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Abstract

For a set of nonnegative integers S let RS(n) denote the number of unordered
representations of the integer n as the sum of two different terms from S. In this
paper we focus on that partitions of the set of natural numbers into two sets such
that the corresponding representation functions are identical. We solve two recent
problems of Lev and Chen.
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1 Introduction

Let S be a set of nonnegative integers and let RS(n) denote the number of solutions of
the equation s + s

′
= n, where s, s

′ ∈ S and s < s
′
. The binary representation of an

integer n is the representation of n in the number system with base 2. Let A be the
set of those nonnegative integers which contains even number of 1 binary digits in its
binary representation and let B be the complement of A. The set A is called Thue-Morse
sequence. The investigation of the partitions of the set of nonnegative integers with
identical representation functions was a popular topic in the last few decades [1], [2], [7],
[8], [9]. By using the Thue - Morse sequences in 2002 Dombi [5] constructed two sets
of nonnegative integers with infinite symmetric difference such that the corresponding
representation functions are identical. Namely, he proved the following theorem.

Theorem 1. (Dombi) The set of positive integers can be partitioned into two subsets C
and D such that RC(n) = RD(n) for all positive integer n.

The complete description of the suitable partitions is the following.

Theorem 2. Let C and D be sets of nonnegative integers such that C∪D = N, C∩D = ∅
and 0 ∈ C. Then RC = RD if and only if C = A and D = B.
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As far as we know this theorem has never been formulated in this form, but the
nontrivial part was proved by Dombi, therefore this theorem is only a little extension of
Dombi’s result. We give an alternative proof of the previous theorem.

A finite version of the above theorem is the following. Put Al = A ∩ [0, 2l − 1] and
Bl = B ∩ [0, 2l − 1].

Theorem 3. Let C and D be sets of nonnegative integers such that C ∪D = [0,m] and
C ∩D = ∅, 0 ∈ C. Then RC = RD if and only if there exists an l natural number such
that C = Al and D = Bl.

If C = A∩ [0,m] and D = B ∩ [0,m] then by Theorem 2 we have RC(n) = RD(n) for
n ≤ m, therefore Theorem 3. implies the following corollary.

Corollary 1. If C = A ∩ [0,m] and D = B ∩ [0,m], where m is not of the form 2l − 1,
then there exists an m < n < 2m such that RC(n) 6= RD(n).

In Dombi’s example the union of the set C and D is the set of nonnegative integers,
and they are disjoint sets. Tang and Yu [10] proved that if the union of the sets C and
D is the set of nonnegative integers and the representation functions are identical from
a certain point on, then at least one cannot have the intersection of the two sets is the
non-negative integers divisible by 4 i.e.,

Theorem 4. (Tang and Yu, 2012) If C ∪D = N and C ∩D = 4N, then RC(n) 6= RD(n)
for infinitely many n.

Moreover, they conjectured that under the same assumptions the intersection cannot
be the union of infinite arithmetic progressions.

Conjecture 1. (Tang and Yu, 2012) Let m ∈ N and R ⊂ {0, 1, . . . ,m−1}. If C∪D = N
and C∩D = {r+km : k ∈ N, r ∈ R}, then RC(n) = RD(n) cannot hold for all sufficiently
large n.

Recently Chen and Lev [2] disproved this conjecture by constructing a family of parti-
tions of the set of natural numbers such that all the corresponding representation functi-
ons are the same and the intersection of the two sets is an infinite arithmetic progression
properly contained in the set of natural numbers.

Theorem 5. (Chen and Lev, 2016) Let l be a positive integer. There exist sets C and D
such that C ∪D = N, C ∩D = (22l − 1) + (22l+1 − 1)N and RC = RD.

Their construction is based on the following lemma:

Lemma 1. If there exist sets C0 and D0 such that C0 ∪D0 = [0,m− 1], C0 ∩D0 = {r}
and RC0 = RD0 then there exist sets C and D such that C ∪ D = N, C ∩ D = r + mN
and RC = RD.

Chen and Lev [2] posed the following problem (we use different notations then they
applied).

Problem 1. Given RC = RD, C ∪D = [0,m− 1], and C ∩D = {r} with integer r ≥ 0
and m ≥ 2, must there exist an integer l ≥ 1 such that r = 22l − 1, m = 22l+1 − 1,
C = A2l ∪ (22l − 1 +B2l) and D = B2l ∪ (22l − 1 + A2l)?
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In this paper we solve this problem affirmatively.

Theorem 6. Let C and D be sets of nonnegative integers such that C ∪D = [0,m− 1]
and C ∩D = {r}, 0 ∈ C. Then RC = RD if and only if there exists an l natural number
such that C = A2l ∪ (22l − 1 +B2l) and D = B2l ∪ (22l − 1 + A2l).

The previous theorem suggests that there are no other counterexample for Tang and
Yu’s conjecture.

