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Abstract 

Extracellular vesicles isolated by differential centrifugation from Jurkat T-cell line were 

investigated by attenuated total reflection Fourier-transform infrared spectroscopy 

(ATR-FTIR). Amide and C-H stretching band intensity ratios calculated from IR bands, 

characteristic of protein and lipid components, proved to be distinctive for the different 

extracellular vesicle subpopulations. This proposed ’spectroscopic protein-to-lipid ratio’, 

combined with the outlined spectrum-analysis protocol is valid also for low sample 

concentrations (0.15-0.05 mg/ml total protein content) and can carry information about the 

presence of other non-vesicular formations such as aggregated proteins, lipoproteins and 

immune complexes. Detailed analysis of IR data reveals compositional changes of 

extracellular vesicles subpopulations: second derivative spectra suggest changes in protein 

composition from parent cell towards exosomes favoring proteins with -turns and unordered 

motifs at the expense of intermolecular -sheet structures. The IR-based protein-to-lipid 

assessment protocol was tested also for red blood cell derived microvesicles for which similar 

values were obtained. The potential applicability of this technique for fast and efficient 

characterization of vesicular components is high as the investigated samples require no further 

preparations and all the different molecular species can be determined in the same sample. 

The results indicate that ATR-FTIR measurements provide a simple and reproducible method 

for the screening of extracellular vesicle preparations. It is hoped that this sophisticated 

technique will have further impact in extracellular vesicle research. 
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Introduction 

Extracellular vesicles (EVs) are lipid bilayer enclosed structures released by cells. EVs 

generally are classified based on their cellular origin, biogenesis and physicochemical 

properties [1]. Apoptotic bodies (AB), with a broad size range between 800 – 5000 nm, are 

generated when cells undergo apoptosis and fragmentation. Microvesicles (MV) are described 

as being formed by outward budding and fission of the plasma membranes and having particle 

diameter of 100 – 1000 nm. Exosomes (EXO), with reported diameter between 70 – 150 nm, 

are produced within the cell and are released through an exocytosis event when multivesicular 

bodies (MVBs) fuse with the plasma membrane.  

EVs have emerged as important mediators of intercellular communication [2-4]. Since EVs 

have been related to tumorigenesis [5,6], the spread of viruses and pathogenic agents as HIV-

1 [7], amyloid--derived peptides [8] and -synuclein [9] (which are pathologically linked to 

Alzheimer’s disease and Parkinson’s disease, respectively), they may serve as biomarkers of 

disease and as potential therapeutic targets. Despite intense investigation, however, many 

properties and mechanisms remain elusive due to the lack of standardization of isolation and 

characterization methods which hinders the translation of EV-based diagnostics into clinical 

use [10]. 

Considering the above, there is a need for fast, simple and reliable methods for EV 

characterization. One important issue is the determination of size distribution. Beside current 

techniques like electron microscopy (cryo-EM or freeze-fracture combined EM) [11,12], flow 

cytometry [13,14], and dynamic light scattering (DLS) [15], the introduction of novel 

techniques like nanoparticle tracking analysis (NTA) [16], resistive pulse sensing (RPS), 

small-angle X-ray scattering (SAXS) or size exclusion chromatography coupled with dynamic 

light scattering (SEC-DLS) are also ongoing [17,18]. Another key issue in EV research is the 

total protein determination and characterization by bioanalytical assays [19-21]. Quite 

recently, the protein-to-lipid ratio measured by combined BCA protein assay and 

sulfophosphovanillin (SPV) lipid assay as an additional parameter for routine quality control 

of EV preparation was proposed [22]. Raman spectroscopy, especially Raman tweezers 

microspectroscopy (RTM) is also a candidate for rapid and label-free characterization of cell-

derived extracellular vesicles [23-25].  

Infrared (IR) spectroscopy based protein quantification is already commercialized [26] and 

provide solution for many problems associated with colorimetric assays and UV-Vis detection 

used in protein research. Moreover, several studies deal with the feasibility of IR 

spectroscopy-based analytical methods in clinical and diagnostic analysis [27]. Liu et al. [28] 

proposed a reagent-free method for simultaneous determination of serum cholesterol in HDL 

and LDL by infrared spectroscopy. More recently, the attenuated total reflection 

Fourier-transform infrared spectroscopy (ATR-FTIR) was applied to obtain quantitative 

information about macromolecular composition in adipose tissue as major fat storage depot, 

and in liver and muscle, which may store ectopic fat [29]. Despite its advantages, ATR-FTIR 

spectroscopy so far was not used to characterize EV samples. To our best knowledge, our 

group has been the first who performed exploratory IR study on EVs.  
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The determination of protein-to-lipid ratio by infrared spectroscopy was first proposed by 

Navarro et al. [30]. Since proteins and lipids show distinctive absorption bands, the FTIR 

spectrum can be used to estimate the protein-to-lipid ratio by dividing the relative intensity of 

amide I protein band around 1650 cm
-1

, by that of carbonyl stretching of lipid-related ester 

bonds at around 1725-1740 cm
-1

. Investigating samples made of diacyl phospholipids and 

proteins mixed in known ratios they obtained a standard deviation less than ±4% over the 

lipid-protein molar ratio range of 9:1 to 320:1. ATR-FTIR spectroscopy was also 

recommended as a rapid method for assessing lipid:protein and detergent:protein ratios in 

membrane-protein crystallization [31]. Lipid-protein ratios down to approximately five 

molecules of lipid per molecule of a 300 kDa protein were accurately detected. We have to 

point out, however, that since the absorption coefficients of the protein- and lipid-related 

bands are different, for real biological samples without a proper calibration procedure only a 

‘spectroscopic’ protein-to-lipid ratio can be determined [32]. The ‘spectroscopic’ protein-to-

lipid ratio, however, has been successfully applied in realistic measures of differences in 

protein-to-lipid ratios from one membrane to another investigating thylakoid and cytoplasmic 

membranes of cyanobacteria [32] or Escherichia coli membranes [33]. 

