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Abstract— Ultrasound (US) imaging of skin lesions provides 
information supplementary to dermoscopy and helps in 
improving diagnostic accuracy. The aim of the current work is to 
explore the feasibility of using ultrasound image features derived 
from radiological experience to distinguish between common skin 
lesions. 5-18 MHz B-mode ultrasound images were acquired of 
incoming patients. Images containing lesions 1-2 mm thick were 
selected (N=248), with histology used to diagnose suspicious 
lesions. 73 melanomas, 130 BCC, and 45 nevi were studied. 
Following semi-automatic segmentation, a number of relevant 
features expressing the geometry of the lesion boundary and 
boundary layer, as well as the image characteristics of the lesion, 
lesion boundary layer, and post-lesion region were considered. 
With the exception of lesion echogenicity, all features had an area 
under the curve (AUC) value of above 0.70. The AdaBoost and 
Support Vector Machine (SVM) classifiers were then trained and 
tested using cross-validation of 50 random equal populations of 
melanomas, BCC, and nevi; each population was then 2-fold 
(holdout) cross-validated 50 times. When detecting one group 
against two other groups, the detection of cancerous lesions fared 
best, with an AUC of at least 0.84 and a specificity of at least 19% 
at 100% sensitivity for both classifiers. The results demonstrate 
the potential of clinically useful ultrasound-based automatic 
differential diagnosis of skin lesions, which could perhaps be 
attained by better segmentation, having more training data, using 
several images of the same lesion when performing classification, 
as well as refinements in the definition of image features. 
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I. INTRODUCTION 

Skin cancer is the most common type of cancer in the USA, 
with about 9000 people dying every year from its most 
dangerous form, melanoma [1]. Only 1 percent of skin cancer 
cases in the USA turn out to be melanoma [2]; the total costs of 
non-melanoma and melanoma skin cancer treatment are $4.8 
billion and $3.3 billion, respectively [3]. As with most cancers, 
early diagnosis is essential: while the 5-year survival rate for 
localized melanoma is 98%, this drops to 63% for regional 
spread of the disease, and 17% for distant metastasis. [2] 

There are many strategies for early skin cancer detection. 
These are now briefly presented from the context of melanoma 
detection, with the current paragraph being based on the review 
by Rigel et al. [4]. Most melanoma detection methods rely on 
the superficial examination of the skin, based on the ABCDE 
mnemonic for finding "Asymmetry, Border irregularity, Color 
variegation, Diameter >6 mm", supplemented by the recent 

addition of a temporally "Evolving" lesion [4]. These 
symptoms may be checked by oneself, one’s partner, or a 
doctor. Doctors are generally better able to detect thinner 
melanomas. Doctor diagnosis is improved when they are a 
dermatologist with at least 5 years of experience, and when 
they are using a dermoscope. Computer aided diagnosis may 
also be applied on the digital images, and specialized optical 
methods may be used to see with higher resolution and at a 
greater penetration depth. In addition, the potential of DNA 
stripping methods and bioimpedance measurements have also 
been investigated. Reports suggest that ultrasound also has the 
potential to be an accurate diagnostic tool, with up to 99% 
sensitivity and specificity.   

Recently, the use of ultrasound to study skin lesions has 
benefited from an increasingly concerted effort by physicians 
to standardize ultrasound examinations [5]. This is coupled 
with literature describing the differential appearance on 
ultrasound images of various skin lesions, chief among them 
melanoma, basal cell carcinoma (BCC), and benign nevi. 
Melanoma is generally described as being the most 
hypoechoic, with-well defined borders, a thin echo entry, and a 
spindle-like shape [6-9]. In contrast, BCC lesions are less 
hypoechoic, often feature many hyperechoic spots, and their 
contours are generally more irregular, while nevi are 
moderately hyperechoic, well demarcated from the dermis, and 
oval-to-circular in shape [6-10]. According to one of the co-
authors K. Szalai (a radiologist with extensive experience in the 
ultrasound examination of skin lesions), the qualitative features 
of these lesions are as summarized in Table 1.  

