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A modal-based model of milling machine tools
subjected to time-periodic nonlinear cutting forces
is introduced. The model describes the phenomenon
of bistability for certain cutting parameters. In
engineering, these parameter domains are referred
to as unsafe zones, where steady-state milling
may switch to chatter for certain perturbations. In
mathematical terms, these are the parameter domains
where the periodic solution of the corresponding
nonlinear, time-periodic delay differential equation
is linearly stable, but its domain of attraction is
limited due to the existence of an unstable quasi-
periodic solution emerging from a secondary Hopf
bifurcation. A semi-numerical method is presented to
identify the borders of these bistable zones by tracking
the motion of the milling tool edges as they might
leave the surface of the workpiece during the cutting
operation. This requires the tracking of unstable quasi-
periodic solutions and the checking of their grazing
to a time-periodic switching surface in the infinite-
dimensional phase space. As the parameters of the
linear structural behaviour of the tool/machine tool
system can be obtained by means of standard modal
testing, the developed numerical algorithm provides
efficient support for the design of milling processes
with quick estimates of those parameter domains
where chatter can still appear in spite of setting the
parameters into linearly stable domains.

1. Introduction
In many aspects, machining of metals is still one of the
most important manufacturing technologies nowadays.
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Its importance is undeniable in the car, energy or air industries. Machining not only forms the
parts, but in most cases it gives the final shape to them, which means that the quality of the final
product is strongly determined by these cutting operations [1].

Among the abrasive methods, drilling, turning and milling are the most used metal cutting
operations. In spite of their sophisticated use in industry, these machining operations still
have many unresolved problems as quality and productivity demands increase. The quality
requirement means a precise machined surface, which can only be ensured by a vibration-free
cutting process. The productivity requirement means large material removal rates, which induces
large bites of material and increased rates of motion. In order to increase speed, acceleration has to
be increased, which needs lighter design of machine tool structures withstanding less excitation
force with no vibrations.

Geometrical accuracy of metal cutting operations depends on the reflected static stiffness of
the entire machine at the tip of the tool. This cannot be granted if the operation is subjected to
vibrations between the tool tip and the workpiece. By far the most dangerous vibration problem
in machining operations is related to the so-called regenerative effect. This arises due to the
variation of the chip geometry during cutting: the cutting edges are excited by forces that depend
on their vibration history. This was first recognized by Tobias & Fishwick [2] and Tlusty &
Spacek [3] in the 1950s. They used the name ‘lobes’ for the shapes of the so-called instability
domains in the parameter plane of the spindle speed and the depth of cut, where the regenerative
vibrations occur.

The regeneration phenomenon can be modelled by delay differential equations (DDEs), which
have quite similar properties to ordinary differential equations but in infinite-dimensional phase
spaces, just as partial differential equations do. These equations are part of the family of the so-
called functional differential equations [4–6], the theory of which was developed much later than
the introduction of the idea of the regenerative effect in machining. From the mathematical point
of view, turning and drilling operations are autonomous systems, whereas milling processes are
time-periodic non-autonomous systems, the steady-state periodic solutions of which are referred
to as stationary cutting/milling. The linear models of milling operations lead to time-periodic
parametrically excited DDE governing equations, which can be investigated by the Floquet theory
[7,8] extended for infinite-dimensional systems.

For linearized models, a great number of frequency-domain-based as well as time-domain-
based methods have been developed in order to determine the asymptotic behaviour of stationary
cutting. Generally speaking, the methods in the frequency domain are ready to accept the
measured frequency response functions (FRFs) directly, which makes their application convenient
in industrial environments [9–12]. Still, these methods have difficulties in including complex
nonlinear cutting models and they only serve the critical (non-hyperbolic) borders, from which
the actual stability boundaries have to be ascertained; this raises additional difficulties when
stable and unstable islands exist in the stability charts. Time-domain-based methods [13–15]
are receptive for general cutting models and can present asymptotic properties in any set
of technological parameters; however, these methods use extracted modal parameters, which
require additional processing of the measured FRFs.

When not only asymptotic behaviour but also large-amplitude vibrations are analysed, the use
of nonlinear models is unavoidable. There are many sources of nonlinearities in a real machining
environment; however, they can all be neglected compared with the nonlinear and even non-
smooth effects originating in the cutting force characteristics. The nonlinear sense of the cutting
force can induce complex large vibrations (of the order of magnitude of chip thickness) emerging
from corresponding bifurcations of the stationary cutting process. While the suspected bifurcation
points can be predicted by means of linear DDE models, the emerging vibrations cannot be
identified using linear theories only. From an engineering viewpoint, this becomes a critical issue
if the new family of orbits related to the emerging intricate nonlinear vibrations are unstable, and
they exist in the linearly stable parameter domains of stationary cutting. Owing to these unstable
orbits, stable periodic orbits and stable threshold orbits coexist, that is, stable stationary cutting
and persistent chatter coexist in a real machining operation, and only the levels of unpredictable
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Figure 1. Montageof real casemeasurements. (a) Theprocess is in a chattering state as the cutting edges are leaving the surface
of the workpiece: chips are separated in an interrupted way and escape the cutting zone in an irregular manner, leaving a wide
sector covered by the traces of the rocketing chips. (b) The milling process is in a state of stable stationary cutting, so loss of
contact (fly-over) does not appear: chips are separated continuously and fly-away in a regular manner. (c) The irregular surface
pattern caused by the chattering state is presented.

perturbations and uncertainties determine which one will dominate the cutting process. This is
the reason why engineers name these parameter regions as uncertain or unsafe zones (UZs)
embedded in the stable cutting parameter domains.

