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Abstract

In this study, a nonlinear investigation of a periodically driven gas bubble
in glycerine is presented. The bifurcation structure of the bubble oscilla-
tor (Keller–Miksis equation) is explored in the pressure amplitude-frequency
parameter plane of the excitation by means of initial (high resolution bi-
parametric plots) and boundary value problem solvers at various ambient
temperatures. The range of the applied temperature covers two orders of
magnitude difference in the liquid viscosity which is the main damping factor
of the system. Therefore, the evolution of the harmonic and ultraharmonic
resonances are presented starting with an overdamped behaviour (there are
no resonances in the parameter space) and ending up with a fully developed
bifurcation superstructure. The results reveal a complex period bubbling
mechanism organized in a Farey-tree; inside each bubble a fine substructure
of alternating chaotic and periodic bands exist. The description of the bi-
furcation structure presented throughout the paper can help to understand
the mechanism of dissipation on the behaviour of nonlinear systems in more
detail.
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1. Introduction1

The interaction of high intensity and high frequency sound waves with2

liquid domains can lead to the phenomenon called acoustic cavitation, which3

produces bubble clusters. These are usually composed by micron-sized gas4

bubbles oscillating around their equilibrium size. When the intensity reaches5

Blake’s threshold [1], the bubbles become cavitationally active, and start to6

oscillate with high amplitude. During the radial oscillation of such bubbles,7

at the minimum bubble radius (collapse phase), the temperature and pressure8

in the bubble interior can exceed thousands of Kelvin and bar, respectively9

[2]. Cavitationally active bubbles always grow by rectified diffusion [3–6]10

due to the much larger diffusive area at the expansion phase than at the11

collapse phase. The limit of the growth is the size where the bubble lose12

its spherical stability [7, 8]. Spherically unstable bubbles disintegrate into13

smaller bubbles, which start to grow again by rectified diffusion, or dissolve14

into the liquid domain. This process is called bubble life cycle, for the details15

see [9–11].16

The time scale of the life cycle of a bubble is greater by many orders of17

magnitude than the period of its radial oscillation. Therefore, it is reason-18

able to investigate a single individual bubble as a building block of clusters.19

The dynamics of such bubbles shows highly nonlinear properties. Modern20

numerical techniques and methods of chaos physics revealed the existence of21

harmonic and subharmonic resonances in the pressure amplitude-frequency22

plane [12–19], the presence of period-doubling route to chaos [20–25] and the23

alteration of chaotic and periodic windows [26–29] in the bifurcation pat-24

tern. The majority of these nonlinear features have already been proven25

experimentally. Subharmonics in the spectrum of the response of a bub-26

ble was observed first by Esche [30]. Later, Lauterborn and his co-workers27

successfully justified the existence of period-doubling route to chaos in water28

[31, 32]. Chaotic bubble oscillation was also found by high-speed holographic29

cinematography [33], and by measuring the time delays between flashes of30

emitted light (sonoluminescence [34–36]) at the collapse phase of a bubble31

[37].32

The aforementioned knowledge accumulated over decades in nonlinear33

bubble dynamics is usually related to water (few exceptions are [38–41]).34

Therefore, the present study intends to investigate a gas bubble in glycerine35

with varying temperature (between 20 ◦C and 70 ◦C); that is, the viscosity36

is varied between two orders of magnitude (see Tab. C.2) leading to three37
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to one orders of magnitude higher values than of water. It is well-known38

that high viscosity causes huge damping effect [42, 43], which implies a much39

less feature-rich bubble dynamics. Throughout this paper, the evolution40

of the bifurcation structure in the pressure amplitude-frequency plane with41

decreasing damping factor is examined and compared with results obtained42

on other nonlinear oscillators such as Toda [44], Duffing [45–47], Morse [48]43

and bubbles in water (see the discussion above).44

The applied bubble model is the Keller–Miksis equation, which is a second45

order ordinary nonlinear differential equation that takes into account the46

compressibility of the liquid to the first order. The numerical tools are an47

initial value problem solver (shooting method implemented in CUDA C to48

exploit the high numerical computing power of GPUs) and a boundary value49

problem solver combined with the pseudo-arch length continuation technique50

(AUTO). These advanced numerical techniques of nonlinear science provide51

a better insight into the highly damped bubble oscillations than the previous52

studies, see e.g. [43].53

2. Mathematical model54

The employed bubble model is the same as in our previous paper [26],55

thus here, it is summarized briefly. The modified form [22] of the Keller–56

Miksis equation [49], which describes the evolution of the bubble radius R(t)57

in time is58

(
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)

RR̈ +

(
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3cL

)

3

2
Ṙ2 =
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1 +
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d

dt

)

(pL − p∞)

