
A Resource-Aware and Time-Critical IoT
Framework

László Toka∗‡, Balázs Lajtha∗, Éva Hosszu∗, Bence Formanek†, Dániel Géhberger†, János Tapolcai∗§
∗ High-Speed Networks Laboratory, Budapest University of Technology and Economics, Hungary

† TrafficLab, Ericsson Research, Hungary
‡ MTA-BME Information Systems Research Group, Hungary
§ MTA-BME Future Internet Research Group, Hungary

Abstract—Internet of Things (IoT) systems produce great
amount of data, but usually have insufficient resources to
process them in the edge. Several time-critical IoT scenarios
have emerged and created a challenge of supporting low latency
applications. At the same time cloud computing became a success
in delivering computing as a service at affordable price with great
scalability and high reliability. We propose an intelligent resource
allocation system that optimally selects the important IoT data
streams to transfer to the cloud for processing. The optimization
runs on utility functions computed by predictor algorithms that
forecast future events with some probabilistic confidence based
on a dynamically recalculated data model. We investigate ways of
reducing specifically the upload bandwidth of IoT video streams
and propose techniques to compute the corresponding utility
functions. We built a prototype for a smart squash court and
simulated multiple courts to measure the efficiency of dynamic
allocation of network and cloud resources for event detection
during squash games. By continuously adapting to the observed
system state and maximizing the expected quality of detection
within the resource constraints our system can save up to 70%
of the resources compared to the naive solution.

Index Terms—Internet of Things, cloud computing, cloud
control, resource provisioning, adaptive, dynamic, QoS, QoE

I. INTRODUCTION

Real time sports data analytics is an emerging field: Hawk-
Eye is getting commonly used for tennis, cricket and snooker
and recently goal-line technology has appeared in soccer1. For
financial reasons these technologies are currently used only in
the top domestic leagues and at major international competi-
tions2, because right now there is a serious engineering chal-
lenge to design such systems for affordable price. The main
factor of the high cost comes from the dedicated hardware that
handles the time-critical processing of big amounts of data on
site. Cloud computing would provide a cost efficient solution,
and we envision that in the near future these technologies will
find their way into leisure sport facilities through low cost
cameras and sensors around the field, backed up by service-
oriented cloud-based data analytics. But for a cloud-based
system two constraints are to be met: low latency for real-
time applications and affordable uplink speed. In this paper

1As of July 2016, FIFA’s quality programme website lists 96
equipped stadiums, see http://quality.fifa.com/en/Goal-Line-Technology/
FIFA-certified-GLT-installations/#/index

2Apart from installation, analysing the data costs $3,900 each game
http://www.mlssoccer.com/post/2013/04/25/mls-commissioner-don-garber-
says-league-wont-adopt-goal-line-technology-2014

we investigate the problem of connecting an IoT system to the
cloud with the aim of processing time-critical high bandwidth
data, sport referee systems being an use case example.

Our main idea is to make such systems resource-efficient
by allowing the cloud to control the rate of data streams sent
for processing from the site to the cloud. Roughly speaking
the cloud predicts the location and timing of the next possible
events that need to be captured. Based on the prediction some
video streams are awarded more bandwidth and other cameras
are switched off or instructed to operate at lower bandwidth
settings. In this way the uplink is mostly occupied with data
important for the analysis. For example, the camera far form
the ball does not send pictures in case of sport referee systems.

For a proof of concept, we chose a relatively well-contained
sport: squash. On the verge of becoming an Olympic sport,
squash has an estimated player base of 15-25 million world-
wide, playing on over 50.000 courts. Squash is an indoor sport,
played in a relatively small room3, only two players share the
court, where the walls and racquets provide an opportunity
for sensor installation. As an other benefit uniform artificial
lighting and plain wall background makes image processing
less resource demanding. While the rules of the game contain
complex elements (like let and stroke), basic building blocks
of the game are fairly simple: the time, location and attributes
of ball strikes, the two players’ position and movement, and
the location of ball impacts on the walls and on the floor
constitute the game data model.

In our testbed we concentrated on strikes, player positions
and ball impacts occurring on the front wall. We equipped a
single court with our smart squash system: we installed two
cameras and a wireless IoT network supporting the racquet
sensors, connected to our cloud through a gateway. All data
was routed, processed and stored in the cloud. Based on low-
bandwidth information, i.e., low-frame rate and low-resolution
top camera streams and racquet sensor data, we predicted the
resource needs of the ball impact-detection camera, enabling
bandwidth-efficient upscaling to multiple courts.

Fig. 1 shows the functional blocks of our system. Low
data rate sensors provide a steady stream of raw data that
is processed in the cloud for contextual information. These
components are not affected by the resource allocation al-

3A squash court is of size 6.4m by 9.75m with a minimum height of 5m

Venue

Cloud

Cloud control

Predictor

Sensor
processing Data model

Resource alloc.

