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The direct experimental determination of the 3-point static structure function S(3)(k1, k2, k0) of a 2-
dimensional dusty plasma liquid is presented. The measurements are complemented by molecular
dynamics simulations of the system, using parameters (dust charge, plasma frequency, coupling and
screening coefficients), which are derived from the experimentally obtained 2-point static structure
function S(2), as well as the dynamic structure function and current-current fluctuation spectra. The
experimental results of S(3) are in good agreement with those of the simulations, including the (low
wavenumber) domain, where S(3) acquires negative values. The “Convolution Approximation”
(giving S(3) in a factorized form of S(2) functions) clearly breaks down in this domain; however, it is
found to be a useful aid for explaining the main features of the S(3)(k1, k2, k0) functions, for which
(experimental and simulation) maps are presented at selected values of one of its arguments.
Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990510]

I. INTRODUCTION

Correlation functions are centrally important for the
characterization of liquid-phase materials.1,2 While in most
studies, only the 2-particle (pair) correlation function
g(2)(r) is addressed, it is understood that complete charac-
terization of the systems can only be achieved if the hierar-
chy of n-particle correlation functions is considered.3

While g(2)(r)—the lowest order member of this hierar-
chy—gives the probability of finding particles at a given
distance from each other, the next member, the 3-particle
or “triplet” correlation function g(3), e.g., expresses the
probability of finding 3 particles at given mutual separa-
tions from each other, thereby providing additional struc-
tural information beyond g(2), about the local orientational
ordering of the particles.

The real-space correlation functions are linked with
wavenumber-space static structure functions, S(n), that build
a hierarchy4 as well, similarly to the g(n) real-space correla-
tion functions. The importance of this hierarchy of the struc-
ture functions is highlighted by the fact that they are linked
via the Fluctuation-Dissipation Theorem (FDT)5 with the
response of many-body systems to external, e.g., potential,
perturbations. The 2-point structure function S(2) is related to
the linear response, while, in a similar fashion, higher-order
structure functions are linked via the higher-order FDT with
the nonlinear response of these systems.6–9

The correlation functions and the static structure func-
tions can readily be determined if the coordinates of the
particles comprising the system are known. The real space
functions g(2) and g(3) can be constructed, respectively, by
counting particle pairs separated by certain distances, and by
counting triplets of particles with certain mutual distances.
The two lowest order (and most relevant) structure functions
can be computed based on the definitions

Sð2ÞðkÞ ¼ 1

N
hnðk; tÞ nð$k; tÞi; (1)

Sð3Þðk1; k2; k0Þ ¼
1

N
hnðk1; tÞ nðk2; tÞ nðk0; tÞi; (2)

where N is the number of particles, k1þk2þ k0¼ 0, S(3) is a
symmetric function of these arguments, and n(k, t) is the
microscopic density in Fourier space defined as

nðk; tÞ ¼
XN

j¼1

exp $ik & rjðtÞ
! "

: (3)

In isotropic liquids, S(2)(k) depends on a single scalar argu-
ment, similarly to its real-space counterpart, the g(2)(r) pair
correlation function.

We note that the static structure functions have their
dynamic counterparts. The (2-point) dynamic structure func-
tion S(k, x) is the lowest order member of this hierarchy.

Returning to the static properties, the evaluation of the
above formulae for the structure functions is straightforward
in simulations, but their use in experiments is restricted to a
few, rather exceptional physical systems where the particle
coordinates can be directly measured. Two notable types of
such systems are colloidal suspensions and dusty plasmas, in
which the characteristic time and length scales allow tracing
the individual charged microscopic particles.10 For the vast
majority of physical systems (materials), the coordinates of
the individual particles, however, cannot be directly mea-
sured. In such cases, experimental results of g(2)(r) are usu-
ally obtained via measurement of the static structure
function S(2)(k) using (electron, neutron, or x-ray) scattering
methods11–23 and utilizing the Fourier transform relationship
between g(2)(r) and S(2)(k).