ρL
, (1)

where cL is the sound velocity in the liquid, ρL is the density of the liquid,59

and the dot stands for the derivative with respect to time. The pressure far60

away from the bubble61

p∞(t) = P∞ + pA sin(ωt) (2)

consist of a static and a periodic component, where P∞ is the ambient pres-62

sure, pA is the pressure amplitude and ω is the angular frequency of the63

excitation.64

The pressure inside the bubble is the sum of the partial pressures of the65

non-condensable gas pG and vapour pV . The liquid pressure at the bub-66

ble wall is pL. The three kinds of pressures are connected by the dynamic67
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mechanical equilibrium at the interface:68

pG + pV = pL +
2σ

R
+ 4µL

Ṙ

R
, (3)

where σ is the surface tension and µL is the liquid dynamic viscosity.69

The gas content obeys a simple polytropic state of change70

pG = pG0

(

R0

R

)3n

, (4)

where R0 and pG0 are the reference radius and pressure, respectively. The71

polytropic exponent is n = 1.4 assuming adiabatic gas behaviour.72

2.1. Parameters and material properties73

During the computations, the ambient pressure P∞ = 1bar was constant.74

The ambient temperature T∞, which is one of the control parameter, specifies75

all the liquid material properties (the pressure dependence can be negligible),76

which were determined by means of the experiments of the Dow Chemical77

Company. The tabulated values are summarized in Appendix C.78

The bubble size is given by the equilibrium radius RE = 0.1mm of the79

unexcited system (pA = 0). This is a common way to prescribe the size of the80

bubble. Now, if the reference radius is set to R0 = RE then the gas reference81

pressure can be expressed as82

pG0 =
2σ

RE

− (pV − P∞) . (5)

The two remaining parameters are related to the acoustic irradiation,83

namely, the pressure amplitude pA and the angular frequency ω. The angular84

frequency is normalized with the undamped linear eigenfrequency [2]85

ωE =

√

3n (P∞ − pV )

ρLR2
E

+
2 (3n− 1)σ

ρLR3
E

(6)

of the system, which defines the relative frequency as86

ωR =
ω

ωE

. (7)

During the computations, dimensionless variables were used: dimension-87

less bubble radius x1 = R/RE, dimensionless time τ = t/ (2π/ω) and dimen-88

sionless bubble wall velocity x2 = x′

1, where the ′ stands for the derivative89

with respect to τ . The dimensionless equation system is given in Appendix90

A.1 in detail.91
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3. Numerical tools92

3.1. Initial value problem solver and Poincaré section93

Due to the strong nonlinearity of the Keller–Miksis equation, analytical94

solutions are not known to be exist, but numerical solutions can be easily95

obtained. The simplest method is to use an initial value problem (IVP)96

solver with suitable initial conditions and integrate the system forward in97

time. After several acoustic cycles, the transient trajectory converges to98

a stable solution called attractor. Since the bubble is periodically excited,99

the simplest solution is a closed periodic orbit. If the converged trajectory100

repeats itself after m acoustic cycles, it is called period m orbit. Figure 1101

shows different periodic attractors in the dimensionless x1-x2 phase plane.102

The red, blue and orange curves show period 1, 2 and 3 solutions calculated103

at pressure amplitudes 1.5, 3 and 3.5 bar, respectively.104
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Figure 1: Examples of period 1 (red), 2 (blue) and 3 (orange) attractors in the dimension-
less phase plane at pressure amplitudes 1.5, 3 and 3.5 bar, respectively. The dots denote
the points of the Poincaré section.

As one can see from Fig. 1, the trajectories of the periodic solutions can105

intersect themselves and each other in the phase plane producing overcrowded106

figures. To avoid this difficulty, only some characteristic properties of the107

solutions were recorded such as the periodicity or the points of the Poincaré108

map obtained by sampling the continuous trajectory at the end of every109

acoustic period. The points of the Poincaré section of the periodic orbits in110

Fig. 1 are denoted by the dots. The period of the bubble oscillation may even111

tends to infinity never repeating itself. This type of solution called chaotic112
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attractor. An example is given in Fig. 2 by its 10000 number of Poincaré113

points.114
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Figure 2: An example for a chaotic attractor in the dimensionless phase plane. The
continuous trajectory is omitted; only the points of the Poincaré map are presented by
the dots.

3.2. High resolution bi-parametric plots115

A very efficient tool to investigate the bifurcation structure of nonlinear116

systems is to solve millions of IVPs and create high resolution bi-parametric117

plots [50–74]. For instance, the top panel of Fig. 3 shows the periods of118

the found attractors up to period 6 as a function of the relative frequency119

ωR and pressure amplitude pA at temperature T∞ = 55 ◦C (period 7 or120

higher periods including chaos can be found in the white domains). The121

resolution of the parameter plane is 501 × 651. At each parameter pair, 3122

number of randomized initial conditions are applied to reveal the co-existing123

attractors. Therefore, this single plot contains approximately 1 million IVPs.124

In order to obtain such high-resolution parameter scan within reasonable125

time, the exceptionally high floating point processing power of our video-126

card (Nvidia GTX GeForce Titan Black, Kepler architecture, 1707 double127

precision GFLOPS) is exploited. The numerical algorithm is the adaptive128

Runge–Kutta–Cash–Karp method with embedded error estimation of orders129

4 and 5 [75]. The computational time of Fig. 3 top is only 20 hours. The130

series of such high resolution plots at various ambient temperatures T∞ shall131

help to explore the evolution of the bifurcation superstructure with varying132

damping factror in the pA-ω parameter plane, see Section 4 for details.133
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Figure 3: Top panel: high resolution bi-parametric plots where the periods of the found
attractors are presented as a function of the relative frequency ωR and the pressure am-
plitude pA up to period 6. The dashed curves are saddle-node bifurcations computed
by AUTO. The order of the resonances are marked by SN/PD(n,m). Bottom panel:
winding number spectra as a function of the relative frequency ωR at pressure amplitude
pA = 2.5 bar.