Problem 2. Given RC = RD, C ∪D = N, and C ∩D = r +mN with integer r ≥ 0 and
m ≥ 2, must there exist an integer l ≥ 1 such that r = 22l − 1, m = 22l+1 − 1?

The following theorem extends Tang and Yu’s theorem.

Theorem 7. Let m ≥ 2 be an even positive integer and let A and B be sets of nonnegative
integers such that A∪B = N and A∩B = mN. Then there exist infinitely many positive
integer n such that RA(n) 6= RB(n).

Similar questions were investigated for unordered representation functions in [], [], [].
Thoughout this paper the characteristic function of the set A is denoted by χA(n),

i.e.,

χA(n) =

{
1, if n ∈ A
0, if n /∈ A

.

2 Proof of Theorem 2. and 3.

First we prove that if there exists a natural number l such that C = Al and D = Bl, then
RC = RD.

We prove by induction on l. For l = 1, A1 = {0} and B1 = {1} thus RA1(n) =
RB1(n) = 0. Assume the statement holds for any l and we prove it to l+ 1. By definition
of A and B we have Al+1 = Al ∪ (2l +Bl) and Bl+1 = Bl ∪ (2l + Al). Hence

RAl+1
(n) = RAl∪(2l+Bl)(n) = |{(a, a′) : a < a′, a, a′ ∈ Al, a+ a′ = n}|

+|{(a, a′) : a ∈ Al, a
′ ∈ 2l +Bl, a+ a′ = n}|+ |{(a, a′) : a, a′ ∈ 2l +Bl, a+ a′ = n}|

= RAl
(n) + |{(a, a′) : a ∈ Al, a

′ ∈ Bl, a+ a′ = n− 2l}|+RBl
(n− 2l+1).

On the other hand

RBl+1
(n) = RBl∪(2l+Al)(n) = |{(a, a′) : a < a′, a, a′ ∈ Bl, a+ a′ = n}|

+|{(a, a′) : a ∈ Bl, a
′ ∈ 2l +Al, a+ a′ = n}|+ |{(a, a′) : a < a′a, a′ ∈ 2l +Al, a+ a′ = n}|

= RBl
(n) + |{(a, a′) : a ∈ Bl, a

′ ∈ Al, a+ a′ = n− 2l}|+RAl
(n− 2l+1),

thus we get the result.
Observe that if k ≤ 2l − 1, then RAl

(k) = RA(k) and RBl
(k) = RB(k). On the other

hand RAl
(k) = RBl

(k) thus we have RA(k) = RB(k) for k ≤ 2l − 1. This equality holds
for every l, therefore we have

RA(k) = RB(k) for every k. (1)
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To prove Theorem 2. and 3. we need the following three claims.
Claim 1. Let 0 < r1 < . . . < rs ≤ m be integers. Then there exists at most one pair

of sets (C,D) such that C ∪D = [0,m], 0 ∈ C, C ∩D = {r1, . . . , rs}, RC(k) = RD(k) for
every k ≤ m.

Proof of Claim 1. We prove by contradiction. Assume that there exist at least
two pairs of different sets (C1, D1) and (C2, D2) which satisfies the conditions of Claim
1. Let v denote the smallest positive integer such that χC1(v) 6= χC2(v). It is clear
that RC1(v) = RD1(v) and RC2(v) = RD2(v). We will prove that RD1(v) = RD2(v) but
RC1(v) 6= RC2(v) which is a contradiction. Obviously

RD1(v) = |{(d, d′
) : d < d

′
, d, d

′ ∈ D1, d+ d
′
= v}|.

As 0 /∈ C∩D and 0 ∈ C, we have d, d
′
< v. We prove that D1∩ [0, v−1] = D2∩ [0, v−1],

which implies that RD1(v) = RD2(v). Clearly we have C1 ∩ [0, v − 1] = C2 ∩ [0, v − 1]
and [0, v − 1] = (C1 ∩ [0, v − 1]) ∪ (D1 ∩ [0, v − 1]) and [0, v − 1] = (C2 ∩ [0, v − 1]) ∪
(D2 ∩ [0, v − 1]). Let (C1 ∩ [0, v − 1]) ∩ (D1 ∩ [0, v − 1]) = {r1, . . . , rt}. Thus we have

D1 ∩ [0, v − 1] =
(

[0, v − 1] \ (C1 ∩ [0, v − 1])
)
∪ {r1, . . . , rt}. Similarly D2 ∩ [0, v − 1] =(

[0, v− 1] \ (C2 ∩ [0, v− 1])
)
∪{r1, . . . , rt}, which implies D1 ∩ [0, v− 1] = D2 ∩ [0, v− 1].