The purpose of the present study was to assess the feasibility of ATR-FTIR spectroscopy as a 

fast and simple method for EV characterization and classification based on peculiar IR bands. 
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1. Materials and methods 

 

1.1. Materials 

Phospholipids and Brain Total Lipid Extract were purchased from NOF Corp., and Avanti 

Polar Lipids Inc., respectively. Cholesterol (Chol) and bovine serum albumin (BSA) used as 

protein standard were purchased from Sigma Aldrich. BSA – lipid mixtures in PBS buffer 

with varying protein-to-lipid ratios (from 0.2 to 4 mg/ml) were prepared from Brain Total 

Lipid Extract and a lipid mixture of Cholesterol, 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-

sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dipalmitoyl-sn-glycero-3-phosphoserine, 

sodium salt (DPPS) with Chol:DPPC:DOPC:DPPE:DPPS=5:1:1:2:1 composition, 

respectively by thin-film hydration method.   

1.2. Preparation of model vesicles and EV samples 

 

1.2.1. DOPC-BSA liposome preparation: 

To investigate the possible effect of protein or lipid adsorption on the ATR crystal on IR 

spectroscopy based protein-to-lipid ratio, bovine serum albumin (BSA) loaded 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC) liposomes as simple models of EVs were investigated. 

DOPC and BSA was mixed in 1:1 weight ratio and solved in PBS buffer solution (1.3 mg/ml 

final concentration). To achieve homogenous mixture and the maximal loading capacity, 

repeated heating (37°C) and cooling (-196°C) steps were applied. 1-1 ml from the stock 

solution was extruded through 600, 200 and 80 nm pore sized membrane, respectively. The 

unilamellar vesicles were purified from the soluble proteins by Sepharose CL-4B (GE 

Healthcare) gelfiltration. 

1.2.2. Ghost membrane preparation:  

Erythrocyte ghosts were prepared from freshly outdated erythrocyte concentrate (from 

Hungarian National Blood Transfusion Service). For a single isolation 4 ml of the pure cell 

suspension was tenfold diluted with lysis buffer (5 mM, pH: 8, TRIS buffer). The empty 

membranes were washed 4-5 times with an Avanti J26XP centrifuge, 10000 rpm to achieve 

haemoglobin free ghosts. The final ghost pellet was suspended in isotonic PBS buffer. 

 

1.2.3. EV isolation: 

Apoptotic bodies, microvesicles and exosomes were isolated from Jurkat T-cell line cell 

culture. RPMI-1640 medium containing 10% fetal bovine serum (FBS), 1% glutamine and 

1% penicillin/streptomycin was used as growing medium. The collection of vesicles started 

when approximately 10
7
 cell numbers was reached. At that time the cell medium was replaced 

with an FBS free one, in order to avoid the sample contamination with bovine serum 

microvesicles. Jurkat cells were incubated in FBS free “collecting medium” for 24 hours. 

Collecting medium contained 1μM doxorubicin, for apoptosis induction.  

EV isolation was performed by following the commonly used ultracentrifugation protocol 

guidelines. As a first step the removal of the cells and cell debris was achieved by two 
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consecutive sedimentations (Nüve NF800R centrifuge, 300g, 5 min). The supernatant was 

submitted to a 3000g centrifugation for 30 min to pellet apoptotic bodies. The supernatant was 

next ultracentrifuged at 20000g for 30 min to pellet microvesicles (Thermo Sorwall WX ultra 

centrifuge, with Thermo Sorwall 1270 fixed angle titanium rotor). Finally, exosomes 

sedimentation was performed by ultracentrifugation by 110000g for 1h. All pellets were 

washed with isotonic PBS buffer and the final pellets were suspended in 200 l PBS. 4 

independent isolations (JK1-JK4) were performed. 

Erythrocyte derived EVs were isolated from the same freshly outdated erythrocyte 

concentrate as used for ghost membrane preparation (from Hungarian National Blood 

Transfusion Service). According to the literature erythrocytes produce large amount of 

microvesicles during their lifetime, as they use shedding microvesicles to get rid of the excess 

membrane components [34]. The cell suspension was diluted to double volume with isotonic 

PBS buffer, the cells were sedimented and used for erythrocyte ghost preparation, while their 

supernatant was used for microvesicle isolation. After two consecutive sedimentations (Nüve 

NF800R centrifuge, 1500rpm, 10 min) the supernatant was submitted to a 20000g (Thermo 

Sorwall WX ultra centrifuge, with Thermo Sorwall 1270 fixed angle titanium rotor) 

centrifugation for 30 min. The pellets were washed with isotonic PBS buffer, than the final 

pellet was suspended in 200 l PBS.  