3.3. The boundary value problem solver AUTO134

An efficient way to compute and obtain periodic orbits directly is to use135

a boundary value problem (BVP) solver. In the present study, the AUTO136

continuation and bifurcation analysis software was used, see Doedel et al.137

[76]. AUTO is insensitive to the stability of the corresponding periodic or-138

bit; therefore, its evolution can be easily traced with respect to a control139

parameter by means of the pseudo-arc length continuation technique. Along140

such a bifurcation curve, the bifurcation points (saddle-node SN and period141
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doubling PD) can be detected where the stability of the periodic solution142

changes. Moreover, AUTO is capable to track down these detected points in143

a two-dimensional parameter space (codim 2 curves). Some of the codim 2144

saddle-node bifurcations found are shown in the top of Fig. 3 by the closed145

dashed curves and marked by SN(1, 1) (main resonance) and SN(2, 1) (first146

harmonic resonance).147

In bubble dynamics, AUTO was also used by Fyrillas and Szeri [4] for the148

rectified diffusion problem and Lauterborn and his co-workers to investigate149

the bifurcation patterns of a single bubble [22]. Moreover, it is intensively150

used in other branches of science, for instance, in the study of the stability151

of compression systems and pressure relief valves [77–79]. A brief description152

of the numerical technique of AUTO is given in Appendix B.153

3.4. Winding number and torsion number154

The winding and the torsion numbers are used to describe the topological155

changes of the local flow near bifurcation points [44–48, 71, 80–82]. They156

describe the average angular velocity and number of twists around a periodic157

orbit of a nearby (perturbed) trajectory. An efficient way to compute them is158

to solve the dynamical system together with its linearized counterpart, since159

the linearized equations contain all the information about the neighbouring160

orbits.161

With the aid of the torsion frequency162

Ω = lim
t→∞

α(t)− α(0)

t
, (8)

which determines the average angular velocity, the generalized winding num-163

ber can be defined as164

w =
Ω

ω
, (9)

where α(t) is the accumulated angle measured from an arbitrarily chosen165

initial angle α(0). Definition (9) is valid both for periodic and aperiodic (e.g.166

chaotic) solutions.167

Figure 3 bottom shows the computed winding number spectra corre-168

sponding to the horizontal dashed line in the top panel of Fig. 3 at pA =169

2.5 bar. Observe that the winding number w does not change near a bifur-170

cation point. For instance, the winding number w = 0.5 is constant in a171

wide range of the control parameter around the period-doubling bifurcation172

at ωR = 0.63. We shall see in the next sections that this invariant property173
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makes the winding number an efficient tool in the investigation of the topol-174

ogy of bifurcation patterns. The numerical technique to solve the linearized175

system and determine the winding number (9) is given in Appendix A.2.176

For periodic orbits, the torsion number n can be derived as177

n = w ·m, (10)

where m is the period of the solution. The two quantities n and m can be178

associated to each bifurcation point. Therefore, the aforementioned period-179

doubling point (first subharmonic resonance) can be characterized by its180

winding number w = 0.5, or by its order PD(1, 2) or simply 1/2 as well. Ob-181

serve that in the winding number spectra, other resonances can be recogniz-182

able by their corresponding plateaus. For example, the harmonic resonances183

of orders SN(1, 1) and SN(2, 1); and the ultraharmonic resonances of orders184

PD(3, 2) and PD(5, 2).185

4. Highly damped resonances186

In our previous paper [26], the effect of the viscous damping on the res-187

onances through the alteration of the liquid temperature T∞ was studied by188

means of magnification diagrams of frequency response curves at two dif-189

ferent pressure amplitudes. The temperature was varied between 20 ◦C and190

70 ◦C; the corresponding dynamic viscosities are 1.41 Pa s and 0.0506 Pa s,191

respectively (see Tab. C.2). Observe that there is an almost two orders of192

magnitude difference between the lowest and the highest investigated vis-193

cosities. It was found that below the critical temperature T∞ = 27.44 ◦C,194

the system behaves like an overdamped oscillator and no resonance peaks195

are presented in the frequency response diagrams. Increasing the temper-196

ature (decreasing the damping rate), several peaks of harmonic resonances197

emerges one after another resulted in a similar structure computed first by198

Lauterborn for water [17] and later on by many others [43, 83–85].199

The resonance phenomenon, however, is two dimensional in nature in the200

excitation amplitude and frequency parameter plane. Therefore, series of201

high-resolution bi-parametric scans are computed with pA and ωR as control202

parameters at several liquid temperatures T∞ varied between 20 ◦C and 70 ◦C203

with ∆T∞ = 5 ◦C increment. Out of the 11 number of plots, only 6 are204

presented in Fig. 4. The technical parameters (colour codes, resolution of205

the parameter plane and the number of the initial conditions) are the same206

as in case of the top panel of Fig. 3.207
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The sequence of diagrams in Fig. 4 gives a good insight into the evolution208