The direct determination of higher-order correlation
functions is virtually impossible for such conventional
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materials. Information about the 3-particle correlation func-
tion, g(3), can, nonetheless be inferred in an indirect
way,1,2,24 from measurements of the two-particle quantities
at a series of pressure values at constant system temperature
and using the relation between the pressure derivative of the
(2-particle) pair correlation function (@g(2)/@p)T and g(3).

An often used approximate form for the 3-particle corre-
lation function is given as

gð3ÞSAðr1;r2;r3Þ¼ gð2Þðr1$ r2Þgð2Þðr2$ r3Þgð2Þðr3$r1Þ; (4)

which is called the “superposition approximation” (SA), or
“Kirkwood approximation.” The performance of the SA has
been tested for several types of systems using different simu-
lation approaches. Hard sphere and hard disk systems, e.g.,
were examined using Monte Carlo simulations,25 while
Reverse Monte Carlo and Molecular Dynamics (MD) meth-
ods have been applied26 for the case of liquid water. The
validity of the SA was tested for binary mixtures of particles
interacting via the Kob-Andersen Lennard-Jones potential
and the Weeks-Chandler-Andersen potential,27 and its ability
to characterize the structure of gaseous He at low tempera-
tures was also checked.28 For review, see Ref. 29.

The colloidal and dusty plasma systems, already men-
tioned above, provide unique possibilities for checking the
accuracy of the SA as the particle correlation and structure
functions can readily be obtained from measured particle
coordinates in these systems. In Ref. 30, videomicroscopy
was used to follow the trajectories of magnetized colloidal
grains floating on the water–air interface, i.e., forming a two-
dimensional system. The structure of the 3-particle correla-
tion function g(3) was studied, in particular, the limitation of
the superposition approximation has been tested. The (exact)
Born-Green equation31 was found to be satisfied, but the 3-
particle correlation function computed from the SA showed
significant disagreement at high C values with the measured
g(3).

Experimental and simulation studies of the validity of
the SA, and in more general, three-particle correlations in a
two-dimensional dusty plasma layer have been presented in
Ref. 32. The g(3) functions derived from the experimental
data were found to reflect the six-fold symmetry of the par-
ticles’ arrangement for most conditions and confirmed the
emergence of the onset of orientational ordering of the par-
ticles towards the freezing point. It was found that with
increasing coupling new peaks at multiples of the most prob-
able pair separation, r*, appear in the measured g(3), indicat-
ing the extension of the correlation length. Another
investigation,33 utilizing a similar experimental system, has
examined the range of validity of integral equation
approaches of statistical physics, like the Percus–Yevick
relation and the Hypernetted Chain Approximation, which
allow computation of correlation functions of isotropic
liquids. The behavior of the 3-particle correlation function
g(3) was also addressed in an investigation of the melting of
2D dust crystals34 and in studies of phenomena taking place
in 2D Coulomb clusters.35

Besides investigations in real space, several studies36–39

(including our previous work40) have addressed the

properties of the 3-point structure function S(3)(k1, k2, k0)
and the validity of the factorization in k-space, or the so-
called “Convolution Approximation” (CA)

Sð3Þðk1; k2; k0Þ ffi Sð2Þðk1ÞSð2Þðk2ÞSð2Þðk0Þ; (5)

which is related to the exact S(3)(k1, k2, k0) by

Sð3Þðk1; k2; k0Þ ¼ Sð2Þðk1ÞSð2Þðk2ÞSð2Þðk0Þ

( 1þ n2
0cð3Þðk1; k2; k0Þ

h i
; (6)

where c(3)(k1, k2, k0) is the 3-point direct correlation func-
tion.41 Obviously, the CA corresponds to setting c(3) to zero.
Here, n0 is the number density of particles and k1þ k2

þk0¼ 0. The implication of the CA concerning the resulting
structure of g(3) was discussed in Ref. 40, where it was also
shown via Molecular Dynamics simulations that the qua-
dratic response of the system (linked with S(3) via the qua-
dratic FDT) changes sign at the point when the term
1þ n2

0cð3Þðk1; k2Þ in (6) changes sign, which clearly cannot
be accounted for by the CA as given by (5), since S(2) is posi-
tive definite.