Such zones were first identified in the work of Shi & Tobias [16] where a hysteretic behaviour
was identified experimentally in a milling process. In this historical experimental result, the
authors showed that the stationary cutting process is quite sensitive to external perturbations
close to the stability limits but still within the stable region. The same phenomenon was then
investigated in turning processes, that is, in autonomous systems using analytical methods,
and the subcriticality of the related Hopf bifurcation was identified as a cause of the uncertain
behaviour [17–19]. Later, more extensive measurements presented similar phenomena in the case
of turning and milling processes [20,21]. Among these results, Stepan et al. [21] also used the
experimentally detected uncertain/unsafe/bistable parameter domains to critically analyse the
existing nonlinear cutting force characteristics models used in industry.

If the vibrations start increasing during cutting, they soon reach such a level that the
cutting edges temporarily leave the workpiece and tend to a threshold vibration that may be
a stable periodic, quasi-periodic or chaotic motion [16,22] identified as chatter in the engineering
community. This vibration is the cause of irregular patterns on some machined surfaces like the
sunflower spirals in turning or thread cutting [23] or the pattern depicted in figure 1c. In milling
operations, the loss of contact was investigated in various studies, such as [24,25], where milling
processes subjected to linear cutting forces were considered, or [26], where highly interrupted but
nonlinear cutting was analysed.

The aim of this study is to derive a mechanical model and an algorithm that are suitable
to identify the UZs of nonlinear milling processes, where the process is stable for very small
perturbations, but still sensitive to increased external perturbations. While the basic phenomenon
is expected to be similar to that of the turning process, the time-periodicity and the related
parametric excitation that appear in milling processes cause extreme difficulties: the stationary
cutting process itself corresponds to a forced periodic motion, and the unstable vibration that
emerges at the limit of its stability is already a quasi-periodic one [27]. Clearly, the tracing of
this unstable quasi-periodic oscillation till it starts grazing the surface of the workpiece, is a
complex task. If found successfully, this also provides estimates for the domains of attraction
of the stable stationary milling process within the unsafe cutting parameter zones.

In order to achieve the above aim of this study, the following main results are presented. First,
the experimental modal representation of real machine tools is combined with the nonlinear
model of the cutting process in §2a. This is a relevant step because experimental modal testing
is a linear technique used widely in industry to characterize machine tool dynamics, while
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the small-scale nonlinearity of the cutting process includes even non-smooth elements and has
not been formulated yet mathematically in the case of milling operations due to the time-
periodic nature of the process. The corresponding mathematical model is introduced in §2b.
Second, a numerical method is developed for tracking unstable quasi-periodic solutions of the
overall nonlinear mechanical model of the milling operation, which is presented in §2c. This
mathematically challenging task makes it possible to determine the domains of attraction of stable
stationary milling. The corresponding estimation of the bistable parameter zones in the stability
chart of milling is the main outcome for industrial applications. Thus, the third contribution of
this study is the development of a semi-numerical method to determine the borders of the UZs,
which is presented and demonstrated in the two industrially realistic representative examples in
§3a,b. Also, this work presents an abstract geometric representation of the fly-over (FO) effect [26]
or in other words the multiple regenerative effect [25] in milling processes, which is related to the
interaction of time-periodic switching surfaces and tori.

The study was triggered by the paper [28], where a stable island was found in the stability
chart of milling by means of theoretical methods, which seemed to be impossible to find by
experiments or even by time-domain simulations. Finally, careful simulations based on special
initial functions managed to ensure stability, but only tiny domains of attraction were perceived.
In real case predictions, it is important to know these domains corresponding to such specific
stable cutting parameters.

2. Nonlinear milling model
As explained in the ‘Introduction’, the dynamic model of the milling tool/machine tool/
workpiece system can be assumed linear, so it can be described by conventional experimental
modal analysis techniques applied to systems with multiple degrees of freedom (d.f.). In order
to compile a realistic nonlinear model of milling processes, the cutting forces have to be
characterized primarily as a function of the variation of the chip geometry in the cutting zone. This
means that the nonlinear and even non-smooth cutting force characteristics are considered here,
which are able to model intermittent cutting. This study does not deal with milling operations
performed with intricate tool geometry in the case of variable pitch/helix/lead-angle tools
[29–31] or with variable spindle speed [32–34], which further complicate the dynamic model,
especially due to the combinations of many different and/or even continuously varying time
delays.

In engineering practice, it is a widely accepted assumption that the cutting force is linearly
proportional to the width w of the cut (figure 2). For this reason, the nonlinearity of the resultant
force F can be described using the specific (local) cutting force f = F/w, which depends on the chip
thickness h (figure 2b) only.