of the complex bifurcation superstructure develops from a very simple state209

where only period 1 solutions dominate the parameter space (Fig. 4A). The210

basic bifurcation scenario is the appearance of harmonic SN(x, 1) and ultra-211

harmonic PD(x, 2) resonances via a ”bubbling” mechanism which means the212

formation of closed bifurcation curves at a certain value of the liquid tem-213

perature, see Figs. 4B-F. Here x is a positive integer number. Each of the214

SN(x, 1) resonances are composed by a pair of saddle-node curves connected215

by a pair of cusp bifurcation points (see e.g. Fig. 4B). They are marked216

by the dashed lines and computed by the boundary value problem solver217

AUTO. This additional computation is mandatory since the boundary of the218

domains of co-existing period 1 attractors (due to the presence of hystere-219

sis) is difficult to visualize in a periodicity diagram. On the contrary, the220

evolution of the ultraharmonic resonances of orders PD(x, 2) can be easily221

followed by the borders of the red and green domains.222

The structure of the SN(x, 1) and PD(x, 2) resonances in the pA-ωR223

two-dimensional parameter plane is well-known for water [15, 22], where the224

corresponding bifurcation curves are also computed with a boundary value225

problem solver. Since water has much lower viscosity (approx. 0.001 Pa s),226

these papers demonstrate an already well developed structure. By means of227

winding numbers, these resonances are organized according to the first two228

stages of a Farey-tree [15, 82], see also the first two rows of Fig. 5. The first229

stage composed by the harmonic resonances SN(x, 1) and the subsequent230

stages can be computed by the Farey-adding. That is, between resonances of231

orders (n1, m1) and (n2, m2) there must be a resonance of order (n3, m3) =232

(n1 + n2, m1 +m2).233

Examining the high resolution bi-parametric plots computed at several234

liquid temperatures T∞, it has been found that the SN(x, 1) and PD(x, 2)235

resonances appear in a well-ordered manner with increasing temperature.236

First, the SN(1, 1) main resonance emerges followed by the alternating birth237

of PD(x, 2) and SN(x, 1) structures according to the path denoted by the238

arrows between the elements in the first two stages of the Farey-tree in Fig. 5.239

The common origin of these resonances (each is bifurcated from the period240

1 domain) can explain this well-ordered organization. By investigating the241

winding number spectra as a function of the relative frequency ωR at T∞ =242

30 ◦C and at pA = 1.5 bar (Fig. 6), the traces of these resonances can already243

be detectable. Although bifurcations do not exist in the whole domain of the244

control parameter, the cascade of plateaus of the staircase shaped function245
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are good indicators for the forthcoming bifurcations marked by red labels.246

In this sense, the scenario of the appearance of resonances is like stepping247

upward in the staircase starting from SN(1, 1).248

The harmonic SN(x, 1) and the ultraharmonic PD(x, 2) resonances form249

the exoskeleton of the whole bifurcation structure, since every other bifur-250

cation scenarios take place inside the green domains. Moreover, the bifurca-251

tion patterns inside the PD(x, 2) curves are self-similar; therefore, only the252

PD(3, 2) domain will be investigated in detail.253

Two different period doubling cascade can be observed inside the PD(3, 2)254

area appeared via the period ”bubbling” mechanism, which are the first255

stage of the bifurcation process. At T∞ = 45 ◦C, only the period 4 domain256

of order PD(5, 4) exists shown by a yellow bubble in Fig. 4C. Increasing257

the temperature up to T∞ = 50 ◦C (Fig. 4D), in this domain a complete258

Feigenbaum period-doubling cascade takes place resulted in a large white259

chaotic bubble in which a complex structure of periodic windows emerges.260

In parallel, the second period doubling sequence also appears initiated by the261

curve PD(7, 4), in which a similar scenario takes place as in case of PD(5, 4)262

demonstrated in Fig. 4E (generation of periodic windows immersed in a large263

white chaotic bubble). These two chaotic bubbles can be better seen in the264

magnification shown in Fig. 7C at T∞ = 52 ◦C.265

It is well known that two kinds of period doubling sequences exist in266

terms of winding numbers [13, 86] described by the expression267

wn = w0 ±
(−1/2)n − 1

3m0

, (11)

where w0 is the initial winding number of the first period doubling curve,268

m0 = 1 is the initial periodicity (the whole period doubling scenario is orig-269

inated from the period 1 domain) and wn is the winding number of the270

nth subsequent PD curves. This correlates very well with our results, since271

w2,+ = 1.25 (PD(5, 4)) and w2,− = 1.75 (PD(7, 4)).272

Let us concentrate now on the inner structure of the white chaotic bubble273

corresponding to the bifurcation curve PD(5, 4). The found periodic bands274

continue to build up the Farey-tree between the members 3/2 and 1/1. For275

this purpose, another series of high resolution bi-parametric plots are com-276

puted at ambient temperatures T∞ = 48 ◦C, 50 ◦C, 52 ◦C and 55 ◦C shown277

in Fig. 7. Each subplot magnifies different part of the PD(5, 4) domain and278

has different numerical setups summarized in the caption of the figure.279
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Interestingly, not the period 3 resonance of order SN(4, 3) appears first280