In this work, we report the (to the best of our knowl-
edge) first direct experimental measurement of the 3-point
static structure function S(3) of a two-dimensional dusty
plasma liquid and the experimental observation of the viola-
tion of the “Convolution Approximation.” The experimental
determination of S(3) is made possible by realizing very
stable experimental conditions and by the recording and anal-
ysis of extensive amounts of data. The experimental studies
are accompanied by Molecular Dynamics simulations, which
(i) assist the determination of the main parameters of the dust
system and (ii) make it possible to derive “exact” S(3) data as
well, which are being compared with their experimental
counterparts. The details of the experiments and the simula-
tions are given in Sec. II. The determination of the main
plasma characteristics and the experimental and simulation
results of S(3) are presented and compared to each other in
Sec. III. Section IV gives a short summary of the work.

II. METHODS

A. Experimental realization of the 2D dusty plasma
layer

The physical setting considered here is a many-body
system composed of charged dust particles that settle in a
(nearly-)two-dimensional layer in the experimental system
described below. The dust particles acquire a high negative
charge due to the flow of electrons and ions from the sur-
rounding weakly ionized plasma medium. The electrostatic
interaction between the particles is screened by the plasma,
and can thus be characterized by a Debye-H€uckel or Yukawa
potential

/ðrÞ ¼ Q exp ð$r=kDÞ
4pe0r

; (7)

where Q is the charge of the particles and kD is the screening
(Debye) length that depends on the plasma properties. The
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ratio of the inter-particle potential energy to the thermal
energy is expressed by the coupling parameter

C ¼ Q2

4pe0akBT
; (8)

where T is the (dust) temperature, a¼ (pn0)$1=2 is the
Wigner-Seitz radius, and n0 is the areal number density of
particles. The strength of screening of the Coulomb interac-
tion is expressed by the parameter

j ¼ a=kD: (9)

The two dimensionless parameters C and j characterize the
dust system completely in the framework of the Yukawa
model. An additional important parameter is the nominal
plasma frequency

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nQ2=e0M

p
; (10)

that governs the dynamics of the system. Here, e0 is the per-
mittivity of free space and M is the mass of the particles.

The experimental setup is shown in Fig. 1 and is briefly
described below (for more details, see Ref. 43). A low-
ionization degree plasma in argon gas (at a pressure of
)1 Pa) is created between two flat disk electrodes of 18 cm
diameter, separated by a distance of 13 cm, using radio fre-
quency excitation at 13.56 MHz, at a power level of )10 W.

Several thousand melamine-formaldehyde particles,
with a diameter of d¼ 4.38 lm (61%) are dispersed into the
plasma via an opening of the upper electrode. These particles
acquire a negative charge in the plasma environment that
typically amounts to several thousands of elementary
charges. The balance of “vertical” forces acting on the par-
ticles (among which gravity and the electrostatic force origi-
nating from the electric field in the sheath that forms near the
powered electrode are the dominant ones) forms a single layer.
The large electric charge of the particles results in a high cou-
pling coefficient (C / Q2), i.e., the inter-particle potential
energy largely dominates over the kinetic energy of the par-
ticles. As a consequence of this strong interaction (strong
“horizontal” forces) single-layer dusty plasmas typically

exhibit a crystallized structure that consists of a few large
domains with different orientations (“plasma crystals”).42 In
order to carry out experiments in the liquid phase of the dust
system, which is our preferred setting, an additional low fre-
quency modulation (fm ¼ 26 Hz) is applied at the powered
electrode. This modulation frequency is near the resonance fre-
quency of the “out-of-plane” mode of the particle layer; this
way, it can couple energy to the many-body system.44

The typical length and time scales of the system allow
recording the evolution of the trajectories of the particles. For
this, images of the dust layer, illuminated from the side with
an expanded beam of a 0.5 W power, 440 nm wavelength
laser, are taken using an Allied Vision Prosilica GX1050
camera with 1 MPixel resolution, at a frame rate of 100 s$1.