On the other hand

RC1(v) = |{(c, c′) : c < c
′
< v, c, c

′ ∈ C1, c+ c
′
= v}|+ χC1(v),

and
RC2(v) = |{(c, c′) : c < c

′
< v, c, c

′ ∈ C1, c+ c
′
= v}|+ χC2(v),

thus RC1(v) 6= RC2(v).
Claim 2. Let (C,D) be a pair of different sets, C ∪D = [0,m], C ∩D = {r1, . . . , rs},

and RC(n) = RD(n) for every n nonnegative integer and if C
′
= m−C and D

′
= m−D

then C
′ ∪D′

= [0,m], C
′ ∩D′

= {m− rs, . . . ,m− r1}, and RC′ = RD′ .
Proof of Claim 2. Clearly,

RC(k) = |{(c, c′) : c < c
′
, c, c

′ ∈ C ′
, c+c

′
= k}| = |{(c, c′) : c < c

′
,m−c,m−c′ ∈ C, c+c′ = k}|

= |{(m− c,m− c′) : c < c
′
,m− c,m− c′ ∈ C, 2m− (c+ c

′
) = 2m− k}| = RC(2m− k).

Similarly, RD′(k) = RD(2m− k), which implies RD′(k) = RD(2m− k) = RC(2m− k) =
RC′(k), as desired.

Claim 3. If for some positive integer M , the integers M − 1,M − 2,M − 4,M −
8, . . . ,M − 2u, u = blog2Mc− 1 are all contained in the set A (or B), then M = 2u+1− 1.

Proof of Claim 3. Let us suppose that the integers M − 1,M − 2,M − 4,M −
8, . . . ,M − 2u, u = blog2Mc − 1 are all contained in the set A. If M is even then M − 2
is also an even and M − 1 = (M − 2) + 1, therefore χA(M − 1) 6= χA(M − 2), thus we
may assume that M is an odd positive integer, and M is not of the form 2k − 1

Obviously, χB(M) 6= χB(M − 1). Let M =
∑w

i=0 bi2
i be the representation of M in

the number system based 2. Let x denote the largest index i such that bi = 0. Then
x ≤ blog2Mc − 1. Thus we have

M =
x−1∑
i=0

bi2
i + 2x+1 +

w∑
i=x+2

bi2
i, bi ∈ {0, 1}
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thus

M − 2x =
x−1∑
i=0

bi2
i + 2x +

w∑
i=x+2

bi2
i =

w∑
i=0

b
′

i2
i, b′i ∈ {0, 1}

thus
∑w

i=0 bi =
∑w

i=0 b
′
i. It follows that χA(M) = χA(M − 2x). On the other hand

χA(M) 6= χA(M − 1) = χA(M − 2) = χA(M − 4) = . . . = χA(M − 2x),

and
χB(M) 6= χB(M − 1) = . . . = χB(M − 2x),

which proves Claim 3.
Theorem 2. is a consequence of (1) and Claim 1. (for s = 0).
In the next step we prove that if the sets C and D satisfies C ∪D = [0,m], C ∩D = ∅

and RC = RD, then there exists an l positive integer such that C = Al and D = Bl.
Claim 1. and (1) imply that C = A ∩ [0,m] and D = B ∩ [0,m]. Let C

′
= m − C and

D
′
= m−D. By Claim 1., Claim 2. and (1) we have C

′
= A∩ [0,m] or C

′
= B ∩ [0,m].

It follows that
χC′ (20) = χC′ (21) = χC′ (22) = . . . = χC′ (2u),

u = blog2Mc − 1 which implies that

χC(m− 1) = χC(m− 2) = χC(m− 4) = . . . = χC(m− 2u).

By Claim 3. we get m = 2u+1 − 1. The proof of Theorem 3. is completed.

3 Proof of Theorem 6.

First, assume that there exists a positive integer l such that C = A2l ∪ (22l − 1 + B2l),
D = B2l ∪ (22l − 1 + A2l). Obviously C ∪D = [0, 22l+1 − 2], C ∩D = {22l − 1}, 0 ∈ C
and we will prove that RC = RD. It is easy to see that

RC(n) = |{(c, c′) : c < c
′
, c, c

′ ∈ A2l, c+ c
′
= n}|+

|{(c, c′) : c ∈ A2l, c
′ ∈ 22l − 1 +B2l, c+ c′ = n}|

+|{(c, c′) : c, c′ ∈ 22l − 1 +B2l, c+ c′ = n}|
= RA2l

(n) + |{(c, c′) : c ∈ A2l, c
′ ∈ B2l, c+ c′ = n− (22l − 1)}|+RB2l

(n− 2(22l − 1)).