during the increase of the temperature (although this element sits in the281

next, third stage in the Farey-tree), but many other periodic windows with282

high periods. At T∞ = 48 ◦C, for instance, the periodic windows SN(10, 7)283

and SN(7, 5) are already presented in the investigated parameter space; and284

the resonance SN(4, 3) are generated only after the existence of the solution285

SN(7, 5), compare Fig. 7A and B. Consequently, this part in the Farey-tree286

builds up in a bottom-top approach, see the arrows from 10/7 to 4/3 in287

Fig. 5. Inside the SN(4, 3) bubble, the Farey-tree builds up in another way288

around. First, the SN(5, 4) window is generated approximately at 52 ◦C289

(Fig. 7C) followed by the SN(6, 5) and the SN(7, 6) orbits one after another290

shown Fig. 7D, which is a top-bottom approach (see again the corresponding291

arrows in Fig. 5). This bottom-top-bottom build-up of the Farey-tree has292

consequences on how we are thinking about the energy mixing process of293

nonlinearity, which is discussed in more details in Section 5.294

Although the aforementioned orbits fit very well into the Farey ordering,295

there are lots of other orbits do not marked in Fig. 7 which does not. Thus,296

there must be other rules like the period tupling mechanism [87] governed by297

homoclinic tangencies of the stable and unstable manifolds of saddle points.298

The detailed investigation of these other possibilities are beyond the scope299

of the present paper. Moreover, it is reasonable to assume that there are300

other scenarios in the Farey-tree built up in the same bottom-top-bottom301

manner. Similarly, it is reasonable to assume that the organization of the302

periodic orbits inside the PD(7, 4) bubble (orbits in the Farey-tree between303

the resonances 2/1 and 3/2) is the same as inside PD(5, 4). Since the reso-304

nance SN(8/5) (Fig. 7D, T∞ = 55 ◦C) appears before the resonance SN(5/3)305

which can be seen only at T∞ = 60 ◦C in Fig. 4E.306

The discussion above describes the fine structures inside a single chaotic307

bubble. In fact, inside the domain enclosed by the resonance curve PD(3/2),308

a complex cascade of bubbling mechanism takes place each giving birth to309

a similar chaotic bubble. For instance, at T∞ = 55 ◦C in Fig. 7D, two new310

period 8 bubbles emerge via the period doublings PD(13/8) and PD(11/8);311

or the two chaotic bubbles appears inside the period 3 domain of SN(5/4)312

which can be clearly seen in Fig. 4E-F. From this bubbling mechanism, an-313

other ”new” Farey-tree can be composed. The topology is the same as shown314

in Fig. 5, but it partially consists of different orbits.315

The additional series of high resolution bi-parametric maps are presented316

in Fig. 8 which help to understand the organization of the bubbling cascade.317
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Again, the different numerical setups are summarized in the caption of the318

figure. At T∞ = 55 ◦C in Fig. 8A, only the period 3 domain of SN(4, 3) is319

presented from the third stage of the Farey-tree. Its counterpart (SN(5/3))320

appears at slightly higher temperature, approximately at T∞ = 57 ◦C shown321

in Fig. 8B. At this stage, the ”new” Farey-tree composed by the same mem-322

bers as the one related to the fine substructure of the chaotic bubble discussed323

in Fig. 7. The forthcoming stages, however, will be different. A good exam-324

ple is the two stripes of period 5 orbits in the upper right part of Fig. 8B325

which have the same order of SN(6, 5). Between them there is a period 4326

band with order SN(5/4). The upper SN(6, 5) and the SN(5/4) orbits are327

the members of the fine substructure of the chaotic bubble depicted by the328

flow of arrows from 10/7 to 8/7 in Fig. 5. Therefore, they are also depicted329

in Fig. 7D. On the contrary, the lower SN(6, 5) band is the first member of330

the ”new” Farey-tree at the fifth stage. In addition, a new period 6 bubble331

(PD(9, 6)) appears in the period 3 domain of order SN(4/3). Therefore, in-332

side this period 3 region there is altogether two period doubling bifurcations333

curves: PD(7, 6) (large) and PD(9, 6) (small). Observe that this two period334

doubling scenarios also obey the rule described by equation (11).335

Increasing the temperature to T∞ = 63 ◦C (Fig. 8C), the aforementioned336

PD(9, 6) curve become larger and inside it a new period 5 ring evolves with337

order SN(7, 5), which is the second member of the fifth stage of the ”new”338

Farey-tree. Moreover, inside the SN(5, 3) period 3 domain, two chaotic bub-339

bles emerge via the two types of period doubling cascade. The corresponding340

first period doubling bifurcations are PD(9, 6) and PD(11, 6). Inside each341

of these chaotic bubbles, period 5 rings are formed at T∞ = 65 ◦C. Their342

orders are SN(8, 5) and SN(9, 5); thus, all the orbits in the fifth, period 5343

stage of the Farey-tree have been found, see also Fig. 5. It is still an open344

question how the elements in the fourth stage (PD(7, 4) and PD(5, 4)) fit345

into the bubbling scenario. Probably, they are the period doubling curves346

at the boundary of the green and yellow domains, see e.g. Fig. 8A. In or-347

der to understand the above described bubbling mechanism, Fig. 9 shows a348

pictogram about the bubbles, their periods in parenthesis and their orders349

by arrows. Increasing the temperature (decreasing the damping factor), it350

is very probable that the Farey-tree continues to build up with solutions of351

higher periods.352

The last issue have to be addressed is that the two new period 8 bubbles353

of orders PD(13/8) and PD(11/8) in Fig. 7A does not fit into the structure354

depicted by the pictogram in Fig. 9. They simply comes from a period355
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doubling mechanism already investigated in details by Parlitz [45]; therefore,356