While our main interest lies in the investigation of the
3-point static structure function, the 2-point static and
dynamic structure functions, S(2)(k) and S(2)(k, x), as well as
the related longitudinal and transverse current correlation
functions [L(2)(k, x) and T(2)(k, x), respectively] also need to
be determined to deduce the main parameters (C and j) of
the experimental system.45,46 Note that the wavenumber is
used here as a scalar quantity due to the isotropy of the sys-
tem in the liquid phase.

In the course of the measurements, the positions of *1200
particles in the field of view of the camera are recorded. The 2-
point static and dynamic functions mentioned above can be
determined from a limited set of data with high accuracy. The
construction of the 3-point static structure function, based on
definition (6), with a good signal to noise ratio, on the other
hand, requires recording a large number of images, )600 000
in our case, generating )0.6 TB of data. In order to reduce the
statistical and systematic noise, a 2D spatial Blackman-Nuttall
window function is applied and averaging over 60 different
directions of the wave-number vector k is performed. Images
of the dust layer are processed for the particle positions with a
sub-pixel resolution.47 Collection of the above number of
images required continuous data recording and maintenance of
stable experimental conditions for over one hour of time.

B. Simulations

Parallel to the experiments, molecular dynamics (MD)
simulations are also conducted to derive the static and dynamic
structure functions. We apply a standard MD method to
describe the motion of N¼ 4000 particles, within a square box
with periodic boundary conditions, via the integration of their
Newtonian equations of motion. The use of a low buffer gas
pressure justifies neglecting the friction force on the dust par-
ticles. The spatial decay of the Yukawa interaction makes it
possible to introduce a cutoff distance rc in the calculation of
the forces acting on the particles, beyond which the interaction
of particle pairs can be neglected. Time integration is per-
formed using the velocity-Verlet scheme.

At the initialization of the simulation runs, the positions
of the particles are set randomly, while their initial velocities
are sampled from a Maxwellian distribution corresponding
to a specified system temperature. The simulations start with
a thermalization phase, during which the particle velocities
are re-scaled in each time step, in order to reach the desired

FIG. 1. Scheme of the experimental setup. 1: Particle dispenser; 2: Vacuum
chamber.
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temperature (or C). This procedure is terminated before the
data collection takes place, during which the stability of the
simulation is confirmed by monitoring the temperature as a
function of time.

During the simulations, data for n(k, t) for the calcula-
tion of the static and dynamic properties are collected for
specified sets of wavenumber k. The calculation of static
quantities requires a summation and averaging of these data
over time; the computation of the dynamic structure function
requires an additional (discrete) Fourier transform in time.48

III. RESULTS

A. Determination of the system parameters

The determination of the main parameters of the dusty
plasma, the coupling coefficient C, the screening parameter
j, and the plasma frequency x0 proceeds in several steps, as
explained below. In the first step, the 2-point dynamic struc-
ture function is computed from the experimental data for the
particle positions as

Sðk;xÞ ¼ 1

2pN
lim

DT!1

1

DT
jnðk;xÞj2; (11)

where DT is the length of the data recording period and
nðk;xÞ ¼ F ½nðk; tÞ, is the Fourier transforms of (3). In a
similar manner, the spectrum of the transverse current corre-
lations, T(k, x), is obtained from the Fourier transform of the
microscopic transverse current, as

sðk; tÞ ¼
X

j

vjyðtÞ exp ikxjðtÞ
! "

: (12)

Figure 2(a) shows a color map plot of the S(k, x) spectrum
as determined in the experiment. The horizontal patches at
x¼ 66.5 rad/s and the vertical features at low wave-numbers
in the plot originate from the modulation voltage used for
melting the dust layer.

Having determined S(k, x) and T(k, x), the xL,T (k) dis-
persion relations of the longitudinal and transverse collective
excitations can readily be obtained (here, xL,T are the fre-
quencies of the two modes). As an example, the xL (k) dis-
persion relation is overlayed as a black solid line on the plot
of S(k, x) in Fig. 2(a).