Moreover,
RD(n) = |{(d, d′) : d < d′, d, d′ ∈ B2l, d+ d′ = n}|+
|{(d, d′) : d ∈ B2l, d

′ ∈ 22l − 1 + A2l, d+ d′ = n}|
+|{(d, d′) : d, d′ ∈ 22l − 1 + A2l, d+ d′ = n}|

= RB2l
(n) + |{(d, d′) : d ∈ A2l, d

′ ∈ B2l, d+ d′ = n− (22l − 1)}|+RA2l
(n− 2(22l − 1)).

and by Theorem 3. RA2l
= RB2l

thus we get the result.
In the next part we prove that if C ∪D = [0,m], C ∩D = {r}, 0 ∈ C and RC(n) =

RD(n), then there exists a positive integer l such that C = A2l ∪ (22l − 1 + B2l), D =
B2l ∪ (22l − 1 + A2l) and m = 22l+1 − 2, r = 22l − 1.
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By Claim 2. if C ∪ D = [0,m], C ∩ D = {r} and RC = RD, then for C ′ = m − C,
D

′
= m −D we have C ′ ∪D′

= [0,m], C ′ ∩D′
= [0,m − r] and by Claim 2. RC′(n) =

RD′ (n), thus we may assume that r ≤ m/2.
Let

pC(x) =
m∑
i=0

χC(i)xi, (2)

pD(x) =
m∑
i=0

χD(i)xi =
1− xm+1

1− x
− pC(x) + xr. (3)

Then we have
∞∑
n=0

RC(n)xn =
∞∑
n=0

RD(n)xn,

thus
1

2
pC(x)2 − 1

2
pC(x2) =

1

2
pD(x))2 − 1

2
pD(x2). (4)

It follows from (3) and (4) that

(pC(x))2 − pC(x2) =
(1− xm+1

1− x
− pC(x) + xr

)2
−
(1− x2m+2

1− x2
− pC(x2) + x2r

)
.

An easy calculation shows that

2pC(x2) =
1− x2m+2

1− x2
+ 2pC(x)

1− xm+1

1− x
−
(1− xm+1

1− x

)2
− 2xr

1− xm+1

1− x
+ 2xrpC(x). (5)

We will prove that r must be odd. If r would be even and r ≤ k ≤ 2r ≤ m is also
even then from the coefficient of xk in (5) we have

2χC

(k
2

)
= 1 + 2

∑
i≤k

χC(i)− (k + 1)− 2 + 2χC(k − r), (6)

If k + 1 ≤ 2r ≤ m, then from the coefficient of xk in (5) we have

0 = 2
∑
i≤k+1

χC(i)− (k + 2)− 2 + 2χC(k + 1− r). (7)

By (6) - (7) and dividing by 2 we get that

χC

(k
2

)
= 1− χC(k + 1) + χC(k − r)− χC(k + 1− r).

As Claim 1., k + 1− r < r, k − r is even, C ∩ [0, r − 1] = A ∩ [0, r − 1] and by definition
of A we get χC(k+ 1− r) +χC(k− r) = 1 thus we have χC(k− r)−χC(k+ 1− r) = ±1.
If χC(k − r) − χC(k + 1 − r) = 1 then we get that χC(k − r) = 1, χC(k − 1 − r) = 0,

which yields χC(k + 1) = 0 and χC

(
k
2

)
= 1.

On the other hand if χC(k− r)−χC(k+ 1− r) = −1 then we get that χC(k− r) = 0,

χC(k + 1− r) = 1, which yields χC(k + 1) = 0 and χC

(
k
2

)
= 0.
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This gives that χC

(
k
2

)
= χC(k − r). Taking k = 2r − 2i+1 where i + 1 ≤ blog2 rc we

obtain χC(r − 2i+1) = χC(r − 2i). It follows that

χC(r − 1) = χC(r − 2) = χC(r − 4) = . . . = χC(r − 2t).

for t = blog2 rc − 1. Claim 3. implies that r = 2l − 1, which is a contradiction.
We know that r must be odd. If r ≤ k < 2r ≤ m and k is even then from the

coefficient of xk in (5) we have we have

2χC

(k
2

)
= 1 + 2

∑
i≤k

χC(i)− (k + 1)− 2 + 2χC(k − r).

In this case k − 1 is odd, and k − 1 ≥ r therefore from the coefficient of xk−1 in (5) we
have

0 = 2
∑
i≤k−1

χC(i)− k − 2 + 2χC(k − 1− r).

Subtracting the above equalities and dividing by 2 we get that

χC

(k
2

)
= χC(k) + χC(k − r)− χC(k − 1− r).

If r is odd, then k − 1 − r is even, we know from Claim 1. that C ∩ [0, r − 1] =
A ∩ [0, r − 1] and by definition of A we get χC(k − 1− r) + χC(k − r) = 1 thus we have
χC(k − r) − χC(k − 1 − r) = ±1. If χC(k − r) − χC(k − 1 − r) = 1 then we get that

χC(k − r) = 1, χC(k − 1− r) = 0, which yields χC(k) = 0 and χC

(
k
2

)
= 1.