 

 Melanoma BCC Nevus 
Shape spindle elongated/

irregular 
irregular 

Attenuation (ref. dermis) less more less 
Homogeneous? yes no no 
Sharp, regular contour? yes no no 
Dendritic contour? no yes no 
Contains outer frame? no yes no 

Table 1. Qualitative features present in ultrasound images of melanoma, BCC, 
and nevus lesions in the experience of co-author K. Szalai. 

As a means of comparing the ultrasound features quoted in 
the literature as well as those given in Table 1, Fig. 1 shows 
example ultrasound images of a melanoma, BCC, and nevus. In 
the melanoma lesion, vertical spreading of the hypoechoic, 
spindle-formed lesion with a thin echo entry is visible. The 
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BCC is seen as a lesion with a bright frame enveloping it, while 
the nevus has an irregular border and relatively heterogeneous 
inner lesion. 

 

 

Figure 1.Representative  ultrasound images of a melanoma, BCC, and nevus 
lesions. (For details on collection of data, see Methods section.) 

The above features are arguably closely connected to the 
biophysical microstructure of the lesions, though these remain 
to be confirmed. For instance, several histologic features have 
been suggested for the common appearance of  hyperechogenic 
spots in BCC lesions [10]. As other examples, the authors 
speculate that the spindle-like form of melanoma lesions on 
ultrasound images could be an indication of the nature of their 
lateral growth; and that the hyperechoic frame around the BCC 
lesions could be a sign of the palisading basal cells enveloping 
the lesion. 

There are existing studies that investigate quantitative and 
semi-quantitative ultrasound markers to differentiate between 
common skin lesions, notably from the Institute of Cancer 
Research in London and the Institute of Fundamental 
Technological Research in Warsaw, in close collaboration with 
clinical partners. For some examples, see  [11-13]. The current 
work is an attempt to investigate the relative usefulness of 
textural and shape markers, as inspired by clinical experience, 
in differentiating between melanoma, BCC, and benign nevi. 

II. METHODS 

A. Data Collection 

After obtaining approval from the local Ethics Committee, 
data were obtained from the Dermatooncology Department of 
Semmelweis University. As part of routine clinical practice, 
incoming patients suspected of having a cancerous skin lesion 
were examined using an ultrasound machine (HI VISION 
Preirus with 5-18 MHz EUP-L75 transducer, both from 
Hitachi, Tokyo, Japan) prior to surgical excision. In addition, 
healthy patients were also recruited in order to increase the 
number of nevi images. 

Those patients who gave their informed consent had their 
images included in the current study, along with their final 
diagnosis. For those who had their suspicious lesion removed, 
the final diagnosis was made based on the histology. Images 
containing lesions 1-2 mm thick were selected (N=248), with 
73 melanoma, 130 BCC, and 45 nevi. 

Processing was carried out in MATLAB (Mathworks, 
Natick, MA). Prior to analysis, a MATLAB script removed 
personal data from the ultrasound image and a unique 
identification number linked the image with the final diagnosis.  

B. Segmentation 

After using the MATLAB command imfill to remove 
cross marks from the image, a semi-automated method was 
used to find the lesion, by manually clicking inside the lesion 
and then growing an active contour from the selected point to 
the inner edges of the lesion. The boundary layer of the lesion 
was then found by normalizing the brightness of the lesion 
center to 0 and the surrounding stroma to 1, and finding in a 
direction perpendicular to the lesion edge, the points that first 
reached 80% brightness. A post-lesion region and dermal 
region were defined immediately below and to the right of the 
lesion. 

C. Features 

The source images were B-mode images, which made the 
use of quantitative features difficult. Nevertheless, there was an 
effort to define the features in such a way as to make them as 
independent of the imaging platform as possible. To this end, 
the following 12 features were defined, with the first 5 being 
shape-based features, and the last 7 being texture-based 
features: 

1. Lesion boundary circularity (LB-CIRC): 4π times the 
area of the lesion divided by the square of the perimeter. 
Multiplication by 4π ensures that the value is between 0 and 1, 
with a perfect circle having a value of 1. [14] 

2. Lesion boundary curvature variability  (LB-CUR-STD): 
first, for each point on the boundary, the point 3 points away on 
each side is taken, and the angles and distances to these points 
is considered. From this, the curvature of each point on the 
boundary is calculated [15], of which the standard deviation is 
taken. 