The sound speeds of these modes are given as the low-k
limit of the slopes of the dispersion relations, i.e., sL;T

¼ limk!0ðdxL;T=dkÞ. The sL/sT ratio is known to depend
sensitively on j, providing a way for its determination.48

Our analysis resulted in j¼ 0.7. As the next step, we use the
property of S(k, x) that its “plateau frequency” depends sen-
sitively on j, but is rather insensitive to C. [The “plateau
frequency” is indicated in Figs. 2(a) and 2(b) by dashed
white lines.] Using this relationship, we obtained x0¼ 97
(610%) rad/s for the plasma frequency (10).49

When x0 is known, the charge of the particles can be
determined, which resulted in Q ffi 4100 ð620%Þ e. This
value and the WS radius a determined from the particle
snapshots, as 230 (62%) lm define the coupling coefficient
C. A further ()10%) refinement of C was accomplished by

making use of the dependence50 of the static S(2)(k) on C and
j; this procedure resulted in C¼ 95.

The 2-point static structure function generated from the
experimental data [via Eq. (1)] and from the MD simulations
is displayed in Fig. 3. A very good agreement (both in terms

FIG. 2. Measured (a) and calculated (b) dynamic structure function S(2)(k, x)
of the dusty plasma layer. The black solid line in (a) marks the dispersion
relation of the longitudinal mode, while the horizontal dashed white lines
mark the “plateau frequency.” The MD simulation uses C¼ 95 and j¼ 0.7.

FIG. 3. Measured (open circles) and calculated (solid line) 2-point static
structure function S(k) of the dusty plasma layer. The MD simulation uses
C¼ 95 and j¼ 0.7.
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of the peak amplitudes and peak positions) between the two
curves is found at C¼ 95 and j¼ 0.7 values.

B. Properties of the triplet static structure function

The experimental data for the particle positions allow the
determination of the 3-point S(3)(k1, k2, k0) function [via Eq.
(2)] for any arguments, and—having determined the main
parameters of the experimental system—the same functions
can also be generated from MD simulations using the same
formula. The very good signal to noise ratio of the S(3)(k1, k2,
k0) functions is the outcome of the very high number of parti-
cle snapshots recorded experimentally and the consequent
data analysis using several independent directions of k, as
well as of the extensive MD computations.

First, we illustrate the behavior of S(3) in the “diagonal
direction,” i.e., at equal arguments, k1¼ k2. Figure 4 shows the
experimental and simulation results. (The MD simulation uses
C¼ 95 and j¼ 0.7.) A rather intriguing feature of S(3)(k, k) is
its negative value at small wavenumbers and a negative peak at
ka* 1.8. This experimentally observed feature, as well as the
whole function is very well reproduced in the simulations
(except for a modest difference between the peak amplitudes).
This rather peculiar behavior of S(3) has already been noted in
our previous work. The negative values of S(3) are, in fact, the
consequence of the negative compressibility of the system. At k
! 0, the connection between the 3-point and 2-point structure

functions is Sð3Þðk1 ! 0; k2 ! 0; k0 ! 0Þ ¼ bK½1$ ðn0=KÞ
dK
dn0
,Sð2Þðk1 ! 0ÞSð2Þðk2 ! 0ÞSð2Þðk0 ! 0Þ, where n0 is the

density and K is the compressibility. Since S(2)(k! 0) is posi-

tive and the term 1$ ðn0=KÞ dK
dn0

is also expected to be positive

for any reasonable equation of state, negative S(3) values result
from a negative K.

The main results of our study are illustrated in Fig. 5.
Here, we display maps over the k2 plane of the full S(3)(k1,
k2, k0) function at a few selected values of k1a¼ (k1x, 0)a.
The plots in the first column originate from the experiment,
the plots in the second column are the result of the MD

simulations, while the plots in the third column have been
generated from the simulation data using the Convolution
Approximation (5). In order to understand the details of
S(3)(k1, k2, k0) maps that originate from true 3-particle corre-
lations, it is first useful to see what features can be attributed
to the Convolution Approximation as shown in column 3 of
Fig. 5.