here it is discussed very briefly. By the composition of Fig. 7a-b of that357

paper, another pictogram can be created shown in Fig. 10 (omitting the358

inner saddle-node curves). The basic period and the torsion number of the359

outer bifurcation curve (in general it can be either a SN or a PD curve)360

are denoted by m and n, respectively. For our specific case the order of the361

outer curve is PD(3, 2); that is, n = 3 and m = 2. Observe the remarkable362

similarity between Fig. 9 and Fig. 10. Parenthetically, this period doubling363

scenario hold for other basic periodicities. See for instance, the period 3364

domain of order SN(5, 3) in Fig. 8C.365

5. Discussion366

The extensive study of many nonlinear dynamical systems has revealed367

many features of their bifurcation structures in the last decades. It has368

been found that the topology of these structures (organization of periodic369

and chaotic domains in single and multi-dimensional parameter space) can370

be characterized by Farey-trees. It seems to be so universal that even the371

Feigenbaum period doubling scenario [86] and the period tupling mechanism372

[87] can also be derived as a Farey-tree.373

The Farey-tree, however, is not unique. More precisely, the topology of374

the complete bifurcation superstructure, e.g. in the two dimensional excita-375

tion amplitude and frequency parameter space of a forced nonlinear oscilla-376

tor, cannot be described by a single Farey structure. For instance, in case377

of the aforementioned period tupling phenomenon [87], each of the main bi-378

furcation structure and its substructures at various levels are governed by379

different Farey-trees resulted in a cascade of nested Farey objects. It is simi-380

lar in the present study as well. The main period bubbling scenario presented381

in Fig. 9 is organized as a Farey-tree. In parallel, the period doubling cas-382

cade described by Fig. 10 appeared also via a bubbling mechanism can also383

be derived as a Farey-tree (see the again the publication [86]). Finally, the384

fine substructure inside each of this bubble is also obeys a Frey-tree struc-385

ture. Consequently, the topology of the bifurcation structure in the region386

of harmonic resonances of our bubble model can also be described by nested387

Farey objects.388

It is generally accepted, that Farey-trees describe energy transfer from389

harmonic resonances to higher order resonances [88]. This is the frequency390

mixing effect of nonlinearity. The Farey structures, however, are not com-391
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pleted. Due to the presence of dissipation (in our case the main dissipation392

mechanism comes from the liquid viscosity), the build-up of the Farey-trees393

must stop at a certain stage preventing the further energy transfer. This394

is a similar mechanism take place in a turbulent fluid flow where the en-395

ergy transfer from large eddies to smaller vortices stops at the level called396

Kolmogorov scale (also due to the dissipation).397

The main advantage of our approach presented throughout this study398

(investigation of the system from high to low dissipation), is that the effect399

of dissipation on the evolution of the bifurcation superstructure and its corre-400

sponding Farey-trees can be clearly followed. Interestingly, it has been found401

that there are substructures in which the related Farey-tree builds-up not402

from a top to bottom (low periods to high periods) but from a bottom-top-403

bottom (high periods appears first followed by low periods and again contin-404

ues with high periods) approach. This means that in the energy cascade, the405

energy is immediately transferred to resonances of very high periodicities.406
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Appendix A. Initial value problem solver412

Appendix A.1. Dimensionless equation system413

By applying the dimensionless variables, the modified Keller–Miksis equa-414

tion 1 can be rewritten as a system of two first order, dimensionless differen-415

tial equations:416

x′

1 = x2, (A.1)
417

x′

2 =
N

D
, (A.2)
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where418

N =
1

x1

(C2 − C5 sin(2πτ)) +
x2

x1

(C7 − C8 sin(2πτ)))

+

(

1

x1

)3n+1

(C1 + x2C6)−
1

x2
2

(C3 + x2C4)

− C9 cos(2πτ)−
x2
2

x1

(

3

2
−

1

2
x2C10

)

,

(A.3)

and419

D = 1− x2C10 +
1

x1

C11. (A.4)

The constant variables are:420

C1 =
pBref
pAref

, C2 =
pv − P∞

pAref
, C3 =

2σ

REp
A
ref

,

C4 =
4µLω

2πpAref
, C5 =

pA
pAref

, C6 = (1− 3n)
pBref
µA
ref

,

C7 =
pv − P∞

µA
ref

, C8 =
pA
µA
ref

, C9 =
pA
µB
ref

,

C10 =
REω

2πcL
, C11 =

4µL

µref

.

