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Abstract: A novel heuristic model-based optimal scheduling algorithm is proposed in this paper
to operate heating and cooling type home appliances connected to smart grids where the price
of the electrical energy is known in advance and temperature constraints are present.
The properties and the use of the proposed algorithm are shown using a simple refrigerator
model. The accuracy and the computational properties of the proposed method are compared
to the schedule generated by the MPT toolbox. The algorithm works well with a relatively short
prediction horizon using a fraction of the computing time needed for the MPT-based method.
The robustness of the algorithm is also investigated with respect to the load of the refrigerator.
It is shown that the designed schedule with an empty refrigerator is always suitable, yet not
optimal, for any loaded case.
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1. INTRODUCTION

Nowadays, electrical energy providers and line operators,
and also the electrical appliances themselves are providing
more and more smart solutions with economical, technical
and environmental goals, that facilitates the development
of smart grid technologies and solutions both on the de-
mand and on the supplier sides. An important influencing
factor of this development is the day-ahead electricity
market, that is continuously expanding, and the amount
of energy being traded through them is increasing. There-
fore, the cost-optimal operation of the composite system
consisting of suppliers, consumers and the electrical grid
presents a wide variety of operating, scheduling and con-
trol problems.

From the suppliers side, the approaches of optimized
pricing (Joe-Wong et al. (2012)) are of great interest that
aim at balancing the electrical grid subject to variations
in the supply (e.g. caused by the changing availability of
renewable energy sources), and also in the demand. As
a result of optimized pricing, hourly changing electrical
energy prices are available for the day-ahead electricity
market (see e.g. Spot (2010)).

From the side of demand management, one may opti-
mally operate certain electrical appliances with control-
lable on/off switching taking into account the dynami-
cally changing electrical energy prices and the operating
constraints. In the simplest case this problem leads to
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an optimal scheduling one, for which nice solutions have
been proposed in the literature. An optimal day ahead
microgrid scheduling method for an office building con-
sidering weather scenarios is developed by Shimomachi
et al. (2014), while an optimal residential load control
method with price prediction is reported in the paper
by Mohsenian-Rad and Leon-Garcia (2010). Household
appliances can also be a subject of optimal operation or
scheduling, see e.g. the paper of Du and Lu (2011).

An important, yet relatively simple class of household
appliances are the heating/cooling devices, such as refrig-
erators, boilers, etc. Their optimal operation is also widely
investigated under various circumstances, see the recent
PhD thesis of Vinther (2014) and the references therein.
The subject of this paper is the cost-optimal operation of a
cooling household appliance, a refrigerator. Although food
safety is a primary concern, it is aways possible to operate
the refrigerator in a cost-optimal way which is in com-
pliance with the safety temperature limits. Considering
its simple dynamic model with the input of the electrical
switch taking into account the known but hourly changing
prices of electrical energy and temperature constraints,
one can formulate a model-predictive control problem with
linear piecewise affine model for designing an optimal
schedule. In our earlier work (Bálint and Magyar (2016))
we used the MPT toolbox (see in the paper of Herceg et al.
(2013)) to solve this optimal scheduling problem, that
turned out to be computationally too demanding for this
simple task. Therefore, the aim of this work is to propose
an improved version of the optimal scheduling algorithm
using heuristics based on the physics of the system.
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2. PROBLEM STATEMENT

An important possible service of a smart electrical grid is
to operate our household appliances in a cost-optimal way.
This can be achieved not only by improving the energy
efficiency of the appliances, but also to optimally schedule
their time of operation taking into account the price of
electrical energy.

2.1 Day-ahead market

In the modern power grid the day-ahead market serves as
the marketplace for trading power. The service provider
gives the electricity price, i.e. the price for electrical energy,
for the next 24 hours. Fig. 1 shows the hourly electricity
prices for a week, where each line corresponds to the prices
of a day. As it is apparent in Fig. 1, the energy price of
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Fig. 1. Electricity price of a day-ahead market for a week.
Source: Spot (2010)

the same period for different days is highly fluctuating, so
the price-optimal operation of home appliances in a day-
ahead market can be formulated as an optimal scheduling
problem (see in Joe-Wong et al. (2012)). The real data
used for the simulations are obtained from the report of
Spot (2010).

