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Abstract—Uncertainty over model structures poses a challenge
for many approaches exploring effect strength parameters at
system-level. Monte Carlo methods for full Bayesian model
averaging over model structures require considerable compu-
tational resources, whereas bootstrapped graphical lasso and its
approximations offer scalable alternatives with lower complexity.
Although the computational efficiency of graphical lasso based
approaches has prompted growing number of applications, the
restrictive assumptions of this approach are frequently ignored,
such as its lack of coping with interactions. We demonstrate
using an artificial and a real-world example that full Bayesian
averaging using Bayesian networks provides detailed estimates
through posterior distributions for structural and parametric
uncertainties and it is a feasible alternative, which is routinely
applicable in mid-sized biomedical problems with hundreds of
variables. We compare Bayesian estimates with corresponding
frequentist quantities from bootstrapped graphical lasso using
pairwise Markov Random Fields, discussing also their interpre-
tational differences. We present results using synthetic data from
an artificial model and using the UK Biobank data set to explore
a psychopathological network centered around depression (this
research has been conducted using the UK Biobank Resource
under Application Number 1602).

I. INTRODUCTION

The joint exploration of the existence and quantitative
properties of all direct dependency relations in a given domain,
i.e. which are not mediated by other variables present in the
given analysis, is still a central challenge. At the two ends of
the spectrum of approaches utilizing recent large health data
sets are the (1) knowledge-intensive parametric methods and
the (2) fully inductive methods. The former relies on creating
an a priori network based on a preliminary hypothesis, and
using data for its validation and refinement. The aim of such
methods is to create an adequate parametric model that allows
the investigation of quantitative effect strength relations. The
latter approach uses the data in inductive methods potentially
incorporating a priori constraints to investigate quantitatively
the effect strength relations.

The growing availability of large data sets boosted ex-
pectations that inductive methods can cope with the model
structure level as well, but theoretical results indicated that

computational and statistical complexities are prohibitive in
general. Within the frequentist approaches, severe restrictions
of model classes, sparsity-oriented complexity regularization,
and utilization of bootstrapping led to tractable methods, such
as graphical lasso and its extensions. Within the Bayesian
framework, abundant computational resources fuel the devel-
opment of Bayesian averaging methods over model structures
to bypass the problem of model structure identification.

The low computational costs and robust statistical properties
of graphical lasso prompted widespread applications even in
domains, where its assumptions about the underlying distribu-
tion, high-dimensionality, scarcity of samples and lack of in-
teractions are not satisfied or not that vital. The application of
the bootstrap framework for structural model properties poses
further questions, which led to the following two questions
investigated in this paper:

1) Effect strength parameters: What is the relation of
effect strength estimates from graphical lasso, from
bootstrapped graphical lasso and from a full Bayesian
averaging over model structures and parameters?

2) Relational existence: What is the relation of bootstrap
proportions and posteriors for structural model proper-
ties, e.g. edges?

We systematically investigate these correspondences using
a synthetic data set from an artificial model and a depression-
related subset of the UKBiobank data set, discussing also novel
results from this analysis.

In the paper, first we overview properties of graphical lasso
based and full Bayesian approaches for the joint exploration of
parametric and structural aspects of direct dependencies. Next,
we briefly overview a specific full Bayesian approach, which
uses Markov-blanket graphs from the off-line results of an
MCMC analysis. Next, we systematically investigate the effect
of sample size on graphical lasso based estimates and on full
Bayesian estimates using an artificial network containing 11
variables. Finally, we systematically compare graphical lasso
based estimates and full Bayesian estimates using the UK
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Biobank data set to explore a depression focused comorbidity
and deep phenotypic network.

II. PREVIOUS WORKS

The knowledge-intensive, probabilistic graphical model
(PGM) related approaches towards exploring the existential
and parametric aspects of direct relations usually require a
predefined structure which is evaluated and potentially refined
against the data. Related methods, such as the frequently
applied structural equation modeling, provide measures for
assessing the significance of variable relationships and model
fitting [1]. Furthermore, the prequential approach allowed a
sequential Bayesian evaluation of various, hierarchic model
properties [2]. These approaches can be advantageous for
relatively small, well-defined models based on firm hypotheses
or former evidence. However, the lack of learning the struc-
ture from data poses considerable limitations e.g. in case of
previously unexplored domains.