If χC(k−r)−χC(k−1−r) = −1 then we get that χC(k−r) = 0, χC(k−1−r) = 1, which

yields χC(k) = 1 and χC

(
k
2

)
= 0. This gives that χC(k − r) = χC

(
k
2

)
when r ≤ k < 2r

and k is even. Values k = 2r−2i+1, where i+1 ≤ blog2 rc imply χC(r−2i+1) = χC(r−2i).
It follows that

χC(r − 1) = χC(r − 2) = χC(r − 4) = . . . = χC(r − 2blog2 rc−1),

which yields by Claim 3 that r = 2u − 1. If k = r, then from the coefficient of xk in (5)
we have

0 = 2
∑
i≤r

χC(i)− (r + 1)− 2 + 2. (8)

On the other hand if k = r − 1, then from the coefficient of xk−1 in (5) we have

2χC

(r − 1

2

)
= 1 + 2

∑
i≤r−1

χC(i)− r. (9)

By (8) - (9) we get that

−2χC

(r − 1

2

)
= −2 + 2χC(r) = 0,

we get that 0 = χC

(
r−1
2

)
= χA

(
r−1
2

)
, thus r−1

2
= 2u−1 − 1, where u − 1 is odd, so that

r = 22l − 1.
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Because of r ≤ m/2, Claim 1. and the first part of Theorem 3. we have C ∩ [0, 2r] =
A2l∪(22l−1+B2l) and D∩ [0, 2r] = B2l∪(22l−1+A2l). We will show that m < 3 ·22l−2.
We prove by contradiction. Assume that m > 3 · 22l − 2. We verify

C ∩ [0, 3 · 22l − 3] = A2l ∪ (22l − 1 +B2l) ∪ (22l+1 − 1 + (B2l ∩ [0, 22l − 2]))

and

D ∩ [0, 3 · 22l − 3] = B2l ∪ (22l − 1 + A2l) ∪ (22l+1 − 1 + (A2l ∩ [0, 22l − 2]))

If 22l+1 − 2 < n ≤ 3 · 22l − 3, then we have

RC(n) = |{(c, c′) : c ∈ A2l, c
′ ∈ 22l − 1 +B2l, c+ c′ = n}|+

|{(c, c′) : c ∈ A2l, c
′ ∈ 22l+1 − 1 + (B2l ∩ [0, 22l − 2]), c+ c′ = n}|+

|{(c, c′) : c < c′, c, c′ ∈ 22l − 1 +B2l, c+ c′ = n}|

= |{(c, c′) : c ∈ A2l, c
′ ∈ B2l, c+ c′ = n− (22l − 1)}|

+|{(c, c′) : c ∈ A2l, c
′ ∈ B2l, c+ c′ = n− (22l+1 − 1)}|+

RB2l
(n− 2(22l − 1))

and
RD(n) = |{(d, d′

) : d ∈ B2l, d
′ ∈ 22l − 1 + A2l, d+ d′ = n}|

+|{(d, d′) : d ∈ B2l, d
′ ∈ 22l+1 − 1 + (A2l ∩ [0, 22l − 2]), d+ d′ = n}|

||{(d, d′) : d < d′, d, d′ ∈ 22l − 1 + A2l, d+ d′ = n}

= |{(d, d′) : d ∈ B2l, d
′ ∈ A2l, d+ d′ = n− (22l − 1)}|+

|{(d, d′) : d ∈ B2l, d
′ ∈ A2l, d+ d′ = n− (22l+1 − 1)}|+RA2l

(n− 2(22l − 1)),

which imply RC(n) = RD(n) by Theorem 3., therefore by Claim 1. this is the only possible
beginning of C and D. We will prove that 3 · 22l − 2 ∈ C. We prove by contradiction.
Assume that 3 ·22l−2 ∈ D, that is C∩ [0, 3 ·22l−2] = A2l∪(22l−1+B2l)∪(22l+1−1+B2l)
and D ∩ [0, 3 · 22l − 2] = B2l ∪ (22l − 1 + A2l) ∪ (22l+1 − 1 + A2l). We have a solution
3 · 22l − 2 = (22l+1 − 1) + (22l − 1) in set D, thus we have

RD(3 · 22l − 2) = 1 + |{(d, d′) : d ∈ B2l, d
′ ∈ 22l+1 − 1 + A2l, d+ d′ = 3 · 22l − 2}|

|{(d, d′) : d < d′, d, d′ ∈ 22l − 1 + A2l, d+ d′ = 3× 22l − 2}|

= 1 + |{(d, d′) : d ∈ B2l, d
′ ∈ A2l, d+ d′ = 22l − 1)}|+RA2l

(22l).

On the other hand

RC(3 · 22l − 2) = |{(c, c′) : c ∈ A2l, c
′ ∈ 22l+1 − 1 +B2l, c+ c′ = 3 · 22l − 2}|+

|{(c, c′) : c < c′, c, c′ ∈ 22l − 1 +B2l, c+ c′ = 3× 22l − 2}|

= |{(c, c′) : c ∈ A2l, c
′ ∈ B2l, c+ c′ = 22l − 1)}|+RB2l

(22l),

therefore by Theorem 3 we have RD(3 ·22l−2) > RC(3 ·22l−2), which is a contradiction.
We may assume that 3 · 22l − 2 ∈ C.
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Using the fact 1 6∈ C we have

RC(3 · 22l − 1) = |{(c, c′) : c ∈ A2l, c
′ ∈ 22l+1 − 1 +B2l, c+ c′ = 3 · 22l − 1}|

|{(c, c′) : c < c′, c, c′ ∈ 22l − 1 +B2l, c+ c′ = 3× 22l − 1}|+ χC(3 · 22l − 1)

= |{(c, c′) : c ∈ A2l, c
′ ∈ B2l, c+ c′ = 22l}|+RB2l

(22l + 1)χC(3 · 22l − 1).