2.2 Piecewise affine modelling of heating and cooling
appliances

As an example of a cooling appliance, consider a refrig-
erator that is cooled by a cooling liquid circuit driven by
an electrical motor. The schematic picture of the main
elements of the refrigerator is shown in Fig. 2.

The containment is characterized by its air temperature
Ta. It is heated by the outer environment (its temperature
is To) through the door of the fridge, and cooled by the
wall with temperature Tw . A liquid cooling system with
liquid temperature Tc provides cooling when the cooling
binary switch S is on, i.e. S = 1, while there is no cooling
of the wall when S = 0. The wall is also heated by the
outer environment.

Fig. 2. The schematic picture of the refrigerator

The engineering model The simplest possible dynamic
model that describes the dynamics of the refrigerator
can be constructed from the energy balances for the
containment air and that of the wall in the following form
(see Hangos and Cameron (2001))

Ca
dTa
dt

= Kw(Tw − Ta) +Ko(To − Ta) (1)

Cw
dTw
dt

= Kw(Ta − Tw) +Kx(To − Tw) +

+S ·Kc(Tc − Tw) (2)

where Ta is the containment air temperature, and Tw is the
wall temperature. The first terms in the right-hand sides
of the equations correspond to the heat transfer between
the air and wall, the second transfer terms correspond to
the transfer between the outer environment and the air or
wall, respectively, and the last term in the second equation
describes the effect of the cooling liquid. The constant
positive parameters of the model are Cw and Ca being
the heat capacities of the containment air and the wall,
respectively, and Kw, Ko Kc and Kx are the heat transfer
coefficients for the air-wall, air-environment, wall-cooling
liquid, and wall-environment transfers, respectively. The
outer environment temperature To and the cooling liquid
temperature Tc are assumed to be constant.

The state and input variables Now we can identify the
state and input variables of the dynamic model as follows.

x =

[
Ta
Tw

]
, u = S (3)

where S is the position of the switch.

Piecewise affine model Let us define two operating modes
of the refrigerator: the cooling and the reheating modes. In
both cases the state space model is in the standard affine
model form

ẋ = Ax + Bu + f (4)

y = C x (5)

but the value of the coefficient matrices A,B,C and the
constant vector f differ.

Cooling dynamics The first case is when the switch is
closed (S = 1), i.e. the refrigerator is cooling. Then the
parameter matrices and vector are
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Aon =

−
Kw +Ko

Ca

Kw

Ca
Kw

Cw
−(
Kw

Cw
+
Kc

Cw
+
Kx

Cw
)

 (6)

Bon =

[
0

TcKc

Cw

]
, fon =


KoTo
Ca
KxTo
Cw

 , C =

[
1 0
0 1

]
. (7)

Reheating dynamics The second case is when the switch
is open (S = 0), i.e. the refrigerator is reheated to the
environmental temperature. Then the parameter matrices
and vector are as follows:

Aoff =

−
Kw +Ko

Ca

Kw

Ca
Kw

Cw
−(
Kw

Cw
+
Kx

Cw
)

 (8)

Boff =

[
0
0

]
, foff =


KoTo
Ca
KxTo
Cw

 , C =

[
1 0
0 1

]
. (9)

2.3 Control aim

Given the dynamically changing but known-ahead price
for electrical energy, the aim of optimally operating the
refrigerator described above in subsection 2.2 can be
formulated as a constrained optimization problem using
the following assumptions:

• The operating cost is the cost of the electrical energy
consumption of the refrigerator during the day.
• The price of the electrical energy p(t) changes hourly

in a piece-wise constant way.
• The energy price function is known for 24 hours in

advance.
• The temperatures in the refrigerator must be between

the following operating constraints
· the inner air temperature Ta should be between
Ta,min and Ta,max,
· the cooled back wall temperature Tw should be

between Tw,min and Tw,max
• The outer air temperature To is constant.
• The input variable is then the value of the switch S

that is binary (on: S = 1, off: S = 0).
• The simple piecewise affine model with its cooling

and reheating models described in subsection 2.2 is
considered.