• Since for each of the plots, k1 ¼ (k1x, 0) is fixed and k2 ¼
(k2x, k2y), the CA takes the form

Sð3ÞCAðk1; k2; k0Þ ¼ Sðk1Þ Sðk2Þ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1x þ k2xÞ2 þ k2

2y

q$ %
;

(13)

where the first term on the right hand side is constant.
Here, and in the sequel, we drop the superscript “(2)” as
the identification of the 2-point structure functions. The
locus of the maxima of this function on the k2-plane traces
two overlapping circles, one centered around the origin,
and the other around k1. Focusing on the first one, its left-
hand-side is found to be dimmed in comparison to its
right-hand-side, because it overlays a low value portion of
S(k0). A similar consideration explains the asymmetry of
the other circle. In contrast, the intersection of the two
circles corresponds to an enhanced intensity region,

• S(3) has a mirror symmetry with respect to the vertical line
at k2x ¼ –k1x/2,

• High intensity peaks in the maps occur, as already noted,
at intersections when the arguments of S(k2) and S(k0) cor-
respond to k values of the peaks of S(k), especially to the
position of the first peak, at k ¼ k*.

Now, looking at the results of the experiment (column 1 of
Fig. 5) and of the full simulation (column 2 of Fig. 5), we see
that the main features of the CA are recognizable. There are,
however, some important deviations, revealing the working of
genuine 3-particle correlations.

The first row of Fig. 5 corresponds to k1a¼ (1.85, 0),
i.e., k1 is chosen to be k*/2, where k* is the position of the first
peak of S(2) (see Fig. 3). The S(3)(k1, k2, k0) function exhibits
a strong maximum that shows up as a ring-like feature in red
color in Fig. 5(a). This feature can be recognized as the cen-
tral oval in panel (c), with the difference that the intensity dis-
tribution is fairly isotropic, indicating that the variation of
intensity in S(k) has little impact on S(3). An important novel
feature is the already discussed negative peak, showing up, as
another elongated ring in green/blue contour, at smaller
wavenumbers. Both of these features are very well repro-
duced by the simulation data in Fig. 5(b).

The second value of k1a¼ (3.76, 0) [for which maps of
S(3)(k1, k2, k0) are presented in the second row of Fig. 5] corre-
sponds to the position of the peak of the 2-point S(k), i.e.,
k1¼ k*. One can observe a similar correspondence between the
ovals in panel (d) and panel (e), on the one hand, and in the
CA structure in panel (f), on the other. Parts of these ring-like
features are well seen (and are marked with arrows “A”) in the
plot of Sð3ÞCA in Fig. 5(f). The two strongest peaks, which occur
when the above two conditions are simultaneously met, at
k2x¼ –k*/2¼ –1.85/a and k2y ¼ 6k-

ffiffiffi
3
p

=2 ffi 63:20=a, are

FIG. 4. Measured (filled circles) and calculated (solid line) 3-point static
structure function S(3)(k, k) of the dusty plasma layer. The filled triangles
and the dashed line represent data 50(magnified with respect to the original
values, to make the negative values of the functions visible at low wavenum-
bers. The MD simulation uses C¼ 95 and j¼ 0.7.
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marked with arrows “B”. Most importantly, the six-fold sym-
metry of the experimental arrangement of the particles is
reflected in Figs. 5(d) and 5(f). Note that even though the sys-
tem is in the liquid phase, with unbroken symmetry, the under-
lying structure of the triangular lattice, characteristic for the
solid phase, shows up in the 3-particle correlations. The slight
differences between the experimental and simulation results
may be attributed to the remaining uncertainties in the determi-
nation of the parameters of the experimental system and its
consequent imperfect reproduction by the simulations.