 

1.3. Freeze-fracture transmission electron microscopy (FF-TEM) 

FF-TEM allows the study of the morphology of EVs in their native environment, by rapid 

freezing of the sample and without any fixation or negative staining materials [18]. The 

vesicles samples were mixed with glycerol (sample:glycerol at 3:1 volume ratio) to avoid 

freezing artifacts. Approximately 1 l of sample was pipetted onto a golden sample holder 

and suddenly frozen in liquid freon at -194°C, then stored in liquid nitrogen. Fracturing was 

performed at -100°C in a Balzers freeze-fracture device (Balzers BAF 400D, Balzers AG, 

Liechtenstein). Replicas from the fractured surfaces were made by carbon-platinum 

shadowing, then washed with surfactant solution and distilled water. The replicas were placed 

on 200 mesh copper grid and examined in a MORGAGNI 268D (FEI, The Netherlands) 

transmission electron microscope.  

1.4. Dynamic light scattering (DLS) 

The measurement of the average size and size distribution of the isolated EV and reference 

samples was carried out by an AvidNano W130i dynamic light scattering apparatus 

(AvidNano, UK). 80 l samples were used in a low-volume cuvette (UVette, Eppendorf Austria 

GmbH). The analysis of the measurement data was performed using the i-Size 3.0 software. 

1.5. Protein concentration determination by Bradford assay 

Total protein content of samples was determined using the Bio-Rad Protein Assay, based on 

Bradford’s method that involves the binding of Coomassie Brilliant Blue G-250 dye to 

proteins. Bovine Serum Albumin (BioRad Laboratories, USA) was used as standard (2 

mg/ml). To 0.5 ml of each standard (0-25 g/ml) and unknown sample solution were added 
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0.5 ml dye reagent and was vortex for 15 sec. The samples were incubated at room 

temperature for at least 5 min and the absorbance was measured at 595 nm.  

All UV-Vis measurements were done at 25ºC using a Hewlett-Packard 8453 diode array UV-

Vis spectrophotometer thermostated with Grant LTD 6G circulating water bath, in a quartz 

cuvette with a 1 cm optical path. 

1.6. Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) 

ATR-FTIR spectra were collected using a Varian 2000 FTIR Scimitar Series spectrometer 

(Varian Inc, USA) equipped with a liquid nitrogen cooled mercury-cadmium-telluride (MCT) 

detector and with a ‘Golden Gate’ single reflection diamond ATR accessory (Specac Ltd, 

UK). 5 l of sample was mounted on the diamond ATR crystal and a thin dry film was 

obtained by slowly evaporation of the buffer solvent under ambient conditions [33]. The 

measurements were performed at room temperature, immediately after drying the sample 

(within approximately 5 minutes). 128 scans were co-added at a nominal resolution of 4 cm
-1

. 

After each data acquisition ATR correction was performed. For all spectral manipulation the 

GRAMS/32 software package (Galactic Inc, USA) was used.  

1.7. Statistical analysis 

For data analysis we used the GraphPad Prism 5.0 software. For comparison of protein-to-

lipid parameter of different EV subpopulations unpaired t-tests were run, followed by one-

way ANOVA. P values less than 0.05 were considered statistically significant. 

 

2. Results and discussion 

 

2.3. Characterization of EVs 

 

Figure 1A shows typical TEM pictures of freeze-fracture replicas of the isolated EV 

subpopulations derived from Jurkat cells. Spherical vesicles with granular fractured surfaces, 

presumably proteins or protein aggregates, are observed for all EV subpopulations. The 

average diameters fall around 100 nm, 200 nm and 1m for exosomes, microvesicles and 

apoptotic bodies, respectively. These values coincide with the size distribution measured by 

DLS (Figure 1B) and are in agreement with the typical values reported in literature [2].  
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Fig.1 (A) Typical FF-TEM pictures of Jurkat cell derived EV subpopulations. (B) Size 

distribution measured by dynamic light scattering (DLS) measured for the same EV 

subpopulations. D: mean diameter; P.d.: polydispersity. 

 

Beside the classification of EVs based on morphological criteria, accurate control of EV 

concentration is requirement to characterize EV isolation. One of the most used techniques is 

to quantify the EVs by quantification of total proteins [35] by protein assays. Total protein 

contents of the different EV subpopulation determined using Bradford assay with the Bio-Rad 

Protein Assay Reagent are presented in Table 1.  

Table 1. Total protein content (with standard deviations) of Jurkat cell derived EV 

subpopulations (n=4 independent isolation). 

EV EXO (±SD) MV (±SD) AB (±SD) 

Total protein content 

(mg/ml) 

0.051±0.02 0.053±0.03 0.124±0.02 

 

2.4. IR spectra of different EV subpopulations 

Representative IR spectra of different EV subpopulations derived from Jurkat-cell line, 

together with the spectrum of original cell line are presented in Figure 2A. 
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Fig.2 (A) Representative ATR-FTIR spectra of EVs isolated by differential centrifugation 

from Jurkat cell line. (B)  Representative ATR-FTIR spectra of EVs after PBS buffer 

subtraction in the 1800-1350 cm
-1

 wavenumber region: C=O stretching from lipid esters, 

amide I and amide II bands of proteins. (C) Second derivative IR spectra of the amide I region 

for protein secondary structure assessing.   