Thus, the core of the cutting force nonlinearity is given by the function f(h) that is identified
empirically by a vast amount of extensive industrial laboratory measurements, all having their
own specific advantages and disadvantages. The most relevant specific cutting force functions
are summarized one by one in figure 2c and given in mathematical form as

f(h) =
[

ft(h)
fr(h)

]
,

f SL
q (h) = Ke,q + Kc,qh,

f OOT
q (h) = Ke,q(h, vc, α, η, . . .) + Kc,q(τs, φ, β; h, vc, α, η, . . .)h,

f P
q (h) = Kν,qhνq , 0 < νq < 1,

f C
q (h) = ρ1,qh + ρ2,qh2 + ρ3,qh3,

f E
q (h) = b4 + b1h + b2

b3
eb3h.

(2.1)

Here, lead angle is considered as κ = 90◦ and orthogonality is ensured by zero helix angle η = 0,
which means that the force distribution can be described with the help of its local tangential t and
radial r components in the local (t,r) edge coordinate system (figure 2b). Hence, q = t, r in (2.1).
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Figure 2. (a) Sketch of the milling operation, (b) the local representation of the edges and (c) the different models of cutting
force characteristics. Here, L= linear, SL= shifted linear, P= power, C= cubic and E= exponential cutting force models
listed in (2.1).

Among the nonlinear force models, the so-called orthogonal to oblique transformation (OOT)
describes the effect of local edge geometry parameters that can introduce some slight nonlinearity
[35] via the dependence of the cutting coefficients Kc,q on the chip thickness h. The classic power
law model (P) was introduced conveniently for linear optimization techniques [36,37]. Polynomial
cubic (C) [16] and exponential (E) [38] formulae of cutting force characteristics were used for more
accurate nonlinear modelling of cutting forces for specific cutting operations (figure 2c).

Considering the simplest milling tool edge geometry with number Z of cutting teeth, uniform
pitch angle ϕp = 2π/Z and, again, zero helix angle η = 0, the angular edge position can be simply
defined by a single angle. Thus, subsequent cutting edge i (i = 1, 2, . . . , Z) sweeps through the
angular positions ϕk(t) [39] of a previous cutting edge k after a certain regenerative time τi,k, that is

ϕi(t) = ϕk(t − τi,k), k > i. (2.2)

In other words, the angular positions are chained by the delay times τi,k. In the case of large
oscillations subjected to the FO effect [26], τi,k = (k − i)τ is an integer multiple of the single
constant regenerative delay τ = 2π/Ω/Z appearing in stable stationary cutting considering
constant spindle speed Ω .

The actual local chip thickness hi just cut by the ith tooth is expressed as follows:

hi(t, rt(ϑ)) ≈ ri,k(rt(ϑ))ni(t), (2.3)

where ri,k is the relative motion of the corresponding kth and ith edges at angular position ϕi(t)
(2.2), while ni is the unit vector normal to the plane spanned by the cutting velocity and the actual
ith cutting edge. The continuous, so-called shift function rt(ϑ) = r(t + ϑ) : R × [−σ , 0] → R

2 [4,5]
describes the planar (x, y) position vectors of the milling tool centre during the maximal delay σ

back in time. With all these parameters, the relative cutting edge position can be expressed as

ri,k(rt(ϑ)) =
[
vfτi,k

0

]
+ r(t) − r(t − τi,k), (2.4)

where the secondary motion is defined by the constant feed velocity vf (m s−1). Note that, in the
simplest basic cases, k = i + 1 and τi,k = τ .

The resultant cutting force acting on the milling tool can be obtained as the resultant of the
overall specific cutting forces integrated in the axial direction along the edge portions that are
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in cut. As the integration along z simplifies to a multiplication with the axial depth of cut ap for
a straight-fluted milling tool, the time- and delayed state-dependent load on the milling tool is
given as

F(t, rt(ϑ)) = −ap

Z∑
i=1

gi(t)Ti(t)f(gi(t)hi(t, rt(ϑ))), (2.5)

where gi(t) is a screen function that switches the specific cutting force off (gi = 0) if the edge is
not in contact with the workpiece, and switches it on (gi = 1) if the edge is in contact. The time-
dependent matrix Ti(t) transforms the specific force between the local system (t,r) and the spatial
system (x,y) [30].

For a given cutting edge, there are many ways to lose contact during milling. From these cases,
the following formula considers two relevant ones:

gi(t) = gri,i(t)gfo,i(t). (2.6)

The first component gri,i(t) is the well-known cutter workpiece engagement (CWE) [40], which
describes a purely kinematic relationship between the tool and the workpiece considering the feed
direction, the radial immersion and the possible helical arrangements of the cutting edges. Since
in this work the feed points in the x-direction, and the CWE describes a simple milling operation,
the tool immersion can simply be described by a constant entry angle ϕen and a constant exit
angle ϕex.

The second component of the screen function (2.6) gfo,i(t) takes into account the so-called FO
effect, when the edge leaves the surface of the workpiece due to the vibration of the tool. Contrary
to the first kinematic component of the screen function, this one is a purely dynamic effect. In
the case of unstable milling processes, it is the FO effect that limits the exponentially growing
vibration leading to the large-amplitude stable chatter oscillation.