The aim of the control is to minimize the operating cost,
that is in the following general form∫ 24h

τ=0

(p(τ) · S(τ))dτ . (10)

3. MODEL PREDICTIVE SCHEDULING

Although the system dynamics and the control aim is given
in continuous-time, any implementation of the control
system will work in discrete-time, so the piecewise affine
model (6-9) will be discretized with a suitable sampling
time.

3.1 MPC problem formulation

In order to be able to apply the tools of model predictive
control theory, the model and the control aim of sections
2.2 and 2.3 is to be reformulated in the frame of a model
predictive control (scheduling) problem as follows.

System model As a first step the continuous-time model
(6-9) is discretized with sampling time h in order to get the
discrete-time piecewise affine (PWA) system model used
in the sequel. Based on the preliminary experiments and
knowledge about the system dynamics to be controlled,
h = 5 min will be used.

Σi :

{
xk+1 = Φi xk + Γi uk + hf i

yk = C xk
, i ∈ {on; off} (11)

where xk stands for the value of the vector valued signal
x at the discrete time instant k, matrices Φ = eAT and
Γ = A−1(eAT − I)B are the state- and input matrices
of the state equation discretized by sampling time h, and
f is the constant vector in the continuous time model.

Cost function The cost function (10) is approximated
with the discrete sum (12). Although the sampling time
h is kept considerably smaller than one hour (i.e. the
sampling time of the price) the values of (10) and (12)
may be (and usually are) different so the discrete-time
implementation is suboptimal with respect to the cost
function (10)

cost =

N∑
j=1

pj uj h , (12)

where N is supposed to be the prediction horizon size. It
is supposed that the price levels of the next day are known
at least H = N h time (prediction time) before midnight.

Constraints The state constraints given in section 2.3 can
be used directly in the MPC framework.

x ≤ xk ≤ x (13)

where the lower- and upper bounds of the state vari-
ables are evaluated component-wise. In notation (13), the
bounds are

x =

[
Ta,min
Tw,min

]
, x =

[
Ta,max
Tw,max

]
(14)

Summarized, the MPC problem is to minimize (12) in
uk with respect to (11) and the constraints (13). In each
iteration the optimization of the cost (12) is performed
from the actual time to a fixed size prediction horizon
H = N h, and the first element of the optimizing input
sequence is applied to the real system.

3.2 Heuristic optimal scheduling algorithm

From the modelling and the problem formulation given
in the previous sections it is clear, that the optimization
problem is a model predictive optimal scheduling problem,
where the cost function depends on the time varying
energy price, p(t), or its discrete time counterpart pk.
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The proposed algorithm is a version of branch and bound
type optimization where the branch step introduces pos-
sible switching sequences and the bound step decreases
the size of the solution space based on the following three
heuristic rules:

Rule 1: Any scheduling sequence that yields an x break-
ing the bounds (13) is not allowed.

Rule 2: Any scheduling sequence that yields a higher x
at a higher cost is not optimal.

Rule 3: Any scheduling sequence containing a cooling
step that could have been performed later for a lower
energy price is not optimal.

The first two rules are easy to check, the third one can
be checked by the following analysis step. As the hourly
energy prices are known 24 hours ahead, it is possible
to calculate a price-equivalent cooling time tpi for all
subsequent constant-price periods of the day. For the ith

hour, it is calculated as

tpi =

⌈
pi+1

pi
h

⌉
, i = 1, . . . , 24 (15)

where pi is the price for the ith hour and d.e represents the
ceiling function.

Using these price-equivalent cooling times, off-line dynam-
ical simulations are made for all price periods using the
model (11) and x as the initial state with the simulation
time tpi for all periods, respectively. The final states x̂i

can be used as the reference values of the comparison step
Rule 3’: If the actual state x < x̂i during the ith price
period then switching the cooling on yields a suboptimal
sequence.

It is important to note, that the calculation of tpi and x̂i
can be calculated off-line, once a day, preferably when the
service provider gives the prices of the next day.

The pseudocode of the proposed optimal scheduling algo-
rithm is given in Algorithm 1. A simulation based analysis
of the algorithm working as the optimizer of a model
predictive scheduling control system is given in section 4.