QoS
monitoring

Detector

Sensors Cameras

Managed
uplink

Constant
uplink

Fig. 1. System overview with functional blocks

gorithm, they are considered a constant operational cost.
Within the cloud there are detector blocks that are responsible
for processing the camera streams. These perform the most
resource-intensive task: detecting events from video data. Also
running in the cloud, there are processes that implement the
predictor algorithms that forecast future events with some
probabilistic confidence based on a dynamically recalculated
data model. In the core of the proposed system, we have
the resource allocator block which, based on the different
predictions, manages uplink bandwidth and CPU resources,
i.e., performs real-time optimization of resources. The resource
allocation is a synchronous process, discrete time increments
of 33ms are based on the frame rate of the installed cameras
in our case, and resource allocation decisions are made and
enforced for each time frame. Long term utility maximization
is handled by the QoS monitoring component that ensures
overall fairness and possibly service level differentiation.

Our contribution is the resource allocation algorithm that
maximizes the overall utility of aggregated processing of many
squash fields in the cloud. In particular we are focusing on how
to handle situation when there are not enough resources, e.g.
if the uplink does not have sufficient bandwidth for traditional
multiplexing of video streams coming from many courts, and
the resource allocator must make fast choices between the
squash courts and data stream requests. In this paper we
investigate how an optimal allocation can be reached.

Our contribution lies within:
• Providing maximal QoS for the users of the IoT system,

given the resource constraints;
• Enabling the implementation of time critical IoT use

cases, e.g., video referee for squash, due to fast optimiza-
tion algorithms in the resource allocation mechanism.

The paper is organized as follows: in Sec. II we overview
the related work; in Sec. III we present our resource alloca-
tion algorithm, we provide the definition of the optimization
problem and we show a fast dynamic programming algorithm
to compute the optimal solution; in Sec. IV we overview
the experiments with our prototype on a single court, and
investigate the inputs for the optimization problem; in Sec. V
we present simulation of multiple courts using the model we
built on collected data; in Sec. VI we conclude our work.

II. RELATED WORK

Automating sport event data gathering includes video based
player detection, tracking and interaction recognition. Chal-
lenges of tracking players on video feeds are discussed by
Gerke [1] and by Liu [2], such as player identification and
interaction detection on dozens of players at a time.

Video processing has been used extensively in the last
decade [3]: while research focuses on player tracking and
motion detection [4], HawkEye [5] is the de facto ball tracking
and trajectory estimation system applied at competitions. An
optical beacon-based motion tracking system, Ubitag [6], has
been evaluated for detecting players’ movements and motions.
The tennis racket has been another source of data in [7],
now commercialized by several manufacturers [8], [9]. Every
system mentioned so far is a self-contained solution.

We have seen in the world of the Internet of Things that
connected devices can benefit hugely from a cloud-based back-
end. For offloading processing-intensive tasks cloud-based
virtualization infrastructures have emerged [10] that handle
data processing, data mediation, access control and billing [11]
for IoT systems. With the wide availability of WiFi and LTE
networks, and with the advent of the 5G technology [12], a
new IoT device class has emerged, the streaming cameras [13],
e.g., remote facility management solutions can benefit of
security cameras following the IoT paradigm. Separating video
capture and processing with standard interfaces enables a more
flexible infrastructure, where the tenants decide which streams
have to be processed for what ends, and a service center
provides image processing and event handling. While sport
video analytics still rely on onsite detection, the low frequency
of events that need video capture makes the case for cloud
based on-demand video processing.

Another related field with similar challenges is online gam-
ing: the industry has already started to exploit the possibilities
of the cloud by moving heavy computation into data centers.
The clients in such gaming scenarios are only transmitting the
user input to the cloud and playing out the rendered video
stream [14]. The quality of the network and the shared nature
of the cloud are the factors which determine the latency and
as a result the Quality of Service (QoS) of cloud gaming.

For cloud gaming, the latency threshold for proper QoS is
mostly defined to be 100 ms and it is further divided into
network latency (80 ms) and computation latency (20 ms) in
the literature. Li et al. [15] measured the wide area latency of 4
different cloud providers from 260 points in the US and except
one provider, the latency is under 80 ms to the closest data
center from 80% of the measurement points. Choy et al. [16]
reports 70% coverage for the same 80 ms threshold using the
Amazon cloud in the US. Against long tails such frameworks,
e.g., Bobtail [17], can be used that allocate multiple virtual
machines during the deployment, measure the latencies and
shut down the underperforming instances.

The latency requirements of our application are similar,
although somewhat more relaxed compared to those of cloud
gaming. However, in our case as the video is streamed from

the clients to the cloud, the load travels in an uplink direction.
As most access networks provide limited uplink, bandwidth
and latency metrics are especially important in our case.
Sunderesan et al. [18] investigated multiple Internet service
providers and found that the upload throughput is fairly
consistent, the last mile access latency varies between 10 and
30 ms and that even the network equipment at the user can
influence the service quality. As a result the quality of the
network at a particular endpoint has to be investigated before
the deployment of a time sensitive application.

III. CLOUD RESOURCE OPTIMIZER ALGORITHM

In this section we present our resource optimizer algorithm.
For simplicity first we assume that the cloud has infinite
capacity and the only bottleneck is the uplink bandwidth. Later
we explain how to extend the formulas for multiple resources
such as CPU core, GPU core, memory, disk, etc. Our aim is
to maximize QoS, which is the number of detected events of
the game, where the event detection accuracy depends on the
amount of resources we allocate to the detection module.