Inductive methods use data (usually without flexible options
to incorporate a priori knowledge) to jointly explore both the
existential and parametric aspects of direct relations. Early
frequentist methods, such as the causally motivated TETRAD
approach were designed for the frequentist identification of
structure and parameters, with proven asymptotic performance
under its assumptions [3]. Recent frequentist PGM-related
methods, such as graphical lasso, focus on the learning of
sparse models to allow applicability for small relative sample
size and for high-dimensional data sets, even at the omic
scales [4], [5]. Full Bayesian approaches usually take advan-
tage of the existence of efficiently computable, closed form
analytic solutions for model averaging at the parameter level
and the availability of exact Bayesian averaging in smaller
problems [6], [7] and the availability of efficient Markov Chain
Monte Carlo (MCMC) schemes for performing Bayesian av-
eraging at the model structure level [8].

Because of the growing interest of using bootstrapped
graphical lasso in such mid-sized problems, where MCMC-
based, hybrid full Bayesian approaches are also available and
can be used as a reference, we provide an overview on these
two approaches, and we investigate two specific methods.

A. Graphical lasso based approaches

The research of probabilistic graphical models as sparse rep-
resentations for correlation (covariance) structures goes back
to the work of Dempster [9]. This line of research was closely
related to the investigation of the representational capabilities
of probabilistic graphical models (PGMs), using undirected
graphs (Markov networks, Markov Random Fields, MRFs)
and directed acyclic graphs (Bayesian networks, BNs) [10]–
[13]. The first lasso proposals to learn sparse probabilistic
graphical models (”graphical lasso”) assumed multivariate
normal distributions [4], [5], which were extended toward the
Bayesian framework [14], [15] and also toward non-Gaussian,
discrete cases [16], [17]. Extensions for binary data resulting
in binary pairwise Markov Random Fields (bPRMs), were also
reported based on predictive approximations [18], [19].

A central, simplifying assumption behind this approach is
the assumption of linear Gaussian relations, i.e. that there are
no interactions in the local predictors, which guarantees the
sufficiency of pairwise interactions, i.e. the use of PMRFs.
Because data was usually scarce at least with respect to the
number of variables, higher-order interactions, i.e. interaction
factors in the predictive models, were deliberately ignored.
However, in mid-sized domains, such as in our research of
depression networks incorporating descriptors, environmental
factors and comorbidities, this assumption is overly restrictive.

Another open question is the remaining uncertainty at
the level of model structures and in our case especially
its implications for the effect strength parameters, although
asymptotic consistency is proven for graphical lasso under
the normality assumption [4] and sample complexity results
(finite sample bounds) were reported [16], [20]. As an ap-
proximation, bootstrap methods were proposed, for its early
application in the PGM field, see e.g. [21], [22]. However, the
interpretation of bootstrap proportions for structural features
is problematic [23]–[25]. Bayesian interpretation had already
appeared in the original paper introducing lasso [26], for
a detailed Bayesian interpretation, see comments from C.
Holmes in [27]. Furthermore, full-fledged Bayesian Lasso and
Bayesian graphical lasso were also reported in [14], [15], [28].
However, scalable, full Bayesian extension of graphical lasso
for discrete data, especially with options for including higher-
order interactions is currently not available.

The repertoire of R packages learning sparse graphical mod-
els using lasso contains for example the following: glasso [5],
parcor/adalasso [29], huge [30], qgraph [31], isingfit [32],
bootnet [33], BDgraph [28].

In this evaluation we will use a binary variant of graphical
lasso implemented in the bootnet R package [33]. It uses
logistic regression based predictive approximations and binary
pairwise Markov Random Fields (bPRMs) [18], [19], [32].

B. Full Bayesian approaches

Full Bayesian approaches, like joint optimization of model
structure and parameters, are natural candidates for the joint
exploration of existential and quantitative aspects of direct
dependency relations. Indeed, the joint treatment of model
structures and parameters avoids the unnecessary and hard
problem of model identification by performing Bayesian av-
eraging over model structures in the exploration of effect
strength relations. The full Bayesian approach and especially
the idea of Bayesian averaging over model structures and the
inducement of beliefs for high-level, semantic structural model
properties was already present in the first proposals [34], [35].
Subsequent works suggested methods for the Markov Chain
Monte Carlo based estimations of the posteriors for structural
properties. First Madigan et al. proposed a Markov Chain
Monte Carlo (MCMC) scheme over the space of directed
acyclic graphs (DAG) using an auxiliary ordering of variables
[36]. After an initial bootstrap-based approach [21], [22],
Friedman and Koller developed an MCMC method over the
space of variable orderings [37]. Several improvements were



suggested for the DAG-based MCMC method, such as new
operators by Giudici and Castello [38] and others [39], [7]. In
parallel, Koivisto and Sood introduced a method to perform
exact Bayesian inference over modular features [6], [7]. A
related randomized approach was presented by Pena et al. [40].