4. CASE STUDY

In order to verify the proposed optimization based schedul-
ing algorithm, different simulation experiments are per-
formed. The parameter values of the model used in the
experiments were obtained from Schné et al. (2014) and
are given in Table A.1.

In order to be able to make comparisons with respect
to optimization time, the following notation is used. topt
denotes the time spent for calculating the actual input,

tdayopt denotes the sum of the topt values for a whole day. All
the experiments are simulated using a modern PC with
the following parameters

• Intel Pentium B970 CPU (2x2.30 GHz)
• 6 GB RAM
• Windows 10 Home 64bit
• Matlab r2014

Algorithm 1 Heuristic scheduling algorithm
procedure Heuristic B&B
Input :

Σ← Σon,Σoff

x actual state
x,x bound
x̂ bound (Rule 3)
p electricity prices
N ← horizon size

Initialization:
cost empty column vector
U,X empty matrices
for i = 0 : 1 : N do

branch:

U =


U

1
...
1

U

0
...
0

 , X =

[
X

X

]
, cost =

[
cost

cost

]

for k = 1 : rows(U) do
Xk,i+1 = Σ(Xk,i, Uk,i)
update costk

bound (Rule 1):
if Xk,i+1 /∈ [x,x] then

delete row Xk,., Uk,. and costk
end if

bound (Rule 3):
if Xk,i+1 < x̂k and Uk,i+1 = 1 then

delete row Xk,., Uk,. and costk
end if

end for
bound (Rule 2):

for k, l = 1 : rows(U), k 6= l do
if Xk,i+1 > Xl,i+1 and costk > costl then

delete row Xk,., Uk,., costk
else

if Xl,i+1 > Xk,i+1 and costl > costk then
delete row Xl,., Ul,., costl

end if
end if

end for
end for

optimal solution:
minimal value of cost = costkopt

Minimizing sequence Ukopt,.

end procedure

4.1 Model predictive scheduling of a refrigerator

In the first experiment setup the refrigerator model used
by the model predictive scheduling algorithms was iden-
tical to the controlled plant model of Schné et al. (2014)
i.e. the controller had full information about the refrig-
erator dynamics. Fig. 3 shows the temperatures of the
refrigerator and the corresponding price level for a period
of time when the refrigerator has been controlled by the
proposed heuristic model predictive scheduling algorithm.
It is apparent that before price jumps the controller cools
down the refrigerator while before price falls it keeps the
temperature around its upper bound.

The results of the simulation have been compared against
the classical results obtained by formalizing the problem
in MPT Toolbox (see in Herceg et al. (2013)), while the
details of the MPT implementation are given in the paper
of Bálint and Magyar (2016).
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Fig. 3. Temperatures Tair and Twall the price levels for
a period of time for the proposed algorithm. The
temperature bounds are denoted by dotted line.

The total optimization times and the one-day cost of the
MPT based approach and that of the proposed one are
collected in Table 1. Regarding optimization time the
heuristic optimization based MPC performs far better
than the MPT based solution (two orders of magnitude).
On the other hand, the proposed scheduler mananaged to
keep the cost at a lower level as opposed to the MPT based
solution.

Table 1. Comparison of total optimization time
topt and operating cost of the MPT based
approach and the proposed scheduler for one

day with H = 1 hour.

MPT heuristic B&B

tdayopt [min] 139.22 0.10 -99.93%

cost [e/kW] 0.3003 0.2814 -6.29%

4.2 Effect of prediction horizon

The next set of experiments were aimed towards investi-
gating performance of the proposed heuristic branch and
bound scheduler algorithm with respect to the prediction
horizon size. Fig. 4 shows a comparative simulation result
of the heuristic branch and bound optimization algorithm
for different prediction horizon sizes. The results are in
line with the engineering expectations i.e. a larger predic-
tion horizon tends to be computationally more demanding
while (according to Table 2) the accuracy of the optimal
solution does not depend on the prediction horizon size.

Table 2. Operating cost and total optimization
time vs horizon size H.

