germination, and in the transgenic lines, 
where both the 1-SST and 6-SFT genes were 
overexpressed, the fructan contents were sig-
nificantly higher compared to the wild type. 
Also, during low-temperature germination, 
an increased synthesis of fructans was ob-
served in the transgenics (Diedhiou et al., 2012).

Proline

Apart from the dynamic changes of carbo-
hydrate content, significant changes in the 
content of hundreds of other metabolites 
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have been reported during both cold and 
sub-zero acclimation (Pearce, 2004; Zhu 
et  al., 2007; Henson et al., 2014). We will 
consider here only the free amino acids, al-
though other metabolites, like polyamines, 
nitric oxide and glutathione, are essential in 
redox control during cold acclimation ( Galiba 
et al., 2013; Kocsy et al., 2013).

Most of the metabolite-related studies 
during cold acclimation were carried out on 
the model plant Arabidopsis (Cook et al., 
2004; Kaplan et al., 2004; Guy et al., 2008). 
The importance of the free amino acids, es-
pecially proline, in abiotic stress tolerance 
of plants has been well established for a 
long time. The amino acids have several 
roles in plants; for example, they act as os-
molytes, detoxify heavy metals, regulate ion 
transport and stomatal opening, and affect 
the synthesis and activity of enzymes, and 
influence gene expression and redox homeo-
stasis (Rai, 2002). Proline, as a source of os-
molite, could have a special role during cold 
acclimation, since its accumulation may 
prevent water loss occurring from cells at 
sub-zero temperatures, due to extracellular 
ice formation. Indeed, the proline content 
increased in a variety of plant species (orange, 
potato, wheat, etc.) during cold acclimation. 
Moreover, supplying proline to potato ex-
ogenously increased its freezing tolerance 
(Yelenosky, 1979; van Swaaij et al., 1985; 
Dörffling et al., 1990; Macháčcková et al., 
2006).

High proline content has been con-
sidered as a marker for drought tolerance in 
cereal breeding programmes, and even in 
winter barley the elevated proline levels in 
cold-hardened leaves was used as an early 
selection criterion for freezing-tolerant lines 
(Winkel, 1989). However, we now realize that 
this was a rather simplified assumption. First 
of all, in plants, there is a large overlap be-
tween cold-regulated and circadian-regulated 
genes (Fowler, 2008). Carrying out meta-
bolic profiling, Espinoza et al. (2010) found 
about 80% of metabolites that showed diur-
nal cycles maintained these oscillations 
during cold treatment. So, the level of the 
metabolites is fluctuating even on a daily 
basis, which makes the interpretation of the 
actual concentration dubious. Second, in a 

recent study, where 54 Arabidopsis acces-
sions with diverse geographical origin were 
compared, it was concluded that leaf glu-
cose, fructose, sucrose and raffinose con-
tents were correlated with freezing tolerance 
in the cold-acclimated state, while proline 
content was not (Zuther et al., 2012). How-
ever, in a Thellungiella germplasm collec-
tion, the proline content was in correlation 
with freezing tolerance (Lee et al., 2012). 
Although cold treatment triggered the accu-
mulation of proline in Brachypodium, the 
size of the proline pool of a given accession 
could not be used to predict its freezing tol-
erance behaviour accurately (Colton-Gagnon 
et al., 2014). Comparing three wheat culti-
vars with different freezing tolerances, the 
proline content was found to have increased 
in all of the cultivars after one week of cold 
acclimation, but a prolonged cold acclima-
tion resulted in different profiles: no further 
increase occurred in the most sensitive cul-
tivar, while an additional increase occurred 
in the other two cultivars (Kamata and 
 Uemura, 2004). It was reported that accu-
mulation of proline at low temperature in 
wheat was accompanied by an elevated 
level of ABA, a hormone involved in stress 
signalling (Macháčcková et al., 2006; Tuteja, 
2007). In a study using CS/Cheyenne disomic 
chromosome substitution lines, the substi-
tuted 5A chromosome from the winter 
hardy Cheyenne cultivar increased both the 
freezing tolerance and the ABA content in 
the recipient, cold-sensitive Chinese Spring 
(CS) genetic background (Galiba et al., 1993). 
So, an open question appeared: what is the 
relationship between the ABA and free amino 
acid content during the cold-acclimation 
process? To get the answer, the effect of cold 
acclimation and ABA on amino acid con-
tent was compared, using the same disomic 
chromosome substitution lines mentioned 
above (Kovács et al., 2011). Cold acclima-
tion induced the accumulation of most of 
the amino acids; while ABA had a signifi-
cant effect only on asparagine. So, the 
cold-induced changes in free amino acid 
levels were probably not mediated by ABA. 
Chromosome 5A may affect the cold- induced 
free amino acid content, through the activa-
tion of the CBF gene cluster, present at the 
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Fr-A2 locus in Triticeae (Atienza et al., 2004). 
This hypothesis is supported by results 
published on Arabidopsis, as described below 
(Cook et al., 2004).