 

From the IR spectra one can gather general information concerning the molecular constituents 

and their structures (Figure 2A). The main features of the spectra, common for all biological 

samples, are the two prominent amide absorptions, around 1651 cm
-1

 (termed amide I, 

originating mainly from C=O stretching vibrations of the protein peptide backbone) and 

another at 1540 cm
-1

 (termed amide II, arising from N-H bending vibrations of the peptide 

groups). The strong band at 3285 cm
-1

 (better observable in the spectra of the original cell line 

and of the apoptotic body, too) superposed with the broad, overlapped -OH stretching 

vibrations, belongs to the N-H stretching vibrations of the peptide groups of proteins (termed 

amide A). The distinct lipid absorption appears around 1738 cm
-1

 originates from the ester 

groups of phospholipids, triglycerids and cholesterol esters, together with the dominant 

antisymmetric and symmetric stretching vibrations of the lipid acyl CH2 groups corresponding 

to the bands at 2924 and 2850 cm
-1

, respectively. The absorption band at 1453 cm
-1

 belongs to 

the bending (scissoring) vibration of lipid acyl CH2 groups, while the band at 1394 cm
-1

 is 

attributed to bending vibrations of both lipid and protein CH3 groups. Bands from the spectral 

region of 1200-950 cm
-1

 generally are attributed to the stretching vibrations of the 

phosphodiester groups of phospholipids and to the C-O-C stretching vibrations of 

phospholipids, triglycerides and cholesterol esters. In our case, however, this spectral region 

is completely masked by the broad phosphate vibrations bands of the isotonic PBS buffer. 

Due to the used separation procedure of the different EV subpopulations, i.e. consecutive 

centrifugation, sedimentation and washing with PBS, a decrease in EV concentration of the 

investigated samples occurs (see Table 1). The very low sample concentration (around 0.05 

mg/ml total protein) results in a comparable intensities of IR absorption bands of buffer (PBS) 

molecules with that of EVs. Consequently, the subtraction of pure PBS dry film spectra is 

required prior to further analysis of EV samples. 

Detailed analysis of spectral region from 1800 to 1350 cm
-1

 for different EV subpopulations 

(Figure 2B) reveals subtle changes in the shape and relative intensity of amide I and lipid-

related ester C=O stretching vibrations. The amide I region (1700-1600 cm
-1

) is used for the 

secondary structure determination of the proteins. The broad envelope of the amide I can be 

resolved to individual band components, which can be used to characterize the -helical, -

sheet, random, etc. content of the given proteins [36]. Protein secondary structure for EV 

subpopulations were assessed by second derivative IR spectra of amide I band (Figure 2C). 

As to the EVs, going towards exosomes changes in protein composition can be witnessed 

favoring -turns (band component at 1676 cm
-1

)
 
and unordered protein motifs (1640 cm

-1
) at 

the expense of -sheet conformations (1635 cm
-1

) [37,38]. As to the MV and EXO spectra, 

the arising band component around 1627 cm
-1

, characteristic of non-native intermolecular -

sheets, suggests the presence of aggregated proteins or apolipoproteins [37,39]. The new band 
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component at 1660 cm
-1

 might be related to triple-helix structure characteristic for some 

immune complexes [40] or associated with nucleic acid (RNA) content of the EVs [41]. 

It is worth to note that the spectral features of parent Jurkat cells and apoptotic bodies are very 

similar suggesting their similar composition. For microvesicles (MV) the relative intensity of 

the carbonyl stretching bands is higher indicating its higher content of phospholipids 

presumably due to their plasma membrane origin. In the case of exosomes, however, the C=O 

stretching band intensity is suppressed. This is in accordance with the observation that 

exosomes from a variety of cells are highly enriched in cholesterol, sphingomyelin, and 

ceramide at the expense of phosphatidylcholine and phosphatidylethanolamine [3]. 

2.5. Protein-to-lipid ratio 

Due to the impact of IR spectroscopy to study simultaneously protein and lipid components a 

‘spectroscopic protein-to-lipid ratio’ can be derived by dividing the relative intensities of 

amide I protein band by that of carbonyl stretching bands of lipid-related ester bonds [32]. As 

an initial step we derived P/L ratios based on relative intensities of amide I and carbonyl 

stretchings (Figure S1, Supplement). The results are in close agreement regarding the 

changes of P/L values among subpopulation of extracellular vesicles with a recently applied 

method based on a combination of sulfophosphovanillin (SPV) total lipid assay and micro 

BCA protein assay [22, 42].  

Note, however, that in order to exploit full potential of the ATR-FTIR techniques, including 

high reproducibility, relative comparison of intensities of amide I and lipid-related carbonyl 

stretching bands encounters several difficulties. The very low concentration of as-prepared 

EV samples (usually between 0.15-0.05 mg/ml, determined by Bradford assay) demands very 

sensitive FTIR technique. Our single reflection diamond ATR accessory, however, suits the 

requirement. Another important issue is the possible presence of non-vesicular materials like 

aggregated proteins, amino acids, etc. To overcome this problem, the integrated amide I band 

intensity will be determined by curve fitting with the Lorentz-function of the 1653 cm
-1

 band 

component. In this way false values due to additional band components of amino acids 

(around 1599 cm
-1

) and of aggregated proteins or apolipoproteins (band component at 1622 

cm
-1

) [28,39] can be omitted. Concerning the lipid content determination from the EVs’ 

spectra, the carbonyl stretching of lipid esters are of very low intensity, hence inaccurate for 

reliable protein-to-lipid characterization. Moreover, our preliminary spectroscopic P/L values 

using the lipid-related carbonyl stretching band were not significantly distinguishing for EXO 

and MV subpopulations (Table S1, Supplement).  

Therefore, here an alternative vibration, characteristic for lipid species, the integrated 

intensity of CH2/CH3 stretching vibrations (3040-2700 cm
-1

) was chosen for in depth 

evaluation. The spectrum in the 3500-2700 cm
-1

 wavenumber region is dominated by the 

strong broad band of water –OH stretching vibration. After PBS buffer background 

subtraction, however, the asymmetric and symmetric stretching vibrations of CH2 and CH3 

groups, corresponding mainly to lipid chains, emerge. The olefinic =CH stretching bands 

arising from unsaturated lipid chains (around 3010 cm
-1

) is also included in the integration 

zone. Moreover, using the C-H stretching region the impact of sterols, like cholesterol, often 
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enriched in exosome membranes [3,25], can be taken also into account. Proteins have also a 

very minor contribution to the integrated intensity of the C-H stretching region, however, as 

we use a ratio of integrated intensities this contribution of proteinic C-H stretching is 

compensated (showed also by the linear fit in standard plots in Figure S2 and S3).  