A. Problem Formulation

For each game the cloud runs the detector process to capture
the events. In our use case we defined these events to be
front-wall ball impacts, as the detection of those consumes
the vast majority of resources, opposed to the low-bandwidth
contextual information like player position, strikes, etc. In
general, the accuracy of event detection depends on the quality
and quantity of the received data and the allocated cloud
resources. Ideally, to analyze the game we need to capture
all the events; however, an event miss may happen for many
reasons and not necessarily because of lack of resources. Our
goal is to minimize the number of missed events, or the price
of missing events if prices to event misses are assigned.

The time is divided into time frames, and at the end of each
time frame the predictor process computes a utility function,
which is the expected number of events detected in the next
time frame depending on the amount of resources it will
receive (see Fig. 2 as an example). The resource optimizer
aggregates these utility functions to maximize QoS: defined as
a function of the number of detected events across all squash
courts. An example of an aggregation of utility functions
maximizes the minimum of the detection probabilities, which
ensures the highest minimum quality for every court.

B. Utility Function

One of the most critical part of the scheduling is to define
a utility function, denoted by p(), for each court. The basic
utility is the probability of detecting the next event, i.e., a
ball impact. By definition the utility function is 0 for zero
bandwidth (p(x) = 0). We can assume that the utility function
is an increasing step-function of the resources to be allocated,
as assigning more resources should not decrease the chance
of detecting an event. The largest value the utility function
can have is the expected number of events in the next time
frame. Fig. 2 shows an example of two utility functions for two

courts. For Court 1 (Fig. 2a) the probability of a ball impact in
the next period is 0.7 and no other events are possible. If we
allocate less than 1 unit of bandwidth the event will be surely
missed. Based on the sensor data of the racket the prediction
algorithm estimates the ball impact in the left side of the wall
with probability 0.65, thus we can crop the image to send
only the left part, which requires 1 unit of bandwidth. Finally
if we send the full picture of the wall 2 units of bandwidth
is required. On Court 2 (Fig. 2b) the predictor realizes the
ball was hit but the chance to reach the wall is still small,
the probability of wall impact is much smaller, just 0.3. Here
we can reduce the time period of sending camera pictures. If
the pictures are sent through the whole time period 2 units
of bandwidth should be allocated. Another option is delaying
the start of transferring the camera pictures, which will result
a linear increasing utility function depending on the fraction
of time the pictures are sent in the time period. In this case
the prediction algorithm was not able to estimate the rough
location of the wall impact. Note that in practice the utility
function is rarely a step function. See also Sec. IV on our
practical experiences in computing the utility functions.

The utility is typically a multidimensional function of the
resources, such as uplink bandwidth, CPU core, etc. This
highlights an interesting trade-off between bandwidth and
CPU. If we have more CPU but less bandwidth we may send
low quality video images and run more sophisticated detection
algorithms, and vice versa. Thus when the resources are scarce
we are faced with the following interesting trade-off: should
we use the high-performance algorithm on less data, or the
low-performance one on high resolution video?

All ball-related events on distinct courts are naturally in-
dependent, thus aggregating the utility for these events is
straightforward. The simplest case is to consider the total
number of detected events, and to maximize the expected
number of detections. In this case the utility for each time
frame is the sum of the detection probabilities given the
allocated resources.

C. Dynamic Programming

First let us describe the problem for n courts and B amount
of allocatable bandwidth (BW). For every court we are given a
list of utility functions pi(x), corresponding to the probability
of detecting a ball impact on court i depending on the allocated
bandwidth x. Our goal is to maximize the expected number of
detected ball-impacts, or equivalently, the aggregated detection
probabilites. The problem can be formulated as a mathematical
program as follows.

maximize
n∑

i=1

pi(xi),

subject to
n∑

i=1

xi ≤ B,

xi ≥ 0, i = 1, . . . , n.

We will solve the mathematical program with dynamic
programming, for which we need to define states. A state of

1 2

0.5

1

x1

p1(x1)

(a) Court 1

1 2

0.5

1

x2 (BW)

p2(x2)

(b) Court 2

1 2 3 4

0.5

1

BW

QoS

(c) The aggregated QoS function

u1,0 = p1(0) = 0, u1,1 = p1(1) = 0.45,

u1,2 = p1(2) = 0.7,

u2,0 = u1,0 + p2(0) = 0,

u2,1 = max{u1,1 + p2(0), u1,0 + p2(1)}
= max{0.45 + 0, 0 + 0.15} = 0.45,

u2,2 = max{u1,2 + p2(0), u1,1 + p2(1),

u1,0 + p2(2)} = max{0.7, 0.575, 0.25} = 0.7

(d) The dynamic program for B = 2

Fig. 2. Example on utility functions and QoS, which are the expected number of detected events as a function of bandwidth.

the problem (c, b) consists of the court index c ∈ {1, . . . , n}
and the amount of bandwidth b already allocated to courts
1, 2, . . . , c, where b is in the closed interval [0, B]. Note that
while c needs to be an integer, as it is a court index, there is
no such restriction for b. The only restriction we have is that
for every court the number of different scenarios should be
finite. The state space is the set of feasible states, which is

S = {(c, b) : 1 ≤ c ≤ n, 0 ≤ b ≤ B}.