Using a full Bayesian approach based on a combination of
analytic solutions for the Bayesian averaging at the parameter
level and DAG- and ordering-based Bayesian averaging at
the structure level, we developed the Bayesian network-based
Bayesian MultiLevel Analysis (BN-BMLA) method. It uses
the hierarchy of Markov Blanket Graphs (MBGs), Markov
Blanket Sets (MBSs) and Memberships (MBMs) and estimates
the respective a posteriori probabilities of MBGs, MBSs and
MBMs. In the Bayesian statistical framework, the hierarchy
of these model properties can be exploited, because their
posteriors are directly induced along their topology [41].
Because the relevance of a relationship between variables
implied by an effect size measure (parametric relevance) and
by a dependency structure based measure (structural relevance)
does not necessarily correspond to each other, it is possible
to define hybrid measures that take both quantitative and
qualitative aspects into account providing a more detailed
view on the dependency relationships of variables. These
hybrid measures were proposed using a Bayesian network
formalism, as they consist of a structure representing condi-
tional (in)dependency relationships in the form of a directed
acyclic graph G, and a corresponding parametrization layer
θ [42]. Such measures are the following: structure conditional
Bayesian effect size measures and especially the MBG-based
Bayesian effect size [42], [43], and the effect size conditional
existential relevance (ECER) [44].

In this paper we will use the MBG-based Bayesian effect
size measure [43].

III. APPROACH

We performed a comparative analysis of the Ising
model based LASSO estimation method (IsingFit) [32] and
the Bayesian model averaging based relevance analysis
method [41], [43] using artificial and real data.

A. Experimental setup

Data sets consisting of 500, 1000, 5000 and 10000 complete
samples were generated based on a Bayesian network model of
11 binary variables using random sampling. Figure 1 displays
the structure containing 11 edges which will be referred to as
the ’reference model’ in following sections.

The aim of this comparative study was to analyze the struc-
ture learning capabilities of the involved methods. Therefore,
we focused on the edge weights provided by the IsingFit
R method and utilized the related bootnet package [45] to
investigate their stability. Using 100 bootstrapped data sets
the significance of edge weights and corresponding confidence
intervals were analyzed. In case of every edge weight the
proportion of data sets in which the edge weight was found
significant was computed. We refer to this as bootstrap pro-
portion in the subsequent evaluation.
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Fig. 1. The Bayesian network used to generate artificial data.

The Bayesian relevance analysis was configured to estimate
edge posterior probabilities using a uniform structure prior, a
Cooper-Herskovits parameter prior with 106 burn-in and 2·106
normal steps. In addition, Markov-blanket based Bayesian
odds ratios and corresponding credible intervals were also
computed [42].

Bayesian edge posteriors can be compared to bootstrap
proportions as both measures indicate (although by different
means) whether an edge is frequently present in possible
models, i.e. its structural relevance. On the other hand, edge
weights from the IsingFit method are equivalent to logistic
regression coefficients and can be interpreted as effect size
descriptors. Therefore, edge weights can be directly compared
to other effect size measures such as the Bayesian MBG-based
odds ratio.

B. Application domain

Depression became the largest single contributor to global
disability [46]. It has long been recognized that depression
and other medical disorders frequently co-occur in the same
individual, but the elusive nature of the disease and the high
level of parametric and structural uncertainties in comorbidity
analyses hindered the exploration of the underlying depen-
dency networks [33], [47]–[49]. Large scale health data sets,
such as UK Biobank [50] provides a novel, unique opportu-
nity to explore general comorbidities. Furthermore, disease-
specific information available for subcohorts provides an un-
precedented option to explore the dependencies of detailed
descriptors of psychological and psychiatric states, together
with a wide variety of variables such as personality traits,
social background, lifestyle and environmental descriptors.

The investigated real-world data is a subset of a UK Biobank
data set focusing on depression and related environmental,
social and lifestyle factors (application No.1602). For the pur-
poses of this study a reduced set consisting of 20 variables was
selected. All variables were discretized (if needed) to produce
a data set having only binary variables with a sample size of
110, 600. The IsingFit method was applied in conjunction with
bootnet using 50 bootstrapped data sets. Bayesian relevance
analysis was applied with similar settings as in the synthetic
data analysis case. Additionally, the number of ‘parents’, i.e.
incoming directed edges, was limited to 8 for each node.