There are many other possibilities of loss of contact that can be included in the screen function
with similar additional multiplicative components. Among these, the so-called missed-cut effects
are mentioned here, which appear in the case of uneven edge distances from the rotation axis of
the tool. This occurs due to the so-called run-out [41,42] or due to other artificial disturbances on
the edge radii as implemented on serrated cutters [30,43].

(a) Multiple degrees of freedommilling
As explained above, the machine tool structure is considered to be linear and the reflected
dynamics can be measured by the techniques of experimental modal analysis using FRFs taken
at the tip of the milling tool. As proportional damping occurs in most industrial cases, simple
fitting algorithms can identify the vibration modes characterized by their natural frequencies ωn,k,
damping ratios ξk and mass-normalized mode shapes Uk = ckpk, k = 1, . . . , m [44] (figure 2a). The
mass-normalized modal transformation matrix U = rowkUk = colsU

ᵀ
s (s = x, y) is formed from the

identified mode shapes. In the space of the modal coordinates q defined by r = Uq, the system is
represented by the equation

q̈(t) + [2ξkωn,k]q̇(t) + [ω2
n,k]q(t) = UᵀF(t, Uqt(ϑ)), (2.7)

which is a DDE as (2.3) and (2.4) are substituted in (2.5). With the definition of y = col(q, q̇), the
system is transformed to a first-order DDE in the form

ẏ(t) = g(t, yt). (2.8)

This equation is time-periodic in the sense g(t, •) = g(t + T, •), where the principal period is T =
2π/ΩZ. Consequently, the forced time-periodic stationary solution ȳ(t) = ȳ(t + T) is periodic with
the principal period, which is, indeed, a period-one orbit satisfying (2.7).

The period-one orbit of the stationary cutting solution ȳ(t) of (2.8) can be found by solving
numerically a boundary value problem (BVP). The stable asymptotic behaviour of the period-
one orbit ȳ is equivalent to the stable milling process that is desired in machining [9], which
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also has to meet both productivity [45] and quality requirements [46]. By using perturbation
around the stationary cutting solution, the corresponding linear variational system [7] can be
determined, resulting in a time-periodic parametrically excited DDE. Combining this with the
infinite-dimensional extension of the Floquet theory [7], the criteria of asymptotic stability are to
be determined.

The stability criteria for ȳ are usually represented in a stability diagram in the parameter plane
(Ω , ap) of the spindle speed and the axial depth of cut, respectively. The limits of stability are
historically called lobes. At these limits, the periodic solution ȳ undergoes bifurcations in the
corresponding nonlinear system (2.8). These are either secondary Hopf bifurcations, where quasi-
periodic vibrations emerge, or flip bifurcations, where period-two vibrations appear. Actually, the
flip or period-doubling vibrations occur along stability limits that form closed curves, so they are
islands (or lenses, or lentils) rather than lobes, as proved in [47,48].

These different types of stability borders are presented in figure 4a for full immersion milling,
where ϕen = 0 and ϕex = π . The frequency content of the vibrations at the limit of stability are
given in figure 4b with grey-scale proportional to their strengths. The frequencies belonging to
the period-doubling stability limits are at half of the frequency corresponding to the basic time
period T. The subcriticality of these bifurcations was proved in several special cases such as
turning and low radial immersion milling [17,18,20,26], meaning that UZs are likely to appear
in the shaded regions of stable stationary cutting.

(b) The fly-over effect
When FO occurs, the tool leaves the workpiece and its surface remains uncut for the subsequent
edge that actually re-enters the workpiece. This means that the surface to be cut is formed by an
edge passing through two tooth-pass periods earlier. The time spent between the kth and ith bites
must be an integer multiple of τ , that is, τi,k = riτ , where ri is called the FO index [49].

Considering the possibilities of these larger delays and the corresponding regeneration effects,
the instantaneous chip thickness at the ith edge is expressed as

hi(t, rt(ϑ); ri) = hi(t, qt(ϑ); ri) = hi,x(t) sin ϕi(t) + hi,y(t) cos ϕi(t), (2.9)

where the corresponding projections of the chip thickness are

hi,x(t) := hi,x(qt(ϑ); ri) = rifZ + Uᵀ
x (q(t) − q(t − riτ ))

and hi,y(t) := hi,y(qt(ϑ); ri) = Uᵀ
y (q(t) − q(t − riτ )),

(2.10)

with fZ = vfτ denoting the feed per tooth. The FO index ri can be calculated as the minimum [50]
of all related chip thicknesses possibly cut by the tool up to some reasonable integer number Nfo
(figure 3a):

Nfo
min
l=1

hi(t, qt(ϑ); l) ⇒ ri. (2.11)

If hi(t, qt(ϑ); ri) > 0, then the ith edge cuts the material left by the ((i + ri) mod Z)th edge;
otherwise it flies over. Specifically,

— if ri = 1, then no FO is involved prior to the ith edge,
— if 1 < ri < Z, then there is FO prior to the ith edge,
— if ri = Z, then the ith edge cuts the surface cut by itself one full tool rotation earlier, and
— if ri > Z, then there is a long FO as the tool loses the regeneration for more than a complete

period.