The actual number of states depends on how many different
values b can take. Let us define a working variable uc,b

assigned to each state, which represents the QoS on courts
1, . . . , c using b units of BW. The optimal uc,b can be
computed by solving the following recursive equations. First,
for a single court the QoS equals to the utility function thus
we have

u1,b = p1(b) , b = 0, . . . , B . (1)

For the internal states optimal decisions are driven by the
following equation:

uc,b = max
x=0,1,...,b

{pc(x) + uc−1,b−x}, (2)

for c = 2, . . . , n.
The final value we get is un,B , which gives us the QoS to

expect. To process the states we start at Court 1, and compute
u1,b for b = 0, . . . B, next compute the states for Court 2 u2,b

for b = 0, . . . B, etc. Finally, we read out the the optimal x∗i
for all the courts in the opposite direction: it is the x for which
ui,B−b∗i takes its maximum, where b∗i =

∑n
j=i+1 x

∗
j .

Let us explain the dynamic program on the example of Fig.
2. We allocate the bandwidth in integer units, and the number
of courts is n = 2. Let the bandwidth constraint be B = 3.
The states are c ∈ {1, 2} and b ∈ {0, 1, 2, 3} which is 8 states
in total. See the dynamic program on Fig. 2d till B = 2,
and u1,3 = p1(3) = 0.7 and the final solution is u2,3 =
max{u1,3+ p2(0), u1,2+ p2(1), u1,1+ p2(2), u1,0+ p2(3)} =
max{0.7+0, 0.7+0.15, 0.45+0.3, 0+0.3} = 0.85. See also
Fig. 2c as illustration of the QoS function.

D. Multiple Resources and General Utility

As a straightforward generalization we consider multiple
resources with a general utility function. Say we have m
resources B1, B2, . . . , Bm. Apart from bandwidth restrictions

we may have further constraints on i.e., the total number of
CPU cores we may allocate for the courts.

Let xij denote the amount of resource j we allocate to
court i in a given time frame. Let the set of allocations be
X = {xij , i = 1 . . . , n, j = 1, . . . ,m}. Let p(X) be the gain
if we make these allocations, and let U(·) be the desired utility.

The problem can be formulated as follows.

maximize U(p(X)),

subject to
n∑

i=1

xij ≤ Bi, j = 1, . . . ,m,

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

First we have to re-define the states of the problem. A state
s = (c, b1, b2, . . . , bm) represents the amount bj of resource
Bj , j = 1, . . . ,m that has already been allocated when we
consider court c. Similarly as before, the state space is

S = {s : 1 ≤ c ≤ n, 0 ≤ bi ≤ Bi, i = 1, . . . ,m}.

The new recursive equations that define the optimal deci-
sions are the following. For the first court we have

u1,b1,...,bm = p1(b1, . . . , bm) ,
b1=0,...,B1

:
bm=0,...,Bm

. (3)

For the internal states optimal decisions are driven by the
following equation:

uc,b1,...,bm =

max
x1=0,1,...,b1

:
xm=0,1,...,bm

{
pc(x1, . . . , xm) + uc−1,b1−x1,...,bm−xm

}
(4)

for c = 2, . . . , n.
Theorem 1: The QoS can be computed in O(nmBm+1

max)
time, where Bmax = max{B1, . . . , Bm}.

Proof: The maximum in (4) is performed over a O(Bm
max)

items, and there are nmBmax states.

IV. A DYNAMICALLY RESOURCE-PROVISIONED IOT
SYSTEM PROTOTYPE

Here we summarize our experiments with the test-bed built
on a squash court for processing time-critical IoT data in the
cloud. To showcase our IoT system we chose the front-wall
ball impact detection service in squash courts. Providing an
exact impact location and time, in addition to player positions
and racquet strikes, gives several important metrics – ball

speed, ball trajectory, strike type –, and can be the basis
of video referee, training, score counting applications and
augmented reality games. In those latter the strict latency con-
straints of delivering good experience, similar to the challenges
addressed in online gaming applications, are evident.

Fig. 3 shows the process chain from data gathering to the
resource allocation decisions. Data is collected from several
squash courts from diverse sensors: racquet sensors, micro-
phones and cameras, a selected subset of available data is
routed to the cloud based event detection processes. The
detected events are incorporated in the predefined data model
updating it to the current state of the system. Based on the
current data model, a prediction is given on the expected
system state in the very near future. Finally, based on the
prediction utility functions are computed for each court and
the resource allocator decides the how bandwidth and server
resources are allocated for each court. The whole process
is periodically repeated with 33ms-long time-frames. In the
following we describe each step in more details.

Strike event

Predictor

Probability correction

Resource allocator

Detector

Detection result

Load balancer
Performed allocation

Detection result

Selected cropping

Fig. 3. Data process chain

A. Uploading and Processing Sensor Data

For this specific use case we use three different sensors.
A motion processing unit embedded in the squash racquet
transmits low bandwidth measurement data that is parsed
in the cloud for strikes. A birds eye view camera uploads
low frequency (3 FPS) low resolution (320p) images for
player positioning. The detection of front-wall ball impacts
is also implemented in the cloud and processes the video feed
coming from a camera installed at the back of the squash
court spotting the front wall. The cameras are connected to
a RaspberryPi SBC (Single Board Computer) where video
streams are generated by being compressed to H.264 [19]
format. The encoded video is then multiplexed into MPEG-
TS [20] (Transport Stream). The wall-facing camera streams a
720p HD (High Definition) video with 2 Mbps constant bitrate,
providing sufficient picture quality for the impact detection,
because the image of the front-wall is simple and stationary.