The spectral evaluation protocol consists of the following successive steps: 

1. Subtraction of PBS buffer dry film spectra. 

2. Baseline correction. 

3. Smoothing procedure (Savitsky-Golay method (third grade polynomial, 5 smoothing 

points). 

4. Determination of protein content by fitting of the amide I band with Lorentzian 

component bands. For EV samples sufficient fit was achieved by using two 

components: one centered around 1653 cm
-1

, the other around 1600-1620 cm
-1

. The 

latest might belong to aggregated proteins, amino acid residues, etc. For protein-to-

lipid calculation the integrated area of the band component centered at 1656 cm
-1

 was 

invoked (A(Amide I)). 

5. Determination of lipid content by total integrated intensity of CH2/CH3 stretching 

vibration from 3040 to 2700 cm
-1 

(A(CH2/CH3)). 

6. Calculation of ‘spectroscopic protein-to-lipid ratio’: P/L spectr = A(Amide I) / 

A(CH2/CH3). 

To illustrate the process of P/Lspectr, the 3040-2700 cm
-1

 (Figure 3A) and the 1750-1500 cm
-1

 

(Figure 3B) regions for a ‘contaminated’ Jurkat cell derived EV sample are shown.  

 

Fig.3 Selected wavenumber regions of a ‘contaminated’ Jurkat cell derived exosome 

(isolation JK4) used for P/L determination protocol: (A) amide I and amide II wavenumber 

region (1770-1470 cm
-1

) deconvoluted by curve fitting with Lorentz-function (band denoted 

by dotted lines), (B) C-H stretching region (3040-2700 cm
-1

) acting for lipid components. 

Calculated spectroscopic protein-to-lipid values for Jurkat cell lines derived EVs are 

presented in Table 2, while mean values are shown in Figure 4. 

Table 2. Spectroscopic protein-to-lipid values calculated for Jurkat cell line derived EVs. 

JK(1-4) refer to the 4 independent EV isolations. A(Amide I) and A(CH2/CH3) denote the 
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integrated area of selected amide I band and that of C-H stretching region characteristic for 

protein and lipid components, respectively. 

EV Spectroscopic P/L  

A(Amide I) / A(CH2/CH3) 

 JK1 JK2 JK3 JK4 JK mean (SD, n=4) 

EXO 0.73 0.83 0.78 0.84 0.79±0.05 

MV 0.57 0.65 0.61 0.56 0.60±0.04 

AB 1.08 1.36 1.19 1.18 1.20±0.12 
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Fig.4 Relative intensities of amide I to C-H stretching bands providing the spectroscopic P/L 

for Jurkat cell line derived EVs. Mean values are presented by horizontal lines, error bars 

mark denotes the standard error of the mean (SEM).  

Comparing ‘spectroscopic P/L’ values (Figure 4) significant differences were found between 

the subpopulations of Jurkat cell derived EVs (one-way ANOVA, ****P<0.0001). The 

highest spectroscopic P/L appears for the apoptotic body. Performing the spectral evaluation 

protocol for parent cells, usually the P/Lspectr values are above 1. It is interesting to note that 

P/Lspectr values for AB subpopulation present the highest standard errors of the means, 

connected probably to their origin (cell clearance). The real extracellular vesicles, exosomes 

and microvesicles, both lipid bilayer enclosed structures, show a higher relative amount of 

lipid component. Interestingly, based on the P/Lspectr  values the content of lipid is higher for 

MV samples compared to the EXO ones.  

Reliability of the method  

 

2.5.1. Normal probability plots 

BSA – lipid mixtures of protein-to-lipid ratios varying from 0.2 to 4 mg/ml were prepared. As 

the lipid component, we used both a mixture of cholesterol and different phospholipids with 

the composition of Chol:DPPC:DOPC:DPPE:DPPS=5:1:1:2:1 (relative weights) and Brain 
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Total Lipid Extract, respectively. The integrated intensity ratio of selected amide I band and 

of C-H stretching region (A(Amide I) / A(CH2/CH3) was determined using the above protocol 

for each sample and plotted against the known protein-to-lipid ratios. In both cases the plots 

obtained were best fit by straight line with linear regression correlation coefficients of 

0.98675 (for lipid mixture) and 0.99084 (for Brain Total Lipid Extract), respectively (Figures 

S2 and S3, Supplement). 

2.5.2. Possible interference of vesicle size and ATR-FTIR technique 

Prior to draw structure / composition related conclusion from the distinct protein-to-lipid 

values for the different subpopulations of EVs, we inspected the eventual biases due to the 

ATR technique. One bias is related to the potential adsorption of proteins onto the ATR 

crystal, which may falsify the quantitative estimation of protein concentration from the peak 

height of the amide I band [43]. In order to test the effect of colloidal aspects / protein 

encapsulation on the proposed ATR-FTIR based protocol, we investigated BSA loaded DOPC 

model liposomes with 600, 200 and 80 nm size, corresponding roughly to different EV 

subpopulations of apoptotic bodies, microvesicles and exosomes, respectively. We calculated 

the spectroscopic protein-to-lipid values for extruded and gelfiltrated DOPC-BSA vesicles 

using ATR-FTIR spectra: with increasing vesicle diameter the spectroscopic P/L value also 

slightly increases. We have to point, however, that all variations are within the error of the 

measurement and evaluation protocol with no significant differences between the mean P/L 

values (Figure S4 and Table S4, Supplement). Deviations in P/L values promoted by 

sonication treatment of the sample were also negligible (Figure S4 and Table S4, 

Supplement). So, regarding the trend in spectroscopic P/L values for different EV 

subpopulation we can rule out the possible interference of vesicle size and/or encapsulated 

proteins with the ATR-FTIR technique.   