C. Bayesian relevance analysis

Bayesian relevance analysis is a multivariate, model-based
Bayesian method which allows the analysis of dependency
relationships [41], [51]. It can be utilized as a general purpose
feature subset selection method, but it also allows the refined
analysis of complex dependency patterns. Bayesian relevance
analysis enables the identification of relevant variables, rele-
vant sets of variables, and interaction models of relevant vari-
ables. These are different abstraction levels of relevance which
can be analyzed by evaluating the posterior probability of
corresponding structural properties of an underlying Bayesian
network. In order to estimate these posterior probabilities a
Bayesian model-averaging framework is used.

Some properties such as Markov blankets are particularly
relevant for identifying relevant variables with respect to a se-
lected variable. The connection between Markov blankets and
strong relevance was established by the theorem of Tsamardi-
nos [52], which provides the set of conditions under which
relevant structural properties are unambiguously represented.
Assuming unambiguous representation, for a given structure
G all the strongly relevant variables Xi with respect to Y are
in the Markov blanket set of Y denoted as MBS(Y,G).

A more complex structural property based on MBS(Y,G)
that allows to distinguish between direct relationships and
interaction terms is called the Markov blanket graph.

Definition 1 (Markov blanket graph). “A Markov blanket
graph MBG(Y,G) of a variable Y is a subgraph of a
Bayesian network structure G, which contains the nodes of
the Markov blanket set of Y , that is MBS(Y,G) and the
incoming edges into Y and its children. Given a target node,
which corresponds to the target variable Y , MBG(Y,G) as a
(sub)graph structure consists of nodes that are (1) parents of
Y , (2) children of Y or (3) ‘other parents’ of the children of
Y ” [51].

In contrast with a graph structure G which contains all the
dependency relationships of variables, a Markov blanket graph
MBG(Y,G) includes only those relationships, in which Y
is closely involved. This property makes the MBG(Y,G) an
ideal candidate to serve as a base for measuring effect size.

D. Bayesian statistical framework

Bayesian relevance analysis relies on a Bayesian statisti-
cal framework, more specifically on Bayesian inference over
structural properties of Bayesian networks. Based on the pos-
terior for the dependency model P (G, θ|D) related posteriors
for various model properties can be derived. More specifically,
the posteriors for structural properties are of interest since the
main goal of this method is the discovery of the dependency
structure.

In general, for an arbitrary structural property F(Z, G) = f
defined on a set of variables Z the posterior probability can
be defined in the following general form:

EP (G|D)[IF(Z,G)=f ] =
∑
G

P (G|D) · IF(Z,G)=f , (1)

which means that only those P (G|D) DAG structure
posteriors are considered for which the indicator function
IF(Z,G)=f = 1, i.e. the structural property F(Z, G) = f holds
[41]. In other words, the general task of Bayesian relevance
analysis would be to compute the expectation function of
structural properties such as Markov blanket graphs over the
space of DAG structures. However, the exact computation
of such posteriors is generally infeasible due to the high
cardinality of possible DAG structures.

In order to efficiently estimate posteriors of structural prop-
erties of Bayesian networks, we proposed specialized MCMC
methods [51], [53]. The latter is a DAG MCMC method which
can be applied for the estimation of the posterior of any
structural property F(U,G) = f provided that an efficient
computation exists for the evaluation of the property and for
the unnormalized posterior P̃ (G|D) [35], [54].

The unnormalized posterior is utilized by an MCMC sam-
pling method which performs a random walk in the space
of DAGs. The transition between states (i.e. between various
DAG structures) is facilitated by DAG operators which delete,
insert or invert edges in the DAG structure [38]. The default
strategy is to apply these operators with a uniform probability
in the proposal distribution.

In a standard scenario, the MCMC process reaches a sta-
tionary state, i.e. convergence is established after a number
of steps. This interval is called the burn-in, during which
the sampled states of the random walk are discarded. Only
the samples collected after the burn-in are utilized for the
computation of posteriors.

The MCMC process results in a sequence of DAG structures
which is used to estimate the posteriors of structural properties.
The crucial step for the relevance analysis is the identification
of the Markov blanket graph for each target variable given
each DAG structure visited during the random walk. Note that
a joint Markov blanket graph of multiple targets can also be
identified at each MCMC step. Apart from Markov blanket
graphs, other structural properties can also be identified and
evaluated based on the currently encountered DAG structure.
After the identification and evaluation, statistics related to the
investigated properties are updated.

Following the MCMC process an additional computational
phase is executed. This step consist of computing the relative
frequency of each instantiation of the investigated structural
properties F(U,G) = f which leads to the estimate of the
posterior probability values given M samples:

EP (G|D)[IF(Z,G)=f ] ≈
1

M

M∑
i=1

IF(Z,Gi)=f , (2)

E. A structure conditional Bayesian effect size measure

Bayesian networks as a model class allows the analysis of
dependency relationships of variables from both qualitative
(dependency structure based) and quantitative (effect size
based) aspects. Investigating the structural properties of the un-
derlying DAG structure enables qualitative assessment, while
computing effect size measures based on the parametric layer



allows quantitative assessment of relationships. In addition, it
is possible to define such measures that take both aspects into
consideration.