On the other hand using 1 ∈ B2l, 22l − 1 ∈ A2l and 2 · 22l − 2 ∈ C we get

RD(3 · 22l− 1) = |{(d, d′) : d ∈ B2l, d
′ ∈ 22l+1− 1 +A2l ∩ [0, 22l− 2], d+ d′ = 3 · 22l− 1}|+

|{(d, d′) : d < d′, d, d′ ∈ 22l − 1 + A2l, d+ d′ = 3× 22l − 1}|
= |{(d, d′) : d ∈ B2l, d

′ ∈ A2l, d+ d′ = 22l}|+RA2l
(22l + 1)− 1,

therefore by Theorem 3 we have RC(3 ·22l−2) > RD(3 ·22l−2), which is a contradiction,
that is we have m ≤ 3 · 22l − 2.

Assume that m = 3 · 22l − 2. In this case 3 · 22l − 3, 3 · 22l − 2 ∈ C. Thus we have
RC(6 · 22l − 5) = 1, but RD(6 · 22l − 5) = 0, which is absurd, therefore m < 3 · 22l − 2. It
follows that

C = A2l ∪ (22l − 1 +B2l) ∪ (22l+1 − 1 + (B2l ∩ [0,m− (22l+1 − 1)]))

and
D = B2l ∪ (22l − 1 + A2l) ∪ (22l+1 − 1 + (A2l ∩ [0,m− (22l+1 − 1)])).

We will prove that m = 22l+1−2. Assume that m > 22l+1−2. If m−(22l+1−1) 6= 2k−1,
then by Corollary there exists an m− (22l+1 − 1) < u < 2(m− (22l+1 − 1)) such that

RA∩[0,m−(22l+1−1)](u) 6= RB∩[0,m−(22l+1−1)](u).

Since m+ 22l+1 − 1 < u+ 2(22l+1 − 1) < 2m we obtain

RC(2(22l+1−1)+u) = R22l+1−1+B2l∩[0,m−(22l+1−1)](2(22l+1−1)+u) = RB2l∩[0,m−(22l+1−1)](u).

Similarly
RD(2(22l+1 − 1) + u) = RA2l∩[0,m−(22l+1−1)](u),

which is a contradiction. Thus we may assume that m − (22l+1 − 1) = 2k − 1, where
k < 2l. Hence

C = A2l ∪ (22l − 1 +B2l) ∪ (22l+1 − 1 +Bk)

and
D = B2l ∪ (22l − 1 + A2l) ∪ (22l+1 − 1 + Ak).

If k = 0, then C,D ⊂ [0, 22l+1−1] and 22l+1−2, 22l+1−1 ∈ D, therefore RC(22l+2−3) = 0
and RD(22l+2 − 3) = 1, a contradiction. Thus we may assume that k > 0. Then
if C ′ = 22l+1 + 2k − 2 − C and D′ = 22l+1 + 2k − 2 − D it follows that C ′ ∪ D′ =
[0, 22l+1 + 2k − 2], C ′ ∩D′ = {22l + 2k − 1} and by Claim 2. RC′ = RD′ . Thus we have
C ′∩ [0, 22l + 2k−2] = A∩ [0, 22l + 2k−2] or C ′∩ [0, 22l + 2k−2] = B∩ [0, 22l + 2k−2]. We
prove that C ′ ∩ [0, 22l + 2k − 2] = A ∩ [22l + 2k − 2]. Assume that C ′ ∩ [0, 22l + 2k − 2] =
B ∩ [22l + 2k − 2]. Then C ′ ∩ [0, 2k − 1] = Bk and C ′ ∩ [2k, 2k+1− 1] = 2k +Ak, which is a
contradiction because C ′ ∩ [2k, 2k+1 − 1] = 2k +Bk. We know C ′ ∩ [0, 2k − 1] = Ak, then
C ′∩ [2k, 2k+1−1] = 2k+Bk, and C ′∩ [2k+1, 3 ·2k−2] = 2k+1+Bk∩ [0, 2k−2]. On the other
hand for C

′′
= 22l+1− 2− (A2l ∪ (22l− 1 +B2l)) we have C ′′∩ [0, 22l− 2] = B ∩ [0, 22l− 2],

therefore C
′′ ∩ [0, 2k − 1] = Bk and C

′′ ∩ [2k, 2k+1 − 2] = 2k + Ak ∩ [0, 2k − 2], which is a
contradiction because C ′ = Ak ∪ (2k + C

′′
). The proof of Theorem 6. is completed.
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4 Proof of Theorem 7.

