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Summary. The bifurcation structure of period-1 solutions of a dual-frequency driven asymmetric nonlinear oscillator (Keller–Miksis
equation, describing bubble dynamics) is examined. The applied frequencies areω1/ω0 = 2 andω2/ω0 = 3, whereω0 is the linear,
undamped resonance frequency of the system. The control parameters were the amplitudes of the driving. Due to the specific choice of
the frequency ratio and Poincaré section, the period-2 and period-3 orbits (corresponding to the monofrequency drivings ofω1/ω0 = 2

andω2/ω0 = 3, respectively) are decomposed into a multitude of period-1orbits. The combination of the two frequency components
results in a complex bifurcation structure and interactionof these solutions in the parameter plane of the driving amplitudes.

Introduction

Dual-frequency driven nonlinear oscillators are thoroughly investigated during the last decades. From the early 80’s,
researchers paid special attention to quasiperiodically driven systems (using incommensurable frequencies) producing a
special kind of solution called strange nonchaotic attractor [1]. It is strange due to its fractal nature but nonchaoticbecause
it does not possess positive Lyapunov exponents. The application of a second frequency component is also successfully
used for chaos control to eliminate unpredictable behaviour of certain systems [2]. Moreover, vibrational resonance
induced by the application of two distant frequencies playsan important role in many experiments [3].
The bifurcation structure in the two-dimensional parameter space of the driving with fixed, commensurable frequencies,
however, is less elaborated. This is the main topic of the present study. The employed Keller–Miksis equation is a second
order ordinary nonlinear differential equation widely used to model the oscillation of a single spherical gas bubble ina
liquid domain irradiated with high intensity ultrasound [4]. This model was successfully used to improve the efficiency
of sonochemistry, material chemistry and food processing [5]. This study is to be understood as a very first research step
to possible further improvement of such applications.

Mathematical model

The mathematical model describing the radial oscillation of a single spherical bubble (Keller–Miksis equation) can be
written as
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Ṙ2 =

(

1 +
Ṙ
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whereR(t) is the time dependent bubble radius. For the details of the model see [4]. The parameter values during the
computations (gas bubble in water) were as follows: liquid densityρL = 997.1 kg/m3, sound speedcL = 1497.3m/s
and viscosityµL = 8.902−4Pa s; vapour pressurepV = 3166.8Pa; surface tensionσ = 0.072N/m; ambient (static)
pressureP∞ = 1bar; bubble sizeRE = 10µm; polytropic exponentn = 1.4 (adiabatic behaviour). The dual-frequency
driving of the system

p∞(t) = pA1 sin(ω1t) + pA2 sin(ω2t) (3)

is a time varying pressure field, wherepA1 andpA2 are the pressure amplitudes (also control parameters);ω1 = 3ω0 and
ω2 = 2ω0 are the corresponding angular frequencies. Hereω0 is the linear undamped resonance frequency [4].
By introducing dimensionless timeτ = t ω1/2π and bubble radiusy1 = R/RE , the dimensionless bubble wall velocity
y2 and the dual-frequency driving becomey2 = Ṙ 2π/(REω1) and

p∞(τ) = pA1 sin(2πτ) + pA2 sin(2πω2/ω1τ), (4)

respectively. Observe that the periods of the first and second components areT1 = 1 andT2 = ω1/ω2 = 1.5, respectively.
The periodicity of the dual frequency driving isT = 3 (the smallest integer multiple of bothT1 andT2), which is used for
a global Poincaré map. Therefore, in the specific case ofpA1 = 0 only points after every second real driving period are
sampled, while in case ofpA2 = 0 only after every third real driving period.
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Bifurcation structure of period-1 orbits

To obtain a global picture about the co-existing attractorsin thepA1-pA2 bi-parametric plane,10 initial value problems
(IVP) were solved with random initial conditions at each parameter pair. The resolution of the pressure amplitudes were
∆p = 0.01 bar in both directions. After the initial transient, a number of128 Poincaré points were recorded. To solve the
2.5 million IVPs within reasonable time, an in-house numericalcode was used to exploit the huge computational capacity
of GPUs (Nvidia Tesla K20m), with which the computational time took only25.7 h. The integration algorithm was the
adaptive Runge–Kutta–Cash–Karp method.
The left hand side of Fig. 1 is a condensed view of the found attractors, where the colorbar represents periodicities up to
period-9 (the black region is a mixture of chaotic and higherperiodic solutions). The overlapping periodic domains show
rich dynamics, from which only the period-1 solutions (greyarea) are investigated in more details. The middle of Fig. 1
shows the number of the co-existing period-1 solutions, where the overlapping domains indicate a complex structure of
period-1 attractors hidden in the grey area in Fig. 1 left which indicates only the presence of at least1 period-1 solution.

Figure 1: Left: Periodicities of the co-existing attractors. Middle: Number of the co-existing period-1 solutions. Right: Three-
dimensional representation of the second component of the Poincaré section pointsP (y2) over thepA1-pA2 plane.

The period-1 structure is more visible in the 3D representation of the second component of the Poincaré section points
P (y2) (dimensionless bubble wall velocity) over thepA1-pA2 plane (Fig. 1 right) where the period-1 orbits form surfaces.
The solutions composing the black surfacePE

1
originates from the equilibrium solution denoted byE (observe that the

velocity y2 = 0 at pA1,2 = 0). If pA1 = 0, an originally period-2 solution is decomposed into two period-1 solutions
P 1

2
andP 2

2
emerged via a pitchfork bifurcation (PF), sinceT = 2T2 is used for a global Poincaré section instead ofT2

itself (see the discussion in the previous section). Similarly, in case ofpA2 = 0, an originally period-3 solution, appeared
through a saddle-node (SN) bifurcation, splits into three period-1 solutionsP 1

3 , P 2

3 andP 3

3 (T = 3T1). The layers of
period-1 orbits marked byPE

1
andP 3

3
are "standalone" surfaces. Observe, however, that there are smooth transformations

between following pairs of decomposed orbits:P 1
2 -P 1

3 andP 2
2 -P 2

3 .

Discussion

It has been shown that the period-1 orbits form multiple surfaces in thepA1-pA2 parameter plane. This is the consequence
of the specific choice of the global Poincaré section, which decomposes the period-2 and period-3 orbits into several
period-1 solutions under monofrequency driving. This is not surprising, and the difference between the decomposed
solutions is only a shift in time by the corresponding monofrequency driving period. Under dual-frequency excitation,
however, these solutions become distinct. Moreover, an interaction between the originally period-2 and period-3 solution
can be observed via the splitting mechanism, see again Fig. 1right. Up to our knowledge, this behaviour in dual-frequency
driven system has not been observed previously.
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