(A.5)

The reference properties are:421

pAref = ρLR
2
E

( ω

2π

)2

, pBref =
2σ

RE

− (pV − P∞) ,

µref = cLρLRE ,

µA
ref = cLρLRE

ω

2π
= µref

ω

2π
,

µB
ref = cLρLRE

ω

4π
= µA

ref

1

2π
.

(A.6)

According to Eq. (4) and (5), the gas pressure inside the bubble is422

pG = pBref

(

1

x1

)3n

. (A.7)

The pressure outside the bubble at the bubble wall is423

pL = pG + pV −
2σ

REx1

− 4µL

ωx2

2πx1

, (A.8)

16



and the pressure far away from the bubble is424

p∞(τ) = P∞ + pA sin(2πτ). (A.9)

Observe that the period of excitation in the dimensionless system is unity425

(τ0 = 1) and the dimensionless excitation frequency is 2π.426

Appendix A.2. Linearized equation of motion427

In order to compute the torsion of the local flow around a given peri-428

odic orbit, two more differential equations need to be added to system (A.1)429

- (A.2). Let γ denote the periodic orbit associated to the solution of the430

dimensionless system x(τ) = [x1(τ), x2(τ)]
T , and let γ′ denote the neighbor-431

ing orbit of γ given by z(τ) = x(τ) + y(τ), where y(τ) is assumed to be432

infinitesimally small. The time evolution of y(τ) is given by the variational433

equation:434

y′1 = y2, (A.10)
435

y′2 =

[(

∂N

∂x1

D −
∂D

∂x1

N

)

y1 +

(

∂N

∂x2

D −
∂D

∂x2

N

)

y2

]

1

D2
. (A.11)

The necessary partial derivatives are436

∂N

∂x1

= C2 − C5 sin(2πτ) + x2(C7 − C8 sin(2πτ))−

(−3n + 1)

(

1

x1

)3n+2

(C1 + x2C6)−
2

x3
1

(C3 + C4x2)+

(

x2

x1

)2(

3

2
+

1

2
C10x2

)

,

(A.12)

437

∂N

∂x2

=
1

x1

(C7 − C8 sin(2πτ)) +

(

1

x1

)3n+1

C6 −
C4

x2
1

−
3x2

x1

+
3x2

2

x1

,

(A.13)

438

∂D

∂x1

= −
C11

x2
1

, (A.14)

439

∂D

∂x2

= −C10. (A.15)
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Transforming the variational equations Eqs. (A.10)-(A.11) into polar440

coordinates y1 = r · cosα and y2 = r · sinα, the evolution of r and α with441

respect to τ can be written as442

r′ = cosα(r · sinα + y′2), (A.16)
443

α′ = cosα
y′2
r
− sin2 α. (A.17)

By solving differential equations (A.16)-(A.17) together with Eqs. (A.1)-444

(A.2), the torsion frequency Ω(γ) of orbit γ can be easily obtained. If the445

initial angle is choosen to be α0 = 0, then the torsion frequency can be446

calculated by447

Ω(γ) = lim
τ→∞

|α(τ)|

τ
. (A.18)

Since the dimensionless excitation frequency is 2π, the generalized winding448

number is defined as449

w(γ) =
Ω(γ)

2π
. (A.19)

For the numerical simulations, a MATLAB built-in solver was used, which450

was a 4th order Runge–Kutta scheme with 5th order embedded error esti-451

mation.452

Appendix B. Boundary value problem solver453

An efficient way to compute periodic solutions is to use a boundary value454

problem (BVP) solver on our second order system455

x′ = f(x, τ) (B.1)

by applying periodic boundary conditions:456

x(0) = x(τp), (B.2)

where x = [x1, x2]
T , τp = m·τ is the period of the solution with periodicitym,457

and f is defined by Eqs. (A.1) and (A.2). In present paper, the AUTO contin-458

uation and bifurcation analysis software was used to solve the boundary value459

problem, see the manual of Doedel et al. [76]. AUTO uses the method of460

orthogonal collocation with piecewise polynomial and 2-7 collocation points461

per mesh interval to discretize the boundary value problem. The mesh adapts462
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automatically to the solution to satisfy the local discretization error. Once a463

solution is computed, AUTO can trace its evolution with respect to a control464

parameter by the method of pseudo arc-length continuation technique. This465

method is capable of following curves containing turning points (folds). The466

bifurcation points on these curves can also be detected, where the change of467

the stability takes place. Moreover, AUTO can trace a bifurcation point in a468

two-parameter (codim 2) space by choosing a secondary control parameter.469

Since AUTO can handle only autonomous systems (free of explicit time470

dependence), two more differential equations decoupled from the original471

system are required to replace the terms which depend on τ in Eq. (A.3)472

(x3 = cos(2πτ) and x4 = sin(2πτ)). The decoupled ODEs defined as:473

x′

3 = x3 + 2πx4 − x3(x
2
3 + x2

4),

x′

4 = x4 − 2πx3 − x4(x
2
3 + x2

4).
(B.3)

Appendix C. Material Properties474

Appendix C.1. KDB equation for vapor pressure475

The vapor pressure of the glycerine was calculated from the KDB corre-476

lation equation ([89]):477

ln pV = A lnT∞ +
B

T∞

+ C +DT 2
∞
, (C.1)

where the coefficients are478

A = −2.125867 · 101,

B = −1.672626 · 104,

C = 1.655099 · 102,

D = 1.100480 · 10−5.