In the third row of Fig. 5, maps of S(3)(k1, k2, k0) for the
third value of k1a¼ (8.24, 0) are plotted. This value was cho-
sen according to k1¼ 2.2k*. In agreement with the arguments
given for the previous case, peaks of the Sð3ÞCA function are
expected to appear when k2¼ k* or/and ð2:2k- þ k2xÞ2
þk2

2y ¼ k-2. Due to the high value of k1, the oval separates
into two circles. The first condition, as before, corresponds
to a circle around (k2x, k2y)¼ (0, 0), while the second corre-
sponds to a circle around (k2x, k2y)¼ (–2.2k*, 0) (again, both
circles have a radius k*). Both of these circles are well visible

in Fig. 5(i), where they are marked with arrows “A.” The
two conditions are simultaneously fulfilled at k2x¼ –1.1k*

¼ –4.14/a and k2y ffi 0, where the two curves touch. The sec-
ond pair of ring-like features, concentric to these “primary”
circles, is created by the second peak of S(k), at k2 ffi 2k-—
these features are marked with arrows “B” in Fig. 5(i).
Where these rings with radii ffi 2k- intersect the primary
circles, additional peaks of Sð3ÞCA, marked with arrows “C,”
are generated. The measured and computed maps in this case
are rather similar to the one obtained via the CA, although
they show slightly more enhanced structures.

IV. SUMMARY

Here, we have demonstrated that the accurate experi-
mental determination of the 3-point static structure function
S(3)(k1, k2, k0) of a two-dimensional liquid-phase dusty
plasma layer is possible by establishing stable experimental
conditions. We have captured a high number of images
()600 000) of the many-particle system during a time period

FIG. 5. Maps of the full S(3)(k1, k2, k0) at selected values of k1: (a)–(c) k1a¼ (1.85, 0), (d)–(f) k1a¼ (3.76, 0), and (g)–(i) k1a¼ (8.24, 0), obtained from the
experiments (first column), from the MD simulations (second column), and from the Convolution Approximation using the MD data (third column).
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of )1 h. The recorded images allowed the computation of
S(3)(k1, k2, k0) for arbitrary arguments. As far as many-body
systems are concerned, the present experiments are among
the few so far, which have resulted in direct, measured data
for this 3-point structure function.

The parameters of the experimental system have been
determined by a careful data analysis: the 2-point static
structure function and the current-current fluctuation spec-
tra—which were also derived from the particle snapshots—
allowed the extraction of C, j, and x0. While the CA is
intrinsically rotationally symmetric, this symmetry is broken
in our strongly coupled system, and the six-fold symmetry of
the underlying lattice structure emerges in the “exact” MD
simulation results. This behavior was also recognized in the
experimental results, providing further assurance on the high
quality of the experimental data.

The MD computations for S(3)(k1, k2, k0), in which the
above parameters were used, have generated results in very
good agreement with the functions determined experimen-
tally. Comparing with the Convolution Approximation,
which gives S(3)(k1, k2, k0) in a factorized form of 2-point
S(2)(k)-s with necessarily positive values, we have found that
in the domain of small wavenumbers, S(3) assumes negative
values both in the experiment and in the simulations. What
is, then, the significance of these negative values?

• First, in nonlinear scattering experiments, the 3-point
function represents the lowest order nonlinearity and the
existence of a negative domain should affect the resulting
angular pattern, even though it is not easy to predict with-
out further study the precise nature of this change.

• Second, the existence of the negative domain in the (k1,
k2) space also implies negative values of the quadratic
density response function via the quadratic Fluctuation-
Dissipation Theorem. Thus, the response of physical sys-
tems to external potential perturbations will deviate here
from that predicted by the Convolution Approximation.
This is expected to become prominent under the effect of
strong perturbations, where higher order response func-
tions are applicable.

• Third, a further consequence of the negative values of S(3)

is that negative values of the h(3) triplet correlation func-
tion may appear. Such a change in h(3) may have an effect
on the thermodynamic properties of the system.

More detailed investigation of these effects warrants
future work.
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