The switches between in-cut dynamics and FO dynamics have a simple geometric
interpretation when the trajectories are projected to a specific plane of the otherwise infinite-
dimensional phase space that is extended by the T-periodic time. FO occurs when the chip
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Figure 3. (a) A close-up view of ith cutting edge of the milling process (lhi(t) := hi(t, qt(ϑ ); l)) sketched in panel (b), where
the edge is about toflyover the surface. In the table, different possibilities for the ith edgeare listed. (c) Apossible representation
of the time-dependent switching surfaces are shown together with the unstable torus representing a quasi-periodic solution.

thickness seems to be negative, that is, the chip thickness expressed in (2.9) can be reformulated
with the FO condition hi(t, qt(ϑ); ri) < 0, yielding,

hi,y(t) ≶ − tan ϕi(t)hi,x(t), if cos ϕi(t) ≷ 0 and i ∈ {i | gri,i(t) > 0}. (2.12)

This is represented in figure 3c, which shows the momentary switching surfaces in the plane of
the chip thickness components frozen at the principal time period T, that is, in (hx(T), hy(T)). The
formulated switching surfaces rotate just as the milling tool does in time. For example, in figure 3c,
when the ith edge is at an angular position just overpassing ϕi(t) = 90◦, then the corresponding ith
switching condition is represented with a line a bit inclined from vertical. Consequently, the actual
chip thickness hi has mostly the x component affected and the FO condition appears mostly with
respect to hx with ‘ith flies over’ region shaded by ‘light grey’ in figure 3c. The number of cutting
edges is Z = 4, so the uniform pitch angles are 90◦, thus, the next (i − 1)th edge has a switching
surface rotated by 90◦ in panel (c), and the switching condition is represented mostly with respect
to hy component shown by ‘mid-grey’. In the situation presented in figure 3b, the (i − 1)th edge
just entered to the workpiece material as ϕi−1(t) � ϕen.

The invariant surface covered by the emerging quasi-periodic orbit is a torus, which is
represented by a closed curve in this specific projection of the infinite-dimensional phase space
in figure 3c. This torus can reach those switching condition surfaces and can even overpass them.
If all switching conditions are violated, the tool is in complete FO stage (‘dark grey’ in figure 3c)
and the regeneration is completely switched off due to the lack of the cutting force (2.5), which
means that a simple damped oscillator describes the motion of the milling tool until one of its
edges bites back again into the material.

As mentioned above, there is an important mechanical/mathematical uncertainty and also
a related numerical problem when the edge enters and leaves at ϕ = π (see figure 3b for the
case of down-milling). Physically, it is not clear if the corresponding edge is cutting, rubbing
or just missing the cut in these cases due to uncertainties in edge geometry, wear or workpiece
material. It is also difficult to follow the conditions defined by (2.12) in these uncertain regions
since, depending on the discretization sizes, the switching conditions might easily be violated
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numerically. For this reason, the switching function component gri,i(t) in (2.6) is defined as

gri,i(t) =
⎧⎨
⎩

1, max(ϕen, �ϕ) < (ϕi(t) mod 2π ) < min(ϕex, π − �ϕ),

0, otherwise,
(2.13)

where a sufficiently small �ϕ value is chosen where cutting occurs for sure. Clearly, this value
has to be introduced at the entering angle, too, where the same problem appears in the case of
up-milling.

After identifying the effective momentary chip thickness in (2.11), the component gfo,i(t) of the
switching function (2.6) can be defined as

gfo,i(t) =
⎧⎨
⎩

1, hi(t, qt(ϑ); ri) > 0,

0, otherwise.
(2.14)

This completes the nonlinear cutting force model (2.5) used in the nonlinear governing
equations (2.7) of milling.

(c) Numerical continuation
In the case of DDEs, it is difficult to find any unstable topological structure by means of time-
domain simulation, as one cannot use the standard trick of tracking solutions along reversed
time for the saddle-like invariant sets. Similarly to the case of finding the periodic solution
of (2.8), semi-numerical BVP solvers [51] are used in order to find the unstable quasi-periodic
solutions emerging at secondary Hopf bifurcation points of the identified periodic solutions.
More precisely, the BVP solvers determine the topologically invariant skeleton sets on which these
solutions exist densely. The identification of this invariant structure is satisfactory to explore the
bistable parameter regions.

A specific numerical method has been developed that satisfies the special requirements of
fast bistable zone calculations, also to be used in industrial applications. This method includes
existing algorithms that determine the linear stability of the stationary solution of general milling
processes, then it tracks those invariant tori branches that emerge from secondary Hopf points,
and it also follows them along a cutting parameter up to the point where the FO appears. Finally,
the numerical method must provide the boundaries of the bistable zones with two-parameter
continuations.