There are several ways to further reduce the bandwidth
demand of an already compressed video stream. The picture
quality can be reduced, i.e., by applying higher quantization
value in the encoder. The resolution of the pictures can also be

reduced. Frame size can also be reduced by cropping the front
wall. However, detection accuracy deteriorated considerably
when video quality or resolution dropped below the required
minimum level. Also, increasing either quality or resolution,
even well above that level, yielded no further benefit. Another
way to reduce the video upload bandwidth without losing
detection precision is to transmit only a small burst of the
video frames in the expected time of the ball impact. In
Sec. IV-B we describe how parts of the front-wall are selected
by the Predictor module for recording and uploading.

B. Data Model and Event Prediction

Different from tennis or table tennis, squash is a strategic
game where the next ball impact location is highly predictable
using the racquet sensor data. As players share the same court
they have to strike in a manner that the adversary should
have the means to return the ball without major obstruction.
Meanwhile players also have to avoid putting the adversary
into an advantageous position: they have to choose a strike that
has a great probability of success. Between these constraints a
player’s options are limited; furthermore, the more skilled the
opponent, the less choice will be left when making the strike.
Examining games of international tournaments, patterns with
highly predictable outcomes emerge. Building a data model
based on overall and individual strategy improves the accuracy
of predictions and further reduces the amount of resources
required for detection.

Our IoT system records atomic events of the gameplay: ball
impacts on the front-wall, racquet strikes and player positions.
These events play a key role in all sport analytics use cases.
Based on the data we collect, it is impossible to predict the
time window or a surface region of the ball impact on the
front-wall: the predictor provides the probability of successful
detection in the function of presumed resources allocated to
the data collection and processing.

Fig. 4. The probabilities of front-wall ball impacts at different areas on the
wall in the same time interval

Our implemented prediction algorithm works as follows.
The prediction is triggered when a strike is detected based on
racquet sensors. Racquet sensors provide some approximate
information about the type of the current strike. Predictor
calculates the ball’s and players’ trajectories from the last
strike and the last ball impact. Based on the time and position

differences, and the data model, the prediction algorithm
determines the type of strike the player is performing, and
evaluates the probability distribution of the next front-wall
ball impact in space and time. The probability distribution
is given in the function of x, y and t, where x and y are the
horizontal and vertical coordinates on the front wall and t is
the time. Fig. 4 demonstrates the probability distribution of a
straight strike made at the left wall of the court: each eighth
of the front wall has its time dependent probability function,
a straight ball to the bottom left area being the most probable,
with an early impact time, and other impact locations having
more wide spread probabilities.

C. Resource Allocator

In our testbed, the resource allocator solely focuses on
the uplink bandwidth, and omits the provisioning of cloud
resources. In each timeslot the uplink bandwidth allocation
for camera feeds is controlled by the dynamic programming
algorithm that maximizes the overall impact detection. Based
on the predictions of the possible ball impacts the utility
functions are computed for each court in the following way.

We divided the front wall into 8 areas by splitting the
front wall horizontally in 2 and vertically in 4 (see also
Fig. 4). Although impact probability is evaluated for each area
of the video stream, we limit possible cropping to a single
rectangular area. There are six different sizes of areas: 1/8, 2/8,
3/8, 4/8, 6/8 and full front wall. For each area size the cropping
resulting in the highest detection probability is chosen.

In order to map image area to bandwidth usage, the me-
chanics of the video encoder have to be taken into account.
The H.264 video format - as many modern video formats -
uses predictively coded pictures, “P” frames, which contain
only the difference information relative to a reference frame
in our case the previous “I” or “P” frames. To start the video
decoding there has to be a picture which contains the full
information of the image, an intra-coded “I” frame, that can
be decoded without information from previous frames, serving
as basis for the following predictively coded “P” frames.

Fig. 5 shows an illustration of the frame types and sizes
in an actual video from the front wall. As it can be seen
“I” frames are larger then the predictively coded “P” frames,
because there is very little difference between consecutive
frames, only camera noise and possibly the ball. Due to the
low latency requirements we do not use “B” frames.

The bandwidth need of a video frame is higher for a new
stream than for the continuation of a previous stream: if a
particular cropping was requested in the last timeslot, only a
“P” frame has to be transmitted for the same associated area.
However for any other requested area - even if it is a subset
of the previous crop - a new “I” frame is required instead of a
“P” frame. Based on our measurements, the bandwidth needs
of an “I” frame are five times that of a “P” frame.

D. Cloud Deployment

System components (as depicted in Fig. 1) in the cloud
communicate with components at the squash centers, i.e.,

I P P P P P P P P P P P P P P I P P P P P P P P P P P P P P I P P P P
Frame type

0

5

10

15

20

25

30

35

40

Fr
a
m

e
 s

iz
e
 [

kB
]

Fig. 5. Frame types and sizes in the front wall video

at the edge of the IoT system: while the detector receives
racquet, environmental and video sensor inputs, the resource
allocator sends the resource allocation instructions to the
courts periodically. For the communication UDP datagrams
are used to avoid the connection setup time for each request
and the unpredictable delays due to buffering. Regarding
the networking performance of our cloud-based system, the
average intra data center throughput is measured to be 500–
800 Mbps, while the inter data center throughput is 100–
300 Mbps in public cloud systems [15], [21]. In our case,
sufficient throughput is key for uploading video streams,
however, as the numbers show, a single cloud instance is able
to receive more than 50 video streams continuously.