H 24 h 1 h 2 h 3 h 4 h

cost [e/kW] 0.278 0.281 0.281 0.281 0.281

tday
opt [min] 234 0.10 0.45 1.59 3.71

4.3 Effect of parameter uncertainty

The third simulation experiment was a robustness analysis
of the method with respect to the parameter uncertainty
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Fig. 4. The effect of prediction time H on topt. When the
energy price is increasing the optimization problem
gets computationally more demanding.

between the model used by the MPC algorithm and the
actual refrigerator. Since the refrigerator is used for cooling
meals and other goods, its natural that from time to
time different goods appear in the containment changing
(increasing) the overall heat capacity of the containment.
This is described through an increase of value of the
containment heat capacity C̃a which then differs from Ca.
Simulations have been performed with C̃a = 2Ca and
prediction horizon H = 2 hours. Two different cases have
been examined: when the actual value of the uncertain
parameter C̃a is known for the optimal scheduler and
when it is unknown. The information about C̃a in the
former case can be obtained e.g. by an online parameter
estimation performed in parallel with the scheduling.

The simulation results are shown in Fig. 5. Using the
information about C̃a the scheduler (solid line) was able
to keep the Tair at the neighbourhood of the upper bound
(dotted line). On the other hand, without this extra
knowledge the scheduler was conservative. Table 3 shows
the daily cost values for the different C̃a valued, compared
to the optimal case (H = 24 h and Ca = C̃a in the model
used by the scheduling algorithm). It can be seen that the
reached daily cost does not really depend on the actual
value of C̃a but the fact that the scheduler knows its actual
value yield lower daily costs.

Table 3. The effect of C̃a on the daily cost. All
values are given in [e/kW]. Second row: the
scheduler has information about the parameter
change. Third row: the value of C̃a is unknown

for the algorithm.

C̃a Ca 1.5Ca 2Ca 3Ca 5Ca

optimal
daily cost 0.2787 0.2731 0.2716 0.2680 0.2649

known C̃a 0.2817 0.2748 0.2722 0.2683 0.2654

unknown C̃a 0.2817 0.2817 0.2817 0.2837 0.2833
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Fig. 5. The effect of the knowledge of C̃a on the scheduling
algorithm. With the exact model (known C̃a), the
scheduler keeps the inner air temperature near the
upper bound (dotted line) resulting in a lower cost.

5. CONCLUSIONS

A novel heuristic model-based optimal scheduling algo-
rithm is proposed in this paper to operate heating and
cooling type home appliances connected to smart grids
where the price of the electrical energy is known in advance
for 24 hours and upper and lower constraints are given for
the temperature variables in the system. The algorithm is
of branch-and-bound type where the bounding is driven
by rules describing the qualitative properties of the step
response function of the temperature to be controlled with
respect to the electricity supply switch position.

The properties and the use of the proposed algorithm are
shown using a refrigerator for which a simple second order
model is developed. The effect of the prediction horizon
and that of the electricity price function on the computing
time and on the accuracy are investigated comparing the
results with the schedule computed by the MPT toolbox.
The algorithm works well with a relatively short prediction
horizon using a fraction of the computing time (less than
1 %) needed for the MPT-based method.

The robustness of the algorithm is also investigated with
respect to the load of the refrigerator that is described
through the containment air heat capacity value. It is
shown that the designed schedule with an empty refrigera-
tor always respects the given temperature constraints. As
a future step, an online parameter estimation of the inner
air heat capacity will be performed in order to ensure the
optimality of the scheduling for any loaded case.
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Appendix A. PARAMETERS OF THE MODEL

Table A.1. Parameter values of the case study

parameter symbol value unit

sampling time h 300 s
outer air temperature To 20 ◦C
cooling liquid temperature Tc -36.71 ◦C
minimal inner air temperature Ta,min 0.1 ◦C
maximal inner air temperature Ta,max 5.5 ◦C
minimal back wall temperature Tw,min -19 ◦C
maximal back wall temperature Ta,max 5.8 ◦C

air-wall heat transfer coeff. Kw 3.78 · 103 kW
◦C

air-env. heat transfer coeff. Ko 2.04 · 103 kW
◦C

wall-env. heat transfer coeff. Kx 0.52 · 103 kW
◦C

wall-cool. liq. heat transfer coeff. Kc 5.01 · 103 kW
◦C

heat capacity of containment air Ca 1.21 · 107 kJ
◦C

heat capacity of wall Cw 3.41 · 106 kJ
◦C
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