The key notion is that if a variable Xi is a member of
the Markov blanket set of the target variable Y , then the
probability of a specific value of the target Y can be estimated
based on the MBG(Y,G) and a specific instantiation of
Xi [55]. Therefore, instead of taking into account the whole
structure G, the conditional probabilities required for odds
ratio computation can be estimated using only MBG(Y,G).

In the frequentist framework an odds is defined as the ratio
of conditional probabilities [56].

Definition 2 (Odds). Let X1, X2, ..., Xn denote discrete vari-
ables that have r1, r2, . . . , rn states respectively, and let Y
denote the target variable with y1, ..., yq possible states. Then
Xi = xi1 denotes variable Xi in state xi1 , and an odds is
defined as

Odds(X
(j)
i , Y (m,n)) =

p(Y = ym|Xi = xij )

p(Y = yn|Xi = xij )
. (3)

This means that the odds is computed for a given value of
Xi (denoted as X(j)

i ) using a selected pair of values of Y
(denoted as Y (m,n)). Consequently, the odds can be used to
compute the odds ratio for a pair of values of variable Xi

(denoted as X(k,j)
i ) given that both odds were computed for

the same pair of values of Y (denoted as Y (m,n)) [56].

Definition 3 (Odds ratio). An odds-ratio for variable Xi

between states xij and xik is given as

OR(X
(k,j)
i , Y (m,n)) =

Odds(X
(k)
i , Y (m,n))

Odds(X
(j)
i , Y (m,n))

(4)

For example, in case of a case-control study the target
variable Y is a binary disease indicator such that Y = 0:
non-affected (control), Y = 1: affected (case), and discrete
variables X1, X2, ..., Xn represent investigated clinical, social
or environmental factors. Then OR(X

(1,0)
i , Y (1,0)) denotes an

odds ratio of variable Xi with respect to target Y , which indi-
cates how Xi = 1 influences disease susceptibility compared
to Xi = 0. In other words, it quantifies the effect of variable
Xi on Y .

In the Bayesian framework, an odds ratio is a random
variable with a corresponding distribution depending on the
parametrization layer learned from the data. Accordingly, the
structure conditional odds ratio denoted as OR(Xi, Y |θ,G) is
a random variable with a distribution defined by p(θ,G|D)),
in which parametrization θ depends on a specific structure G,
and D denotes data. As mentioned earlier, a more practical
approach is to utilize Markov blanket graphs instead of the
whole G which leads to the Markov blanket graph based
Bayesian odds ratio [42], [43]:

Definition 4 (Markov blanket graph based Bayesian odds
ratio). The MBG-based Bayesian odds ratio (MBG-BOR) is
computed by averaging over the estimates of odds ratios based
on possible MBGs as follows

MBG-BOR(Xi, Y |D) =

n∑
j=1

OR(Xi, Y |MBGj(Y,G))

·p(MBGj(Y,G)|D) · I(Xi∈MBGj(Y,G)), (5)

where m is the number of MBGs with a poste-
rior p(MBGj(Y,G)|D) > 0. The indicator function
I(Xi∈MBGj(Y,G)) is 1 if Xi ∈ MBGj(Y,G) and 0 otherwise.

IV. RESULTS

First, we present the evaluation of the Ising model based
LASSO estimation method (IsingFit) [32] and the Bayesian
relevance analysis method [41], [43] on artificial data, then
we describe results corresponding to the real data.

One of the goals of this study is the comparison of boot-
strap proportions of structural properties (e.g. edges) against
corresponding posteriors. Note that the usual visualization of
pairwise Markov Random Fields shows the pairwise partial
correlations (β coefficients) by edge coloring and statistical
significances by edge width, whereas Bayesian network based
dependency maps are generally visualized by showing only
edge posteriors as quantifications of structural (existential)
uncertainties. Specifically, in graphical lasso the averages of
βi−j and βj−i, are shown between node i and j, whereas in
a Bayesian approach edge widths represent the sum of edge
posteriors p(i→ j|D) and p(j → i|D).

Here however, we wish to investigate both quantitative
(parametric) and qualitative (structural) aspects of both meth-
ods, thus for the sake of comparability we defer from these
conventions in certain cases, and indicate the correspondence
between graph features and represented measures.