The cloud provides a scalable infrastructure for applications;
however, it must be kept in mind that the scaling of a virtual
machine based deployment can be executed on minute time
scale. As a result the system for time critical applications have
to be over-provisioned in order to be protected against sudden
changes in the number of requests to serve. The cloud-hosted
system components are designed to be stateless in a sense that
prediction and detection requests from the same court can be
served by any active instance. This way simple load balancers
available in public clouds can be used, and the system can
be operated on cloud scale. The only requirement on the load
balancer is to use sticky sessions to route the packets of a
single video burst to the same instance. The states are stored in
the data model, in an in-memory database also provided by the
cloud which is periodically loaded for the resource allocation.
We use the UDP load balancer component of the Azure Cloud
to distribute the load between the running instances.

The shared nature of the cloud implies that deployment of
time-critical applications is challenging. The limitations have
to be kept in mind during the system design and the evaluation
of a particular deployment. The minimum time required to
prepare the IoT edge for capturing a ball impact is the sum
of the Round Trip Time (RTT) from the squash center to the
cloud, the time the predictor and the resource allocator take
and the length of one time-frame in the system. While the
latency is reported to be satisfying in the related work on
our time scale, it varies between providers and also heavily

depends on the Internet connectivity of the client sites. We
evaluated the latency towards the West Europe data center of
the Microsoft Azure Cloud from 3 geographically distributed
sites, one being the squash center where we built the smart
squash court. We were using medium sized virtual machines,
as these are expected to perform significantly better than small
instances [22]. The results in Fig. 6 show that the RTT is stable
between 20 and 30 ms, depending on the selected site. The
packet loss was under 0.005% with the used small packet sizes.

20 25 30 35 40 45 50
RTT [ms]

0.0

0.2

0.4

0.6

0.8

1.0

e
C

D
F

Site A

Site B

Site C

Fig. 6. RTT to the Azure cloud from 3 sites

The most time-critical part of our system is the decision
loop after the strike, as this is the time when both uplink
delay and prediction runtime have to be considered. When the
player strikes the ball, sensor data is uploaded to the cloud
with a delay of 10 to 20ms. Prediction can take up to 20ms
if an active processing instance is promptly available. In the
worst case a whole time-frame, i.e., 33ms, may pass until the
resource allocation algorithm is triggered, and additional 10ms
are required for the dynamic program to complete. With the
downlink delay being between 10-20ms, the average reaction
time is 72ms, while worst-case results reach 103ms. This is
still sufficient for most of the strikes, even strong straight shots
take 142ms on average between the strike and wall impact.

The service has to be monitored in order to quickly detect
performance degradation. In order to continuously monitor the
performance of the system, we send back a status packet at
the end of the prediction to the sites. In Fig. 7 we plot the
measured time differences between the racquet strike and the
received status packet with 10–15 parallel requests coming
from each of the 3 sites. We show the results only for site C
which has the lowest quality network towards the data center,
the other sites have better RTT characteristics. The dotted
black line shows the case when there is only a single active
server in the load balancing group which is unable to serve
the amount of predictions properly. By simply activating more
servers, the prediction time becomes significantly more stable.

The delay of the impact detection itself is lower: delay
values fall between 20ms and 68ms depending on network
conditions and the capture lag. The delay is composed of the
capture lag of 0-33ms, the uplink delay of 10-20ms and the

50 60 70 80 90 100 110 120 130 140
RTT with prediction [ms]

0.0

0.2

0.4

0.6

0.8

1.0

e
C

D
F

4 servers

3 servers

2 servers

1 server

Fig. 7. Prediction latencies from site C

15ms in the detector process spent on image recognition. Due
to the UDP based transport we did not measure any significant
additional delay in this uploading process.

V. SIMULATION OF RESOURCE ALLOCATION ALGORITHM

In this section using the measurements of the single squash
court we simulate the performance of the resource allocation
algorithm for multiple courts.

A. Assumptions

For tractability we measure bandwidth in the unit of P ,
i.e., the size of a “P” frame covering one eighth of the front
wall transmitted over a time-frame. As displayed in Sec. IV-A,
the size of an “I” frame for the same area equals five times
the size of a ”P” frame, and the size grows linearly with the
surface of the captured area. Hence, transmitting a “P” and
an “I” frame of the full front-wall in a time-frame takes 8P
and 40P respectively. P is equivalent to roughly 200 kbps of
throughput at our chosen capture speed of 30 frames per sec.

Based on hundreds of hours of captured and analyzed games
on our smart court [23], we built a data model and generated
strikes and front-wall ball impact events and predictions for
a hypothetical squash venue featuring 20 squash courts. We
then emulated squash games on those courts, and recorded
bandwidth allocation decisions for different total available
bandwidth values. For a venue connected to the Internet
through a consumer grade subscription the uplink speed typi-
cally falls below 20Mbps at the time of writing this paper in
2016, therefore we run simulations with total uplink capacities
ranging from 5P to 100P , 100P being equivalent to 20Mbps.