2.6. Application to erythrocyte derived EVs 

Erythrocyte derived EVs (MVs) were isolated from red blood cell concentrates. For 

comparison, red blood cell ghost membranes were also prepared (Figure S5, Supplement). 

Calculated ATR-FTIR based protein-to-lipid ratios are presented in Table 3.  

  



14 
 

Table 3. Spectroscopic protein-to-lipid values calculated for red blood cell (RBC) derived 

MVs (3 independent isolations: RBC1-RBC3), compared with that of ghost membrane 

prepared from the same RBS concentrate. A(Amide I) and A(CH2/CH3) denote the integrated 

area of selected amide I band and that of C-H stretching region characteristic for protein and 

lipid components, respectively. 

EV Spectroscopic P/L  

A(Amide I) / A(CH2/CH3) 

 RBC1 RBC2 RBC3 RBC mean (SD, n=3) 

MV 0.54 0.75 0.53 0.61±0.13 

Ghost membrane 0.91 0.88 0.91 0.90±0.02 

 

Spectroscopic P/L values for erythrocyte derived MVs resemble the mean P/Lspectr values 

determined for MVs originated from Jurkat cells. Unpaired t-test statistical analysis provided 

also that no statistically difference exist (P<0.05) between the mean spectroscopic P/L values 

of the MV samples of different origin (Figure S6). For curiosity, P/Lspectr for ghost 

membranes prepared from the same freshly outdated erythrocyte concentrate was also 

calculated. The P/L values for RBC ghost membrane are higher than for RBC derived MVs, 

likely due to the high level of integral and peripheral proteins [44]. Detailed analysis of IR 

spectra reveals not only differences in the P/L ratio, but also in the protein content of 

erythrocyte derived MVs and ghosts as shown by the spectral feature of the amide I protein 

band (Figure 5A and B).  

 

Fig.5 (A) Representative ATR-FTIR spectrum of RBC derived MV (blue line) compared with 

RBC ghost membrane spectrum (red line). (B) Second derivative IR spectra of the amide I 

region for protein secondary structure assessing.   

 

Figure 5B shows the second derivatives of the amide I region: regarding the secondary 

structure of the proteins the -helix structure is dominant for RBC derived MV sample. The 

slight shift of the main amide I band component peak suggests that the original membrane 

milieu of proteins in MV are also changed. Our previous experiences on ghost membrane 

vesicularisation by physicochemical treatments (sonication and extrusion) resulted in similar 
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observations with decreased protein-to-lipid ratio [45]. This observation corroborates that EVs 

are designed naturally vesicles with controlled protein and lipid content resulting in 

established protein-to-lipid ratios. Moreover, it is interesting to note that artificial 

nanoerythrosomes, obtained by sonication and extrusion of RBC ghost membrane, with 200 

nm average diameter, provide P/Lspectr values (P/Lspectr=0.59±0.13) [45] close to P/Lspectr of 

natural RBC microvesicles (P/L=0.61±0.13). This implies the adaptability of artificially 

designed nanoerythrosomes as reference materials for EV characterization and 

standardization. 

Conclusion 

In this study we demonstrate the utility of ATR-FTIR spectroscopy to investigate different 

subpopulations of EVs. The typical IR spectra of apoptotic bodies resemble to those of the 

parent cells. For exosomes and microvesicles, however, subtle changes in the spectral features 

of amide I band connected to protein secondary structure was noticed. As to the Jurkat cell 

derived EXO and MV, band components related to nonnative intermolecular -sheets, -turns 

and unordered protein motifs can be witnessed. These protein structures imply the presence of 

aggregated proteins, apolipoproteins, triple-helix structures related probably to ‘contaminants’ 

like immune complexes, lipoproteins, etc. Interestingly, for red blood cell derived EV samples 

the -helix protein structure was dominant. 

Furthermore, we introduced the spectroscopic P/L value based on relative intensity of amide I 

and C-H stretching bands, which is characteristic for different EV subpopulations and thus 

leading to a simple and fast classification of the studied liposome species. By careful spectral 

analysis and by employing an advanced IR-based protocol the low concentration range of EVs 

and the presence of non-desired contaminants, e.g. protein complexes, aggregates, 

lipoproteins can be overcome. The use of the ATR-FTIR technique provides fast and good 

quality IR spectra, while requires only minimal amount of sample, usually 3-5 l, and no 

sample preparation. Beside the simplicity of the estimation of protein-to-lipid ratio by ATR 

FTIR spectroscopy, a further advantage of the technique is that both quantities (protein and 

lipid quantity-related IR band intensities) are obtained from the same experiment. In such a 

way the experimental error is significantly reduced. However, we have to emphasise that the 

IR-based protein-to-lipid ratio is not an absolute value but reflects the differences in protein-

to-lipid ratios from one biological species to another (i.e. EV subpopulations). 