A. Evaluation based on artificial data

Performance measures are presented in Table I for all artifi-
cial data sets, and evaluated according to the reference model.
SEN, SPC, denote sensitivity and specificity respectively. In
addition, the results of a chi-square based association test
(using a α = 0.05 significance threshold) was also included
as a reference. In case of IsingFit and edge was termed as
identified if the edge weight was found significant based on
its confidence interval. In case of a Bayesian method a decision
function can be defined, however there is no strict threshold of
relevance for posterior probabilities. For the purposes of this
evaluation we chose the arbitrary threshold of pr> 0.5. Thus
an edge was termed as identified if it had a larger posterior
probability.

Results indicate that 500 samples were insufficient to learn
the structure of the reference model properly for both the
IsingFit and the Bayesian relevance analysis methods, leading
to low sensitivity scores particularly in case of the former. In
case of 1000 samples the Bayesian method found all the edges
of the reference model and reduced the number of false edges
to zero. The performance of the IsingFit method improved, but
still missed a few edges. Figure 2 displays the identified edges
for both methods given the 1000 samples. The first structure
corresponds to the results of the Bayesian method, where the



TABLE I
COMPARISON OF THE PERFORMANCE OF LASSO-BASED AND BAYESIAN

METHODS BASED ON THE ARTIFICIAL DATA.

Sample Association LASSO - IsingFit Bayesian
Size SEN SPC SEN SPC SEN SPC

500 0.82 0.93 0.45 1.00 0.73 0.95
1000 1.00 0.91 0.55 1.00 1.00 1.00
5000 1.00 0.80 0.82 0.98 1.00 1.00

10000 1.00 0.77 1.00 0.98 1.00 1.00

Fig. 2. Evaluation of methods based on artificial data

edge width is proportional to the posterior probability, and
edge labels represent MBG-based Bayesian odds ratios. Note
that the directionality of edges is omitted.

The second structure corresponds to the IsingFit method,
where red colored edges indicate missing edges that were
found non-significant. Edge labels represent (the exponential
of) edge weights. As data size increased the sensitivity of
IsingFit gradually improved, however its specificity decreased.
This is due to the fact that the V-structure [1] formed
by variables X6 → X10 ← X7 represents a multivariate
interaction that can only be represented with a triangle in
a Markov random field thus requiring an additional edge
between X6 −X7 (marked blue in Figure 2).

In summary, Bayesian relevance analysis performs better in
the current scenario than IsingFit, which is partially due to the
fact that the data sets were generated from a Bayesian network.

Fig. 3. Comparison of edge posteriors and bootstrap proportions given the
artificial data set of 500 samples.

Fig. 4. Comparison of IsingFit edge weights and MBG-based Bayesian odds
ratios given the artificial data set of 500 samples.

Note that the association test had a high sensitivity, but its
specificity gradually decreased due to the increasing number
of false positive edges. Correction methods can alleviate such
symptoms of multiple testing to a degree, but they may also
impact sensitivity [57].

Furthermore, we performed additional analyses to compare
the properties of the investigated methods. Figure 3 presents
the comparison of bootstrap proportions and edge posteriors
for the data set with 500 samples.

These results indicate that among reference model edges
(marked as red dots) the IsingFit method used in conjunction
with bootnet retained a high uncertainty with respect to
several of these edges, which is reflected by considerably low
bootstrap ratios. Corresponding edge posteriors are higher in
some of the cases, however the number of false positives (i.e.
edges that are not present in the reference model) is also higher
in case of the Bayesian relevance analysis method.

Regarding the parametric aspect of variable relationships
we compared edge weights of the IsingFit method and the
MBG-based Bayesian odds ratios shown in Figure 4. Results
indicate that both methods assign approximately neutral effect
sizes to most non-relevant edges (marked as green diamonds).
In case of relevant edges (marked as yellow dots), the Bayesian
odds ratio tends to assign a higher score (in case of OR >
1 and lower score for OR < 1) for a relationship between
structurally relevant variables. This behavior is in accordance
with its definition, i.e. utilizing structural aspects of relevance.



Fig. 5. Comparison of confidence and credible intervals of effect size
measures for a selected set of variable relationships.Lasso-CI-H and CI-L
denote the higher and lower segments of the confidence interval of edge
weights of the IsingFit method. Similarly OR-CI-H and OR-CI-L correspond
to the confidence interval of the frequentist odds ratio, while MBG-OR-CR-
H and MBG-OR-CR-L denote the credible interval of Bayesian odds ratio.
The junction of the higher and lower segments is at the mean value of the
corresponding odds ratio.