The applied data model contains realistic inter-wall-impact
times and yields predictions with various confidence levels
for specific time intervals and wall surface parts. Depending
on the assumed total uplink capacity, the resource allocator
schedules video uploads for courts with the most probable
ball impacts, and we consider a detection successful only if
the given court received the required amount of uplink at the
time of the ball impact and the camera was observing the wall
surface part where the ball impact is emulated.

B. The Naive and the Multiplexed Approaches

The naive approach to capturing every ball impact on the
court continuously streams the video capture of the whole front
wall. An “I” frame has to be scheduled in roughly every 15
frames, resulting in an average bandwidth of 10.13P per time-
frame per court. When this bandwidth is available, detection
accuracy is perfect. Below this value QoS is compromised:
either bandwidth must be reallocated among courts, or the
observation of selected courts are omitted altogether.

A more refined alternative to the naive is the “multiplexed”
approach in which a prediction-aware multiplexer prioritizes
the video feed from the courts based on their predicted
detection probability in every time-frame. In time-frames when
the uplink needs of all courts exceed the available bandwidth,
only the highest priority courts receive the required upload
bandwidth. Note that in the “multiplexed” approach the ball
impact location on the wall is not taken into account in
resource allocation decisions. In order to improve the per-
formance per resource ratio, continuous streams are preferred
against new streams that require a large new “I” frame.

C. Numerical Results

We defined the performance, i.e., QoS, of the ball impact
detection service as the ratio of the number of successful
detections over the number of ball impacts detectable with
unlimited resources throughout the emulated session. In other
words we ignore those ball impacts which are missed by the
detector, and we account for only those missed ball impacts
where the insufficient amount of resources hinders the detec-
tion. As said above, a detection is successful when an image
of the area containing the simulated ball impact is transmitted
at the time of the ball impact. We measured the average
quality of service for the 20 courts with the aforementioned
amounts of available bandwidth. First we provide the QoS
and the resource requirements of the naive approach, then
we describe the tradeoff between the QoS versus exploited
resources when applying multiplexing with predictions and
our proposed optimization method with predictions.

In order to guarantee maximal QoS, i.e., 100% detection of
ball impacts, the naive approach uses an uplink bandwidth
of 20 × 10.13 = 202.6P per time-frame which amounts
to 40Mbps. Provisioning less uplink than this amount the
QoS is linearly worse: either whole courts fall out of the
detection scope, and/or certain time periods are blacked out in
some courts. Fig. 8 shows how the multiplexed and optimized
solutions perform compared to the naive approach. These other
approaches benefit from the prediction results and based on
those they utilize bandwidth more efficiently. At the x axis
value 80 both advanced methods reach 98% accuracy. This
uplink capacity is equivalent of transmitting “P” frame streams
from 10 courts in parallel, as a “P” frame of the full wall uses
8P of bandwidth

The reason for this high QoS at such a low cost in uplink
resource is due to the fact that the squash ball is designed to
lose more than 75% of its kinetic energy on impact, therefore
the ball spends more than half of the inter-strike time bouncing

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0

optimized
multiplexed
naive

Fig. 8. Normalized QoS vs. uplink capacity for the naive, multiplexed and
optimized approaches

back from the front wall. Collected, analyzed and continuously
incorporated the gathered knowledge about this, and more,
in the data model, our system, and specifically the predictor
module is able to pinpoint the time of the next ball impact
with relatively high accuracy once the strike has been detected.
This makes uploading video data unnecessary for most of the
time between strikes: for some time right after the strike, and
naturally for a long time after the ball impact. We argue that
such resource savings are possible in most IoT use cases where
the resource-consuming detection of events can be triggered
by low resource cost data input and predictions based on the
well-tailored data model.

Thus ball impact predictions are fairly accurate when strike
style, estimated ball speed and player positions are taken
into account. This enables prediction-aware solutions to man-
age concurrent bandwidth requests more efficiently. With the
“multiplexed” approach the QoS degrades rapidly if uplink
bandwidth is scarce, and the reason for this is twofold. First,
the cost of switching between courts is high due to the initial
“I” frame that has to be transmitted, so the multiplexer favors
streams that are already being uploaded even if the probability
of detection is lower for them (the marginal utility of the
lower probability is higher due to the smaller cost). Second,
the multiplexer does not split the wall of courts into lower
bandwidth streams even though predictions come with highly
accurate ball impact locations.

Only a more complex optimization algorithm, e.g., a dy-
namic programming based solution, is capable of managing
the many possible bandwidth needs and the related utilities
of uploading video of different areas of the front wall. Here
are the results of our “optimized” approach. Because of good
predictability, 5P of bandwidth, equivalent to “I” frames of
only an eighth of the front wall, yields around 24% detection
efficiency. Having 10P bandwidth allows for up to 8 concur-
rent streams of the selected eighths (an initial “I” frame then
14 subsequent “P” frames), boosting QoS to a stunning 67%.
Broadly speaking 10P lets the resource allocator cover the
hot spots after each shot. From this point higher bandwidth
is used to cover less probable areas, with 100P enabling the

0 1 2 3 4 5 6 7 8 9
Timeframes

0

5

10

15

20
Ba

nd
w

id
th

Fig. 9. Upload bandwidth allocated to courts in the optimized approach

coverage of nearly every time-frame and area when and where
the ball has the physical chance for impact on the front wall.