To find and to follow the invariant torus branches (ITBs) u(θ1, θ2) covered by the quasi-
periodic stationary solutions ȳ(t) of (2.8), a collocation-based algorithm [52] is implemented
using Lagrange polynomials and Chebyshev nodes for collocation. The corresponding invariance
equation G = 0 with

G(u(θ1, θ2), ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωT
∂u
∂θ1

(θ1, θ2) + ω
∂u
∂θ2

(θ1, θ2) − g(θ1/ωT, u(θ1 + ωTϑ , θ2 + ωϑ)),

u(0, θ2) − u(2π , θ2),

u(θ1, 0) − u(θ1, 2π ),〈
∂u
∂θ2

, �u
〉

,

(2.15)

leads to a BVP that can be solved with the Newton–Raphson method (NRM). Note that in (2.15)
a single Poincaré phase condition is applied for the unknown frequency ω defined over θ2, as the
periodic tooth passing frequency ωT = 2π/T is known for θ1.

The obtained numerical solutions were thoroughly compared to the results of finite-difference-
based methods [53]. The convergence properties were also analysed as shown in figure 4c–e. The
diagrams with respect to the number N of collocation intervals and polynomial order p show that
the convergence is not monotonic; this phenomenon is mentioned in [53], too.
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Figure 4. The asymptotic behaviour of time-periodic stationary solution ȳ(t). (a) The stability chart where secondary Hopf (H)
and period-doubling (PD) bifurcation curves are depicted. Stable and unstable stationary cutting are denoted by SSC and USC.
(b) The basic (chatter) frequency and their harmonics are presented with greyscale proportional to their strengths. (c,d) The
convergence properties of the collocation method implemented for calculating quasi-periodic torus solutions, where different
number of intervals N and polynomial orders p are applied. (e) The displacement profile is shown (N= 20, p= 5 calculated at
n= 1400 r.p.m., ap = 5.97 mm, table 1).

To find the switching point where the tool leaves the surface, that is, to find the exact boundary
of the bistable zone, an additional condition has to be introduced. This requires the use of another
free parameter in the extended invariance equation

G̃(u(θ1, θ2), ω) =

⎧⎪⎪⎨
⎪⎪⎩

G(u(θ1, θ2), ω),
Z∏
i

hi

(
θ1

ωT
, u(θ1,i + ωTϑ , θ2,i + ωϑ); ri

)
,

i ∈ {i | gri,i(θ1/ωT) > 0}, (2.16)

where θ1,i and θ2,i are determined from

min
θ1,θ2∈[0,2π)

hi(θ1/ωT, u(θ1 + ωTϑ , θ2 + ωϑ); ri) ⇒ (θ1,i, θ2,i). (2.17)

As the FO index ri is originally time-dependent, it becomes a function of (θ1, θ2) in the invariance
description. Apart from the non-smooth effect of the radial immersion gri,i, the implementation
of the additional condition in (2.16) can induce abrupt jumps during the use of NRM related
to the uncertainty on when (at which (θ1,i, θ2,i)) and at which (ith) teeth the FO appears. This
causes sharp folds in the continuation, which leads to the breakdown of the method. To bridge
these folds, automatic step-size adjustments are applied during the continuation when divergent
solutions are experienced.

Finally, in order to extend the calculations of (2.15) and (2.16) for two-parameter continuations,
pseudo-arclength predictor–corrector methods [54,55] are implemented.

3. Representative examples
One of the simplest possible models was chosen to test the above-described numerical method.
The milling tool has Z = 4 teeth with no helix angle (η = 0); the cubic force model [16] is applied
in (2.1) with the parameters listed in tables 1 and 2.

In the first example, only one relevant mode is considered. The direction of this single mode
is supposed to coincide with the feed direction x. In the second example, two relevant vibration
modes are considered, where the directions of these vibration modes are in the perpendicular
x- and y-axes, respectively.
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Table 1. Process parameters of 1 d.f. restricted representative example, where hL = 0.15 (mm).

fn (Hz) ξ (%) k (Nµm−1) p ϕen (rad) ϕex (rad)

45 4 30 [1 0 0]ᵀ 0 π

ρ1,t (N mm−2) ρ2,t (N mm−3) ρ3,t (N mm−4) ν(1) ρl,r = ν ρl,t fZ (mm/tooth)

11.9 × 103 −161 × 103 848 × 103 0.3 l = 1, 2, 3 0.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Milling process parameters for 2 d.f. casewith two relevant structural vibrationmodes corresponding to figure 7,where
hL = 0.25 (mm)

fn (Hz) ξ (%) k (Nµm−1) p ϕen (rad) ϕex (rad)

45 4 30 [1 0 0]ᵀ π/2 3π/4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60 4 30 [0 1 0]ᵀ

ρ1,t (N mm−2) ρ2,t (N mm−3) ρ3,t (N mm−4) ν(1) ρl,r = ν ρl,t fZ (mm/tooth)

14 × 103 −90 × 103 200 × 103 0.3 l = 1, 2, 3 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The time-domain simulations were performed by using the dde23 standard solver with a
limited force model. The cubic force model was extended by its tangent above a limit chip
thickness value hL selected outside of the domain of experimental characterization, much above
both the used feed per tooth fZ and the inflection point hinf = −ρ2,q/(3ρ3,q) values to avoid
extremely large cutting forces.

(a) Restricted one degree of freedom case
If the single vibration mode is in the x feed direction, then the regeneration takes the simplest
possible representation due to the expression for the momentary chip thickness in (2.9) and (2.10).
The modal parameters are taken from the report [28] and summarized in table 1 for the case of
full immersion milling.