Our results suggest that IR spectroscopy might have a useful role in EV research offering 

efficient classification of extracellular vesicle subpopulations. The ATR-FTIR method 

potentially represents a reliable, fast and relatively cheap screening approach for EV isolation. 
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Supplementary material 

 

 

 

Fig.S1. Relative intensities of amide I and lipid-related carbonyl stretching bands for Jurkat 

cell line derived EVs. Mean values are presented by horizontal lines, error bars mark denotes 

the standard error of the mean (SEM). 
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Fig.S2. Ratios of integrated area of selected amide I band and of C-H stretching region (A 

(Amide I) / A (CH2/CH3)) for BSA-lipid (Chol:DPPC:DOPC:DPPE:DPPS=5:1:1:2:1) 

mixtures of varying relative content. 

 

Fig. S3. Ratios of integrated area of selected amide I band and of C-H stretching region (A 

(Amide I) / A (CH2/CH3)) for BSA-Brain Total Lipid Extract mixtures of varying relative 

content. 
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Fig.S4. Calculated P/Lspectr values for BSA/DOPC reference vesicles with different mean 

diameter size (600, 200 and 80 nm) before and after sonication treatment (s indices 

sonication). Mean values are presented by horizontal lines, error bars mark the standard error 

of the mean (SEM). 

 

 

 

 
 

Fig.S5. FF-TEM picture of RBS ghost membrane and that of RBC derived MV. 
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Fig.S6. Calculated P/Lspectr values of MV subpopulations of different origin: JK_MV - Jurkat 

cell derived microvesicles, RBC_MV - red blood cell derived microvesicles. Mean values are 

presented by horizontal lines, error bars mark the standard error of the mean (SEM). 
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Table S1. Results of one-way ANOVA of unpaired t-test data obtained on values of relative 

intensities of amide I and lipid-related carbonyl stretching bands for Jurkat cell line derived 

EXO, MV and AB vesicles 

 

 
  

Number of families 1      

Number of comparisons per 

family 

3      

Alpha 0,05      

       

Tukey's multiple comparisons 

test 

Mean Diff. 95.00% CI of 

diff. 

Significant? Summary Adjusted P Value  

       

  EXO vs. MV -13,42 -55.64 to 28.79 No ns 0,6172 A-B 

  EXO vs. AB -69,58 -111.8 to -27.36 Yes ** 0,0056 A-C 

  MV vs. AB -56,16 -98.37 to -13.94 Yes * 0,0153 B-C 

       

       

Test details Mean 1 Mean 2 Mean Diff. SE of diff. n1 n2 

       

  EXO vs. MV 5,34 18,76 -13,42 13,76 3 3 

  EXO vs. AB 5,34 74,92 -69,58 13,76 3 3 

  MV vs. AB 18,76 74,92 -56,16 13,76 3 3 
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Table S2. Results of one-way ANOVA of unpaired t-test data obtained on relative intensities 

of amide I and lipid-related carbonyl stretching bands for Jurkat cell line derived EXO, MV 

and AB vesicles 

 

 
  

Table Analyzed Unpaired t test data

One-way analysis of variance

  P value < 0,0001

  P value summary ****

  Are means signif. different? (P < 0.05) Yes

  Number of groups 3

  F 64,35

  R square 0,9346

ANOVA Table SS df MS

  Treatment (between columns) 0,7615 2 0,3807

  Residual (within columns) 0,05325 9 0,005917

  Total 0,8147 11

Bonferroni's Multiple Comparison Test Mean Diff,t Significant? P < 0,05?Summary 95% CI of diff

  JK-EXO vs JK-MV 0,1975 3,631 Yes * 0,03796 to 0,3570

  JK-EXO vs JK-AB -0,4075 7,492 Yes *** -0,5670 to -0,2480

  JK-MV vs JK-AB -0,605 11,12 Yes **** -0,7645 to -0,4455
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Table S3. Results of  unpaired t-test data obtained on P/L spectr values for MV vesicles of 

different origin (Jurkat cell and red blood cell). derived from relative intensities of amide I 

and C-H stretching bands 

 

 
  

Table Analyzed Unpaired t test data

Column A JK_MV

vs vs

Column B RBC_MV

Unpaired t test

  P value 0,893

  P value summary ns

  Are means signif. different? (P < 0.05)No

  One- or two-tailed P value? Two-tailed

  t, df t=0,1416 df=5

How big is the difference?

  Mean ± SEM of column A 0,5975 ± 0,02056 N=4

  Mean ± SEM of column B 0,6067 ± 0,07172 N=3

  Difference between means -0,009167 ± 0,06475

  95% confidence interval -0,1757 to 0,1573

  R square 0,003992

F test to compare variances

  F,DFn, Dfd 9,123, 2, 3

  P value 0,1061

  P value summary ns

  Are variances significantly different?No
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Table S4. Results of one-way ANOVA of unpaired t-test data obtained on P/Lspectr values for 

BSA/DOPC reference vesicles with different mean diameter size (600, 200 and 80 nm). 