To clarify the rather cloudy picture on 
the possible involvement of proline in abi-
otic stress tolerance, several proline-related 
transgenic studies were conducted (Szabados 
and Savouré, 2010). Transgenic Arabidopsis 
plants with an antisense AtProDH cDNA 
encoding proline dehydrogenase (which 
catalyses proline degradation) were gener-
ated (Nanjo et al., 1999). Several transgenics 
showed enhanced accumulation of proline, 
and these transgenic plants also showed tol-
erance to freezing and high salinity. In an-
other experiment, it was demonstrated that 
there was around an 80% overlap between 
the metabolic responses of the constitutive 
overexpressing CBF3 non-acclimated trans-
genic and non-transgenic cold-acclimated 
plants, indicating that the changes in the al-
teration of many metabolites (including 
proline) were regulated by the CBF genes 
in Arabidopsis (Cook et al., 2004). The con-
nection between CBF genes and proline me-
tabolism was confirmed more recently in a 
transgenic maize system. The overexpression 
of TsCBF1 from Thellungiella halophila in 
maize plants subjected to drought stress re-
sulted in increased pyrroline-5-carboxylate 
synthetase gene transcription, elevated pro-
line content, and also in higher stress toler-
ance (Zhang et al., 2010). So, we could 
conclude that it is likely the CBF regulon is 
responsible for the metabolic changes during 
cold acclimation.

Some other experiments, using trans-
genic plants, might also shed light on the 
puzzle of why the relation between proline 
accumulation and abiotic stress tolerance 
(especially for frost tolerance) is not really 
tight in each and every case. The Vigna aco-
nitifolia D1-pyrroline-5-carboxylate synthetase 
(P5CS) gene that encodes the key regulatory 
enzyme in proline biosynthesis has been 
transformed into wheat, and increased tol-
erance to water deficit has been shown in the 
transgenic lines (Vendruscolo et al., 2007). 
However, the authors concluded that the 
gained tolerance to water deficit observed in 
transgenic plants was not due to increased 

osmotic adjustment, but instead was due 
mainly to the induced protection mechan-
isms against oxidative stresses. It has also 
been reported that the higher proline ac-
cumulation in P5CS-transformed tobacco 
plants reduced free radical levels, measured 
by MDA (malondialdehyde) content, in re-
sponse to osmotic stress (Parvanova et al., 
2004).

From the results described above, it is 
clear that proline can be considered as a 
multifunctional amino acid, interacting 
with various metabolic pathways – especially 
with antioxidants – to ameliorate the con-
straints of abiotic stresses. That is why its 
accumulation rate cannot be considered in 
the same way as a ‘single trait’ of stress tol-
erance. However, even considering this fact, 
we can still support the conclusion of Sza-
bados and Savouré (2009), who stated that 
the engineering of proline metabolism could 
lead to new opportunities to improve plant 
tolerance of environmental stresses.

Conclusions

Molecular biology advances, in parallel 
with improved transformation methodology, 
have opened up a great opportunity to de-
velop more stress-tolerant cereal varieties, 
in addition to facilitating our understanding 
of the function of the genes involved. In spite 
of the fact that, nowadays, experiments 
with transgenic plants are restricted mainly 
to testing and proving target gene function, 
in the (near) future these experiments will 
result in plant materials ready to be pro-
vided to breeders to allow the development 
of commercial varieties.
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