Fig. 6. An example of MBG-based Bayesian odds ratio distributions. In case
of variables X1 −X4 and X2 −X8 the Bayesian odds ratio is relevant, the
corresponding credible intervals are compact and do not intersect with the
neutral effect size of 1. In contrast, the credible interval of X2−X5 contains
the neutral effect size and thus it is not relevant.

Furthermore, we compared the confidence intervals of edge
weights and credible intervals of MBG-based Bayesian odds
ratios shown in Figure 5. As a reference frequentist odds ratios
and corresponding confidence intervals are also presented.
Results indicate that IsingFit edge weights generally underes-
timate frequentist odds ratios and have a less wide confidence
interval. In contrast, the mean value of Bayesian odds ratios
is close to the corresponding frequentist odds ratios in case of
structurally relevant variable relationships and have a compact
credible interval. On the other hand, in structurally irrelevant
cases (e.g. X3 −X10, X9 −X10) the mean value is reduced
to the neutral effect size and the credible interval collapses to
a minimal size.

An additional feature of MBG-based Bayesian odds ratios
is that their distribution can be analyzed allowing further
insights. An example is presented in Figure 6. The Markov
blanket graph, which serves as its basis, encodes multivariate
dependencies which can manifest multi-modal distributions.
This can indicate that the effect size of the investigated variable
relationship depends on a given context. Thus the analysis
of such Bayesian odds ratio distributions may direct further
investigations.

Fig. 7. Scatter plot of Bayesian edge posteriors and bootstrap proportions
related to edge weights of the IsingFit - bootnet method.

B. Comparison of results based on real data

The main purpose of this real data based comparison was to
observe the characteristics of both the IsingFit and Bayesian
relevance analysis methods in an association rich domain.
Furthermore, multivariate relationships are key features of
such domains. Since IsingFit is a logistic regression like ap-
proximation excluding interactions, while Bayesian relevance
analysis is a model-based multivariate method taking (even)
higher-order interactions into account, considerable differences
in results are likely to appear.

Figure 7 compares bootstrap proportions and edge posteriors
related to the UKB data set. The remarkable feature of
this scatter plot is that there appears to be several cases in
which Bayesian edge posteriors are zero, whereas bootstrap
proportions are maximal (i.e. those variable relationships were
detected in all bootstrapped data sets).

In addition, Figure 8 presents the same edge posteriors and
bootstrap proportions in a pairwise way for all possible edges.
These results indicate that there are almost 40 edges having
zero posterior probability and maximal bootstrap proportion.
A possible explanation of this phenomenon is that some
of these edges are ‘required’ to represent the V-structure
like relationships in a Markov random field, similarly to the
case explained at the comparative study based on artificial
data. Another possible explanation is that there can be such
dependency relationships that Bayesian networks cannot ade-
quately represent. Either way this phenomenon requires further
investigation.

Figure 9 displays IsingFit edge weights and MBG-based
Bayesian odds ratios as log odds ratios. The effect size
assigned to particular edges are similar in the majority of the
cases, although the Bayesian odds ratios are moderately higher
(or lower if OR < 1). An exception to this phenomenon is the
set of edges (depicted as blue markers) which have a neutral
Bayesian odds ratio (logOR = 0) and a moderate edge weight.
These correspond to the previously mentioned edges with zero
posterior probability and high bootstrap proportion.

Finally, Figure 10 presents variable relationships learned by
both IsingFit and Bayesian relevance analysis methods. The



Fig. 8. Comparison of Bayesian edge posteriors and bootstrap proportions
related to edge weights of the IsingFit - bootnet method.

Fig. 9. Comparison of Bayesian and Lasso based approach. Lasso edge
weights and MBG-based Bayesian odds ratios.

first structure displays results of the Bayesian method, where
edge color refers to edge posteriors (yellow: 0.5 < pr< 0.75,
green: 0.75 < pr< 0.95, black: pr< 0.95), and edge width
corresponds to MBG-based Bayesian odds ratios. The second
structure is the result of IsingFit, where edge width corre-
sponds to edge weights. Edges having bootstrap proportion
lower than 1 were omitted. Some of the relationships having
high effect size can be identified in both structures such as
the Body fat - Obesity - Metabolic rate relationships, and the
Satisfaction– Neuroticism - Current depression relations. In
general, IsingFit learned a larger number of edges compared
to Bayesian relevance analysis, which might be due to the
different representational capabilities. The top 20 variable
relationships having the highest effect size are displayed in
Table II. The table also lists the rank of each relationship
according to the investigated measures. There is minimal
variation in the ranking order of the top 10 results. Among
higher ranks, however, there are considerable differences.