To better understand resource allocation with our “opti-
mized” approach applying dynamic programming, we included
an extract of allocations with available bandwidth 20P for 20
courts for 10 consecutive time-frames. Fig. 9 displays how
volatile the allocation can be despite the large cost of “I”
frames that are required to change camera capture settings.
This adaptability coupled with the predictability of the game
results in a low resource hunger at great QoS levels.

VI. CONCLUSIONS

In this paper we present the architecture of our cloud-based
IoT testbed that maximizes utility when high-bandwidth video
streams have to share a narrow uplink channel. We deployed
this system to solve a sport analytics use case, namely that
of squash front-wall ball impact detection. Using our system,
we captured and analyzed hundreds of hours of game footage
and built a data model of ball impact probabilities in different
contexts. Using this data model we ran simulations for an
imaginary venue hosting 20 simultaneous squash sessions.

With the help of our modular cloud-based application we
used three different methods for solving conflicting bandwidth
requests. First we evaluated the naive approach that divides
resources evenly between all the courts that are selected for
analysis. Then we proposed two resource allocation meth-
ods that benefit of the context-based prediction engine. The
multiplexer compressed streams to 45%, while maintaining
a 97% QoS. The dynamic program based solution has not
only achieved a fascinating 30% compression rate for the same
QoS, but also degraded gracefully when even less bandwidth
was available, up to the point where, with only 10% of
the necessary bandwidth we measured more than 80% event
detection. This allows for a significant reduction in uplink
bandwidth and processing power in the cloud, and creates
an efficient multiplexing among the resources used to detect
events in squash games played in parallel.

We focus our future efforts on creating a system that
not only provides optimal quality of service in each time
interval, but also takes the interdependence of the time-frame
into the decision problem. In our current work predictions
concerning the future does not influence the optimization at
the present. Past allocations had an organic effect on current
decisions through the utility function, but using predictions for
future detection probabilities may further reduce the amount
of missed events.

ACKNOWLEDGMENTS

This research was supported by Ericsson. We thank our
colleagues from the SmartActive project who provided insight
and expertise that greatly assisted the research that led to the
submission of this paper.

László Toka was partially supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

REFERENCES

[1] S. Gerke et al., “Identifying Soccer Players using Spatial Constellation,”
in ACM KDD Workshop on Large-scale Sports Analytics, 2015.

[2] T.-Y. Liu et al., “Effective feature extraction for play detection in
american football video,” in IEEE MMM, 2005.

[3] M. Nieto et al., “An automatic system for sports analytics in multi-
camera tennis videos,” in IEEE Advanced Video and Signal Based
Surveillance, 2013.

[4] X. Wei et al., “Predicting shot locations in tennis using spatiotemporal
data,” in IEEE DICTA, 2013.

[5] “Hawk-eye ball tracking,” http://www.hawkeyeinnovations.co.uk.
[6] K. Conroy et al., “Enrichment of raw sensor data to enable high-level

queries,” in Database and Expert Systems Applications. Springer, 2010.
[7] D. Connaghan et al., “Multi-sensor classification of tennis strokes,” in

IEEE Sensors, 2011.
[8] “Smart Tennis Sensor for Tennis Rackets,” http://www.sony.com/

electronics/smart-devices/sse-tn1w.
[9] “Zepp tennis — analyze & improve your serve & stroke,” http://www.

zepp.com/en-us/tennis/.
[10] H.-L. Truong et al., “Principles for engineering IoT cloud systems,”

IEEE Cloud Computing, vol. 2, no. 2, pp. 68–76, 2015.
[11] S. Nastic et al., “Provisioning Software-Defined IoT Cloud Systems,”

in IEEE FiCloud, 2014.
[12] M. R. Palattella et al., “Internet of Things in the 5G Era: Enablers,

Architecture, and Business Models,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 3, pp. 510–527, 2016.

[13] A. N. Ansari et al., “An Internet of things approach for motion detection
using Raspberry Pi,” in IEEE ICIT, 2015.

[14] Z. Xue et al., “Playing high-end video games in the cloud: A mea-
surement study,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 12, pp. 2013–2025, 2015.

[15] A. Li et al., “Cloudcmp: Comparing public cloud providers,” in ACM
IMC, 2010.

[16] S. Choy et al., “The brewing storm in cloud gaming: A measurement
study on cloud to end-user latency,” in IEEE NetGames, 2012.

[17] Y. Xu et al., “Bobtail: Avoiding long tails in the cloud,” in USENIX
NSDI, 2013.

[18] S. Sundaresan et al., “Broadband internet performance: A view from the
gateway,” in ACM SIGCOMM, 2011.

[19] “Advanced video coding for generic audiovisual services,” ITU-T Rec.
H.264 and ISO/IEC 14492-10 (MPEG-4 AVC), 2003.

[20] “Generic coding of moving pictures and associated audio information:
Systems,” ITU-T Rec. H.222 and ISO/IEC 13818-1, 1996.

[21] V. Persico et al., “Measuring network throughput in the cloud: The case
of Amazon EC2,” Computer Networks, vol. 93, pp. 408 – 422, 2015.

[22] G. Wang et al., “The impact of virtualization on network performance
of Amazon EC2 data center,” in IEEE INFOCOM, 2010.

[23] L. Toka et al., “The difference between leisure and competitive squash,”
in ACM KDD Workshop on Large-Scale Sports Analytics, 2016.