We prove by contradiction. Assume that there exist sets of positive integers A and B
such that A∪B = N, A∩B = mN and RA(n) = RB(n) for every large enough n. As we
know for the generating function of A fA(x) =

∑∞
n=0 χA(n)xn we have

∑∞
n=0RA(n)xn =

1
2
fA(x)2 − 1

2
fA(x), therefore

f 2
B(x)− fB(x2)− (f 2

A(x)− fA(x2)) = p(x), (10)

where p(x) is a polynomial. As A ∪B = N and A ∩B = mN it follows that

fA(x) + fB(x) =
1

1− x
+

1

1− xm
,

thus we have

fB(x) =
1

1− x
+

1

1− xm
− fA(x),

which implies that( 1

1− x
+

1

1− xm
− fA(x)

)2
−
( 1

1− x2
+

1

1− x2m
− fA(x2)

)
− (f 2

A(x)− fA(x2)) = p(x),

i.e.,( 1

1− x

)2
+
( 1

1− xm
)2

+
2

(1− x)(1− xm)
− 2fA(x)

1− x
− 2fA(x)

1− xm
− 1

1− x2
− 1

1− x2m

+2fA(x2) = p(x).

Multiplying both sides by (1− xm) and after ordering we obtain that

1 + x+ . . . + xm−1

1− x
+

1

1− xm
+

2

1− x
− 1− xm

1− x2
− 1

1 + xm
=

2(2 + x+ . . . + xm−1)fA(x)− 2fA(x2)(1− xm) + p(x)(1− xm).

Substituting the definition of fA(x) we have

1 + x+ . . . + xm−1

1− x
+

1

1− xm
+

2

1− x
− 1− xm

1− x2
− 1

1 + xm
=

2(2 + x+ · · ·+ xm−1)
( ∞∑

n=0

χA(n)xn
)
− 2
( ∞∑

n=0

χA(n)x2n
)

(1− xm) + p(x)(1− xm).

Let n be a large odd positive integer. In this case it is easy to see that the coefficient of
xn on the left hand side is m + 2 and on the right hand side is 2(2χA(n) + χA(n− 1) +
. . . + χA(n−m+ 1)), thus we have

m

2
+ 1 = 2χA(n) + χA(n− 1) + . . . + χA(n−m+ 1). (11)
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If m = 2 we get that 2 = 2χA(n) + χA(n − 1) which implies that n ∈ A, n − 1 /∈ A
which contradicts the fact that A ∩ B = 2N. Let us suppose that m > 2. Considering
the coefficient of xn+2 we have

m

2
+ 1 = 2χA(n+ 2) + χA(n+ 1) + χA(n) + . . . + χA(n−m+ 3). (12)

Substracting (12) from (11) we get that 2χA(n+ 2) + χA(n+ 1) = χA(n) + χA(n−m+
2) + χA(n −m + 1). The values χA(n), χA(n − 1), . . . , χA(n −m + 1) determine values
χA(n+ 2) and χA(n+ 1):

χA(n) + χA(n−m+ 2) + χA(n−m+ 1) = 0⇒ χA(n+ 1) = 0, χA(n+ 2) = 0

χA(n) + χA(n−m+ 2) + χA(n−m+ 1) = 1⇒ χA(n+ 1) = 1, χA(n+ 2) = 0

χA(n) + χA(n−m+ 2) + χA(n−m+ 1) = 2⇒ χA(n+ 1) = 0, χA(n+ 2) = 1

χA(n) + χA(n−m+ 2) + χA(n−m+ 1) = 3⇒ χA(n+ 1) = 1, χA(n+ 2) = 1,

therefore if n is large enough the values χA(n), χA(n− 1), . . . , χA(n−m + 1) determine
A∩[n+1,∞). We can do the same process for the set B. We know that a sequence defined
by a linear recurrence on a finite set must be eventually periodic. This means that A and
B are periodic from a certain point on. In other words there exist N , M positive integers,
where m | M and sets FA ⊂ [0,MN − 1], FB ⊂ [0,MN − 1], FA ∪ FB = [0, NM − 1]
and FA ∩ FB = {0,m, 2m, . . . ,MN −m}, moreover there exist disjoint sets MA, MB ⊂
[0,M − 1] such that MA ∪MB = [0,M − 1] and MA ∩MB = {0,m, 2m, . . .M −m} for
which A = FA ∪ {kM + a : k ≥ N, a ∈ MA} and B = FB ∪ {kM + b : k ≥ N, b ∈ MB}
and hence

fA(x) = FA(x) +
MA(x)xNM

1− xM
,

fB(x) = FB(x) +
MB(x)xNM

1− xM
.