Both methods have additional measures that enable a re-
fined analysis of such models. Bayesian relevance analysis
methodology provides detail oriented analysis tools that allow
the investigation of selected relationship sets and relationship
types.

Fig. 10. Variable relationships learned from real data by Bayesian relevance
analysis (upper) and IsingFit (lower) methods.

TABLE II
TOP 20 VARIABLE RELATIONSHIPS BASED ON THE UKB DATA SET
HAVING THE HIGHEST EFFECT SIZE ACCORDING TO ISINGFIT AND

BAYESIAN RELEVANCE ANALYSIS METHODS.

Relationship MBG-OR Edge weight Rank - MBG-OR Rank - Edge w.

Obesity – Body fat 42.70 32.60 1 1
Metabolic rate – Obesity 27.96 16.63 2 2
Neuroticism – Current depression 11.32 7.03 3 3
Satisfaction – Current depression 6.02 3.18 4 5
Neuroticism – Depression(lifetime) 3.59 3.24 5 4
Satisfaction – Neuroticism 3.53 2.19 6 7
Current depression – Depression(lifetime) 3.41 2.82 7 6
Metabolic rate – Body fat 3.31 2.01 8 9
Current depression – Insomnia 2.76 1.73 9 13
Parental depression – Depression(lifetime) 2.69 2.05 10 8
Neuroticism – Insomnia 2.42 1.94 11 10
Weight change – Obesity 2.29 1.46 12 19
Dietary change – Weight change 2.20 1.91 13 11
Weight change – Body fat 2.20 1.71 14 14
Life stress – Current depression 2.19 1.56 15 16
Metabolic rate – Weight change 1.93 1.41 16 22
Parental depression – Current depression 1.91 1.22 17 42
Satisfaction – Life stress 1.90 1.43 18 20
Parental depression – Neuroticism 1.86 1.46 20 18
Current depression – Weight change 1.81 1.23 21 40
Age – Body fat 1.58 1.76 28 12
Satisfaction – Sex 1.41 1.47 49 17
Age – Sex 1.34 1.43 57 21
Obesity – Sex 1.20 1.65 83 15

V. CONCLUSION

The lack of general guides for the MCMC methods, the high
computational complexity and additional uncertainty measures
of MCMC convergence and MCMC confidence estimates
prompted widespread interest in the application of graphical



lasso, because of its robust statistical properties, sparsity and
low computational complexity, see e.g. [33], [48], [49].

As the reported earlier applications showed, the hybrid, full
Bayesian approach is scalable to mid-sized problems with
hundreds of variables [58], [59]. Although the computational
complexity is significantly higher for hybrid, full Bayesian
inference (which applies MCMC methods at the structure level
and analytic integration at the parameter level), than for a
graphical lasso, even within a standard bootstrap framework.
In such mid-sized problems the advantages of the full Bayesian
inference using Bayesian networks (BNs) versus the usage of
graphical lasso using pairwise Markov Random Fields, are
threefold:

1) The hybrid, full Bayesian approach relying on Bayesian
networks with multinomial local models for complete
discrete data, performs Rao-Blackwellization using an-
alytic integration at the parameter level.

2) The full Bayesian approach supports non-linear de-
pendencies including higher-order interactions (cf. the
assumptions of linearity and no interactions in graphical
LASSO and its logistic regression based approxima-
tions). As we showed in this paper, the underlying
representation of pairwise MRFs in graphical LASSO
can suffer from spurious dependencies resulting from
such high-order interactions.

3) Bayesian model averaging (BMA) allows a principled
solution to cope with a high level of uncertainty at the
structural level. For example, if the posterior distribution
of possible model structures is ‘flat’ and there are no
dominant maximum a posteriori models, then Bayesian
model averaging usually provides estimates with less
certainty at parameter levels. Additionally, through the
posterior over structures, there is a consistent Bayesian
semantics for uncertainties over structural properties.
Note that the computationally less complex bootstrap
approaches have rather indirect interpretations for dis-
crete variables representing structural properties, e.g. in
phylogenetic tree inference.

Note that the Bayesian approach performs model averaging,
i.e. it averages over (dominantly sparse) models. Consequently,
the resulting edge posterior map is not sparse in a strict sense
as it contains vanishing posteriors as well. However, in a
decision theoretic situation (e.g. reporting with a given cost
function) an appropriate threshold can be selected normatively
to achieve minimum expected loss. This means that contrary
to the lasso approach, where complexity regularization is
an integral part of model fitting, the level of sparsity in
the Bayesian approach can be quantitatively controlled off-
line after the analysis, which is crucial for sharing uncertain
knowledge.
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