 

 
 

 

  

Table Analyzed Unpaired t test data

One-way analysis of variance

  P value 0,1689

  P value summary ns

  Are means signif. different? (P < 0.05) No

  Number of groups 6

  F 1,895

  R square 0,4413

ANOVA Table SS df MS

  Treatment (between columns) 0,001931 5 0,0003862

  Residual (within columns) 0,002445 12 0,0002037

  Total 0,004376 17

Bonferroni's Multiple Comparison Test Mean Diff, t Significant? P < 0,05?Summary 95% CI of diff

  80 vs 80mw 0,003199 0,2745 No ns -0,03933 to 0,04572

  80 vs 200 -0,01298 1,114 No ns -0,05551 to 0,02955

  80 vs 200mw -0,01694 1,454 No ns -0,05947 to 0,02558

  80 vs 600 -0,02516 2,159 No ns -0,06769 to 0,01737

  80 vs 600mw -0,02037 1,748 No ns -0,06290 to 0,02215

  80mw vs 200 -0,01618 1,388 No ns -0,05871 to 0,02635

  80mw vs 200mw -0,02014 1,728 No ns -0,06267 to 0,02238

  80mw vs 600 -0,02836 2,433 No ns -0,07088 to 0,01417

  80mw vs 600mw -0,02357 2,022 No ns -0,06610 to 0,01896

  200 vs 200mw -0,003964 0,3401 No ns -0,04649 to 0,03856

  200 vs 600 -0,01218 1,045 No ns -0,05470 to 0,03035

  200 vs 600mw -0,00739 0,6341 No ns -0,04992 to 0,03514

  200mw vs 600 -0,008214 0,7048 No ns -0,05074 to 0,03431

  200mw vs 600mw -0,003427 0,294 No ns -0,04595 to 0,03910

  600 vs 600mw 0,004788 0,4108 No ns -0,03774 to 0,04731
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Figure and table captions: 

Table 1. Total protein content (with standard deviations) of Jurkat cell derived EV 

subpopulations (n=4 independent isolation). 

Table 2. Spectroscopic protein-to-lipid values calculated for Jurkat cell line derived EVs. 

JK(1-4) refer to the 4 independent EV isolations. A(Amide I) and A(CH2/CH3) denote the 

integrated area of selected amide I band and that of C-H stretching region characteristic for 

protein and lipid components, respectively. 

Table 3. Spectroscopic protein-to-lipid values calculated for red blood cell (RBC) derived 

MVs (3 independent isolations: RBC1-RBC3), compared with that of ghost membrane 

prepared from the same RBS concentrate. 

Table S1. Results of one-way ANOVA of unpaired t-test data obtained on values of relative 

intensities of amide I and lipid-related carbonyl stretching bands for Jurkat cell line derived 

EXO, MV and AB vesicles 

 

Table S2. Results of one-way ANOVA of unpaired t-test data obtained on IR based protein-

to-lipid ratio values for Jurkat cell derived EXO, MV and AB vesicles 

 

Table S3. Result unpaired t-test data obtained on IR based protein-to-lipid ratio values for 

MV vesicles of different origin (Jurkat cell and red blood cell). 

 

Table S4. Results of one-way ANOVA of unpaired t-test data obtained on P/Lspectr values for 

BSA/DOPC reference vesicles with different mean diameter size (600, 200 and 80 nm). 

 

Fig.1 (A) Typical FF-TEM pictures of Jurkat cell derived EV subpopulations. (B) Size 

distribution measured by dynamic light scattering (DLS) measured for the same EV 

subpopulations. D: mean diameter; P.d.: polydispersity. 

Fig.2 (A) Representative ATR-FTIR spectra of EVs isolated by differential centrifugation 

from Jurkat cell line. (B)  Representative ATR-FTIR spectra of EVs after PBS buffer 

subtraction in the 1800-1350 cm
-1

 wavenumber region: C=O stretching from lipid esters, 

amide I and amide II bands of proteins. (C) Second derivative IR spectra of the amide I region 

for protein secondary structure assessing.   

Fig.3 Selected wavenumber regions of a ‘contaminated’ Jurkat cell derived exosome 

(isolation JK4) used for P/L determination protocol: (A) Amide I and amide II wavenumber 

region (1770-1470 cm
-1

) deconvoluted by curve fitting with Lorentz-function (band denoted 

by dotted lines), (B) C-H stretching region (3040-2700 cm
-1

) acting for lipid components. 

Fig.4 Protein-to-lipid ratio calculated from IR spectra of Jurkat cell line derived EVs. Mean 

values are presented by horizontal lines, error bars mark denotes the standard error of the 

mean (SEM).  
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Fig.5 (A) Representative ATR-FTIR spectrum of RBC derived MV (blue line) compared with 

RBC ghost membrane spectrum (red line). (B) Second derivative IR spectra of the amide I 

region for protein secondary structure assessing.   

Fig.S1. Relative intensities of amide I and lipid-related carbonyl stretching bands for Jurkat 

cell line derived EVs. Mean values are presented by horizontal lines, error bars mark denotes 

the standard error of the mean (SEM). 

Fig.S2. Ratios of integrated area of selected amide I band and of C-H stretching region (A 

(Amide I) / A (CH2/CH3)) for BSA-lipid (Chol:DPPC:DOPC:DPPE:DPPS=5:1:1:2:1) 

mixtures of varying relative content. 

Fig. S3. Ratios of integrated area of selected amide I band and of C-H stretching region (A 

(Amide I) / A (CH2/CH3)) for BSA-Brain Total Lipid Extract mixtures of varying relative 

content. 

Fig.S4. Calculated P/Lspectr values for BSA/DOPC reference vesicles with different mean 

diameter size (600, 200 and 80 nm) before and after sonication treatment (s indices 

sonication). Mean values are presented by horizontal lines, error bars mark the standard error 

of the mean (SEM). 

 

Fig.S5. FF-TEM picture of RBS ghost membrane and that of RBC derived MV. 

 

Fig.S6. Calculated P/Lspectr values of MV subpopulations of different origin: JK_MV - Jurkat 

cell derived microvesicles, RBC_MV - red blood cell derived microvesicles. 

 