(C.2)

The vapour pressure pv is in kPa and the ambient temperature T∞ is in K.479

Appendix C.2. Tabulated values of the material properties480

The material properties of the glycerine as functions of the ambient tem-481

perature are summarized in the following tables (Table C.1 - C.4). These482

values were taken from the results of Dow Chemical Company. For a given483

ambient temperature T∞, the corresponding values of the material properties484

were calculated with linear interpolation.485
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Table C.1: Tabulated values of the glycerine density ρL as a function of ambient temper-
ature T∞

T∞ [◦C] 0 10 15 20 30
ρL [kg/m

3] 1272.7 1267.0 1264.4 1261.3 1255.1

T∞ [◦C] 40 54 75.5 99.5 110
ρL [kg/m

3] 1249.0 1239.7 1225.6 1209.7 1201.8

Table C.2: Tabulated values of the glycerine dynamic viscosity µL as a function of ambient
temperature T∞

T∞ [◦C] 0 10 20 30 40
µL [Pa s] 12.07 3.9 1.41 0.612 0.284

T∞ [◦C] 50 60 70 80 90
µL [Pa s] 0.142 0.0813 0.0506 0.0319 0.0213

Table C.3: Tabulated values of the glycerine surface tension σ as a function of ambient
temperature T∞

T∞ [◦C] 20 90 150
σ [m/s] 0.0634 0.0586 0.0519

Table C.4: Tabulated values of the glycerine sound speed cL as a function of ambient
temperature T∞

T∞ [◦C] 10 20 30 40 50
ρL [m/s] 1941.5 1923 1905 1886.5 1869.5
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Duffing equation ẍ + dẋ + x + x3 = fcos(ωt), Phys. Lett. A 107 (8)604

(1985) 351–355.605

[48] C. Scheffczyk, U. Parlitz, T. Kurz, W. Knop, W. Lauterborn, Compar-606

ison of bifurcation structures of driven dissipative nonlinear oscillators,607

Phys. Rev. A 43 (12) (1991) 6495–6502.608

[49] J. B. Keller, M. Miksis, Bubble oscillations of large amplitude, J. Acoust.609

Soc. Am. 68 (2) (1980) 628–633.610

[50] C. Bonatto, J. A. C. Gallas, Accumulation horizons and period adding611

in optically injected semiconductor lasers, Phys. Rev. E 75 (5) (2007)612

055204.613

24



[51] C. Bonatto, J. A. C. Gallas, Accumulation boundaries: codimension-614

two accumulation of accumulations in phase diagrams of semiconductor615

lasers, electric circuits, atmospheric and chemical oscillators, Philos. T.616

Roy. Soc. A 366 (1865) (2008) 505–517.617

[52] C. Bonatto, J. A. C. Gallas, Y. Ueda, Chaotic phase similarities and618

recurrences in a damped-driven Duffing oscillator, Phys. Rev. E 77 (2)619

(2008) 026217.620

[53] J. G. Freire, C. Bonatto, C. C. DaCamara, J. A. C. Gallas, Multi-621

stability, phase diagrams, and intransitivity in the Lorenz-84 low-order622

atmospheric circulation model, Chaos 18 (3) (2008) 033121.623

[54] C. Bonatto, J. A. C. Gallas, Periodicity hub and nested spirals in the624

phase diagram of a simple resistive circuit, Phys. Rev. Lett. 101 (5)625

(2008) 054101.626

[55] J. G. Freire, R. J. Field, J. A. C. Gallas, Relative abundance and struc-627

ture of chaotic behavior: The nonpolynomial BelousovZhabotinsky re-628

action kinetics, J. Chem. Phys. 131 (4) (2009) 044105.629
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Figure 4: Series of high resolution bi-parametric plots at different temperatures T∞ where
the periods of the found attractors are presented as a function of the relative frequency ωR

and the pressure amplitude pA up to period 6. The dashed curves are saddle-node bifur-
cations computed by AUTO. The order of the resonances are marked by SN/PD(n,m).
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Figure 5: Farey-tree of harmonic and ultraharmonic resonances.
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Figure 6: Winding number spectra as a function of the relative frequency ωR at pressure
amplitude pA = 1.5 bar and at temperature T∞ = 30 ◦C.
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Figure 7: Series of high resolution bi-parametric plots at different temperatures T∞ where
the periods of the found attractors are presented as a function of the relative frequency
ωR and the pressure amplitude pA up to period 8. The resolution and the number of the
initial conditions for subfigures A, B, C and D are 501×501×5, 226×651×5, 501×876×5
and 751× 1501× 5, respectively.
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Figure 8: Series of high resolution bi-parametric plots at different temperatures T∞ where
the periods of the found attractors are presented as a function of the relative frequency
ωR and the pressure amplitude pA up to period 6. The resolution and the number of the
initial conditions for subfigures A, B, C and D are 401×751×5, 401×651×5, 401×701×5
and 401× 701× 5, respectively.
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