The linear stability limit of the corresponding forced vibration, i.e. the stability boundary
of stationary milling, was calculated by means of the semi-discretization (SD) method [8], the
corresponding vibration frequencies were determined at the loss of stability and these are
depicted in figure 4a,b. The characteristic multipliers of Floquet theory were also calculated by
the SD method, which provided information about the asymptotic stability of the stationary
solution ȳ(t). The corresponding stable or unstable stationary cutting is denoted by SSC or USC,
respectively, in figures 4 and 5. At the limits of stability, the types of the corresponding bifurcations
are also identified by means of the SD method: when the critical characteristic multipliers are
complex conjugate as they cross the unit circle of the complex plane, secondary Hopf bifurcations
occur; when a critical characteristic multiplier crosses the unit circle at −1, then period-doubling
bifurcations occur. In figures 4 and 5, the secondary Hopf and the period-doubling bifurcations are
indicated by H and PD, respectively. As the subcriticality of the Hopf bifurcation was analytically
proved for the nonlinear autonomous DDE models of turning processes in [17,18], and also the
subcriticality of the period-doubling bifurcation was proved for special highly interrupted cutting
processes in [56], it was suspected that the numerical results for the nonlinear time-periodic non-
autonomous DDE models of milling also present subcritical bifurcations. These numerical results
are also confirmed by the experimental observations like the ones in [16,21,57].

Full immersion milling with at least four, equally spaced, even-number cutting edges
corresponds to resultant cutting forces that have practically negligible periodicity in time. This
explains why engineers rarely experience the PD-type loss of stability in these cases. However,
owing to the effect of the nonlinear cutting force, the system is subjected to nonlinearity-
induced harmonics that can make the stationary cutting solution unstable through PD. The effect
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Figure 5. (b) The continued ITB that emerge from secondary Hopf bifurcation points (H) separating stable and unstable
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points at the Hopf-type limit of stability (figure 4). (a) Corresponding frequencies are plotted along the continued ITB up to the
point of fly over. (c) Planar projections of the tori in the branches are represented at parameter point C for three cases: when FO
appears at parameter T1, at the critical parameter point T2, and far before the appearance of FO but after the birth of the torus
branch at the parameter point T3. Blue, green and red sets of dots represent time-domain simulations with no perturbations,
with slightly larger, and slightly smaller perturbations than the invariant tori. Three-dimensional representations of the tori are
presented with the time-domain simulations initiated exactly from the invariant surfaces.

of these harmonics can be followed precisely in the detailed frequency contents in figure 4b:
unusual harmonic contents appear at spindle speeds around n = 1700 r.p.m. Also, the ω = ωT/2
relationship appears in figure 4b. The PD-type stability limits can be distinguished from the
H-type limits in experiments by their spectra, although around the intersection of PD and H
lobes the vibration frequencies are close to each other. This might cause difficulties during
measurements.

The result presented in figure 4 was crucial to provide appropriate initial conditions for
the nonlinear invariant equations given in (2.15). The stationary period-one solution ȳ(t) was
calculated and pure harmonic vibration was superimposed using a somewhat smaller depth of
cut ap than the one given by the linear stability limit. This way, the torus branch can be found,
although it is saddle-like: owing to the subcritical H bifurcation, the torus is unstable, while it
is embedded in an attractive centre manifold. The initial frequency was the principal frequency
picked up from the diagram presented in figure 4b.

The ITB u(θ1, θ2) was interpreted in an 11 × 11 interval phase mesh in (θ1, θ2) by using
polynomial order p = 3. This resulted in a 2314-sized nonlinear algebraic equation to solve for
the one-parameter continuation case, which was quite robust for initial conditions, unlike the
finite-difference method.

In figure 5, the results compiled from the continued solutions are presented to the points where
the tool loses contact with the surface of the workpiece at the FO parameter point. The solutions
were followed from the initial parameters nA = 750 r.p.m., nB = 1000 r.p.m. and nC = 1400 r.p.m. It
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is important to emphasize that the norm of the quasi-periodic solution increased less and slower
in the higher spindle speed region. Considering a single lobe only, this means that the stationary
milling at high spindle speeds is more sensitive to external perturbations than it is in low spindle
speed zones (figure 5). The frequency content does not change much during the continuation,
although there are slight variations that are probably hardly recognizable in experiments.

At the selected parameter points T1, T2 and T3 along the ITB of the bifurcation diagram in
figure 5c, the two- and three-dimensional projections of the unstable tori are shown, respectively.
In this restricted case, the switching surface x(t − τ ) = x(t) + fZ is steady in time (2.10). Clearly,
T1 violates the switching condition, T2 is tangent to it, while T3 represents a solution when the
tool does not leave the workpiece. As the tori presented in figure 5c,d are finite-dimensional
projections of the quasi-periodic solutions embedded in an infinite-dimensional phase space
of the corresponding DDE (2.7), virtual self-intersections may appear in certain cases. Note
that the invariant tori do not separate the infinite-dimensional phase space into an ‘inner’ and
‘outer’ space. The domains of attraction of the SSC are actually determined by the torus and
its infinite-dimensional invariant insets. To show that, time-domain solutions were performed
using the invariant torus solutions to create appropriate initial conditions. Then simulations
were performed by introducing no perturbation (blue), slightly higher (red) and slightly lower
(green) perturbations. Apart from solution T1, the simulations follow the predicted behaviour.
T1 ‘loses’ solution because it does not exist, most probably due to grazing at the FO point on
the ITB.