Substituting in (1) we have(
FA(x) +

MA(x)xNM

1− xM
)2
−
(
FA(x2) +

MA(x2)x2NM

1− x2M
)

−
(
FB(x) +

MB(x)xNM

1− xM
)2
−
(
FB(x2) +

MB(x2)x2NM

1− x2M

)
= p(x),

where p(x) is a polynomial. As FA(x) and FB(x) are polynomials we have

(M2
A(x)−M2

B(x))
x2NM

(1− xM)2
+

2(MA(x)FA(x)−MB(x)FB(x))xNM

1− xM
−

(MA(x2)−MB(x2))x2NM

1− x2M
= P (x),

where P (x) is a polynomial. It follows that

(1− xM)2(1 + xM) | (M2
A(x)−M2

B(x))x2NM(1 + xM)
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+2(MAFA(x)−MBFB)xNM(1− x2M)− (13)

(MA(x2)−MB(x2))x2NM(1− xM).

In the next step we describe the sets MA and MB. We will prove that if k is an arbitrary
nonnegative integer and M > 2k then 2k | M and if M

(k)
A ∩ MA = {0, . . . , M

2k
− 1},

M
(k)
B ∩MB = {0, . . . , M

2k
− 1}, then we have

MA =
2k−1⋃
i=0

(M
2k
i+M

(k)
A

)
,

and

MB =
2k−1⋃
i=0

(M
2k
i+M

(k)
B

)
.

We prove it by induction on k. When k = 0, then obviously 20 | M and M
(0)
A = MA,

M
(0)
B = MB. Assume that we have already constructed the desired sets for k, in the next

step we construct the sets for k + 1. We know

MA(x) = M
(k)
A (x)

2k−1∑
t=0

xt
M

2k = M
(k)
A (x)

k∏
j=1

(1 + x
M

2j ).

MB(x) = M
(k)
B (x)

2k−1∑
t=0

xt
M

2k = M
(k)
B (x)

k∏
j=1

(1 + x
M

2j ).

Substituting in (13) we get

(1− xM)2(1 + xM) | (M (k)
A (x)2 −M (k)

B (x)2)x2NM(1 + xM)

(
k∏

j=1

(1 + x
M

2j )

)2

+2(M
(k)
A (x)FA(x)−M (k)

B (x)FB(x))xNM(1− x2M) ·
k∏

j=1

(1 + x
M

2j )

−x2MN(M
(k)
A (x2)−M (k)

B (x2))(1− xM)
k∏

j=1

(1 + x2
M

2j ).

It is easy to see that

1 + x
M

2k |M (k)
A (x2)−M (k)

B (x2).

Write

M
(k)
A (x2)−M (k)

B (x2) =

2M

2k
−2∑

l=0

c
(k)
l xl
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and MA(x2)−MB(x2) =
∑2M−2

l=0 clx
l, where cl = 0 if l is odd and for even l

cl =


0, if l/2 ∈ A ∩B
1, if l/2 ∈ A \B
−1, if l/2 ∈ B \ A

.

Thus we have
M

(k)
A (x2)−M (k)

B (x2) = q(k)(x)(1 + x
M

2k ), (14)

where q(k)(x) is a polynomial. Considering the degrees of the polynomials in both sides
we get the equation

2
M

2k
− 2 = deg q(k)(x) +

M

2k
.

It follows that

deg q(k)(x) =
M

2k
− 2.

Thus we have

q(k)(x) =

M

2k
−2∑

l=0

q
(k)
l xl.

On the other hand c
(k)
l = cl for l ≤ 2M

2k
− 2 and therefore

M
(k)
A (x2)−M (k)

B (x2) =

2M

2k
−2∑

l=0

c
(k)
l xl =

2M

2k
−2∑

l=0

clx
l = q(k)(x)(1 + x

M

2k ) =

M

2k
−2∑

l=0

q
(k)
l xl +

M

2k
−2∑

l=0

q
(k)
l xl+

M

2k .

It follows that q
(k)
l = cl = c

(k)
l . and cl+M

2k
= cl for l < M

2k
. Since 1 ∈ (A \ B) ∪ (B \ A),

we get 0 6= c2 = c2+M

2k
. If 2 - M

2k
, then obviously c2+M

2k
= 0, which is absurd, therefore

2k+1 |M . Let us suppose that l < M
2k

and l is even. Then

l

2
∈ A ∩B ⇔ cl = 0⇔ cl+M

2k
= 0⇔ l

2
+

M

2k+1
∈ A ∩B

l

2
∈ A \B ⇔ cl = 1⇔ cl+M

2k
= 1⇔ l

2
+

M

2k+1
∈ A \B

l

2
∈ B \ A⇔ cl = −1⇔ cl+M

2k
= −1⇔ l

2
+

M

2k+1
∈ B \ A

which implies that for M
(k+1)
A = M

(k)
A ∩ [0, M

2k+1 − 1] we have M
(k)
A = M

(k+1)
A ∪ ( M

2k+1 +

M
(k+1)
A ), therefore

MA =
2k+1−1⋃
i=0

( M

2k+1
i+M

(k+1)
A

)
.

A similar argument prove the statement for set B.
Now we are ready to prove Theorem 7. Assume that M = 2uv, where v ≥ 3 is odd

and m |M . Then obviously M > 2u+1, thus 2u+1 |M a contradiction.
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