By means of the extended condition presented in (2.16), the parameters can be found where
switching occurs from in-cut to FO. From these points, two-parameter continuation can be
initialized in the plane (n, ap) of the linear stability chart. The continuation method worked
successfully in a large domain of parameters by using the non-smooth conditions (2.16) directly,
although it broke down for cutting speeds n ∈ (850, 950) r.p.m. and n ∈ (1100, 1200) r.p.m., where
the local minimum (θ1,i, θ2,i) related to the local chip thickness (2.17) grazes the non-smooth screen
function gri of radial immersion. By means of the automatic increase of continuation steps in these
parameter regions, the continuation method successfully got through the critical parts. The results
are presented in the form of the dark-grey UZ (or bistable zone) in figure 6a together with the
results of the time-domain simulations. Apart from δ, all time-domain simulations were initialized
by a Π -magnified version of the invariant torus related to its second frequency. Subsequently,
Πα = 1.1, Πβ = 0.99, Πγ = 1.01 and Πδ = 0 in figure 6b. The bistability in the UZ can be recognized
in the results of the simulations β and γ ; the corresponding parameter points are also represented
in figure 5c.
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(b) Multiple degrees of freedom case
In the multiple d.f. case, the FO conditions have more complicated form explained at (2.12) than
in the previous restricted 1 d.f. case. The projection of the torus appears in the (hx, hy) plane as
a closed curve and the interactions of the time-dependent switching surfaces can be traced. The
projection (figure 7d) is a composite curve compiled using the modal invariant solutions of the
torus u(θ1, θ2) and the mode shapes U. The curve is shifted by the feed per tooth fZ along the
hx axis. The FO can be identified as it reaches the switching conditions depicted in, for example,
the T1 case in figure 7d. As the switching surfaces are rotating in this representation, the unstable
quasi-periodic in-cut oscillation might graze these rotating conditions in a disordered manner
and then switch to an oscillation that involves FO, too.

In order to avoid sensitive cases of FOs near full immersion milling, the parameter set of an
interrupted cutting was chosen in table 2 to demonstrate the calculation of the unstable ITB that
is needed for the estimation of the UZ of stationary cutting.

In figure 7b, the subcritical secondary Hopf bifurcation is continued along the ITB for the
parameters in table 2 at the minimum of the corresponding lobe (figure 7a). From the practical
point of view, the case presented in figure 7 is important in two aspects: the fairly large stable
depth of cut values of SSC are endangered by the UZ in a quite large domain, and also this
domain is affected by narrow zones of attraction, which makes it difficult to stabilize the milling
process. The ITB was continued until one of the edges left the surface. For the cutting parameters
at T1, the appearing FO ‘scratched’ the otherwise smooth surface of the invariant torus (figure 7c).
In realistic non-smooth cases, the solution undergoes a grazing bifurcation similarly to the
example of B3 (big bang bifurcation [58]) presented in [22] for turning, and analogous rapid
changes are expected in the ITB. The solution T2 represents an invariant smooth torus that was
only induced by the nonlinear cutting force characteristics during in-cut. This torus and its insets
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form the domain of attraction of the stable stationary milling process and consequently help to
identify the unsafe (or bistable) cutting parameter zone. Time-domain solutions again follow the
predicted dynamic behaviour (figure 7c).

4. Conclusion
We have constructed a nonlinear mathematical model of milling operations that is valid even for
large-amplitude tool oscillations when some or all of the cutting edges can leave the workpiece
during the self-excited regenerative vibrations. The corresponding time-periodic DDEs include
time-periodic non-smooth nonlinearities that are related to the FO effect of the edges. The model
is constructed in such a way that it includes the results of experimental modal testing used in
industry for characterizing machine tool dynamics.

The stationary milling processes lose stability at cutting parameters presented in stability
charts, and essential parts of these stability boundaries are responsible for subcritical secondary
Hopf bifurcations. This means that a saddle-like unstable torus emerges at loss of stability, which
corresponds to an unstable quasi-periodic regenerative oscillation of the milling tool. We have
developed a numerical method that is able to track the corresponding unstable invariant set in
the parameter domain where the stationary milling is stable. In some sense, this set separates the
stable stationary cutting and the stable large-amplitude regenerative chatter. The corresponding
parameter domain is the so-called bistable zone, where stable stationary milling is ‘not safe’, that
is, large enough perturbations may lead to (stable) chatter.

The size of this bistable zone is vital information for the design of milling processes. We
have constructed a two-parameter continuation method that is able to calculate those cutting
parameters—like the critical axial depth of cuts at given cutting speeds—where the switching
conditions for the appearance of the FO effect are violated, that is, where the unstable invariant
torus grazes the time-periodic switching surface in the infinite-dimensional phase space.
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