3. Lesion boundary ellipse deviation variability (LB-ED-
VAR): an ellipse is fitted to the lesion boundary, and the 
standard deviation of the distance between the fitted ellipse and 
the lesion boundary is calculated. [16] 

4. Lesion boundary layer thickness (LBL-THICK-MU): the 
mean thickness of the boundary layer. 

5. Lesion boundary layer thickness variability (LB-THICK-
STD): the standard deviation of the thickness of the boundary 
layer. 

6. Lesion echogenicity (L-ECHO-MU): the mean of the 
pixel values inside the lesion.  

7. Lesion echo heterogeneity (L-ECHO-STD): the standard 
deviation of the pixel values inside the lesion.  

8. Lesion boundary layer echogenicity (LBL-ECHO-MU): 
the mean pixel value of the boundary around the lesion.  

9. Lesion boundary layer heterogeneity (LBL-ECHO-STD): 
the mean of the standard deviation of each boundary line layer 
emanating radially from the inner edge of the lesion. 

10. Lesion boundary layer heterogeneity variability (LB-
ECHO-STD2): the standard deviation of the standard deviation 
of each boundary layer line emanating radially from the inner 
edge of the lesion. 



11. Post lesion echogenicity (pL-ECHO-MU): the mean 
pixel value of the post-lesion region relative to the dermal 
region. 

12. Post lesion speckle size (pL-SS): the -6dB full width 
half-maximum of the mean transverse autocorrelation in the 
post-lesion region relative to the dermal region.  

D. Classification Training and Testing 

As a measure of diagnostic value – both of the features by 
themselves and of the classifiers – the area under the curve 
(AUC) measure was used, which refers to the area under the 
receiver operating characteristic (ROC) curve that plots 
sensitivity against 1-specificity [17]. The advantage of the 
AUC metric is that it does not require a threshold value to be 
chosen. For the classifiers, another metric was also employed, 
namely the specificity at 100% sensitivity, which refers to the 
percentage of negative diagnoses correctly made when all 
positive cases are found. 

Two types of classifiers were trained: AdaBoost and 
Support Vector Machines (SVM). For cross-validation, 50 
random equal populations of melanomas, BCC, nevi were 
generated, each of which were then 2-fold (holdout) cross-
validated 50 times. The two aforementioned metrics were 
calculated for each of the resulting  2500 instances, 
investigating the ability of the classifier to differentiate 
between one type of lesion from the other two. 

III. RESULTS AND DISCUSSION 

Table 2 shows the highest attainable AUCs for each of the 
features. All features derived their highest AUCs from the 
“nevus versus other” classification, with the exception of pL-
ECHO-MU, where it was attained for “BCC versus other”. 
This suggests that most of the features considered in the 
current work are best suited to differentiating benign nevi 
from cancerous BCCs and melanoma. The most powerful 
features seem to be the LBL-ECHO-VAR, L-ECHO-VAR 
LB-ED-VAR features, which express in turn the heterogeneity 
of lesion and lesion boundary layer echogenicity, as well as 
the error of ellipsoid fitting to the lesion boundary. However, 
due to the small differences between AUC values, it is 
difficult to make far-reaching conclusions. Interestingly, the 
simplest (and perhaps most intuitive) feature, namely the mean 
lesion echogenicity, performs the worst. 
 

Feature Highest AUC 
1. LB-CIRC 0.72 

2. LB-CURV-VAR 0.76 
3. LB-ED-VAR 0.78 

4. LBL-THICK-MU 0.73 
5. LBL-THICK-VAR 0.75 

6. L-ECHO-MU 0.62 
7. L-ECHO-VAR 0.79 

8. LBL-ECHO-MU 0.73 
9. LBL-ECHO-VAR 0.81 

10. LBL-ECHO-VAR2 0.73 
11. pL-ECHO-MU 0.77 

12. pL-SS 0.74 

Table 2. Highest attainable AUC for each feature.  

 Table 3 shows the classifier performance for all possible 
permutations of lesion groups. There is little difference 
between the performance of the SVM and AdaBoost. Although 
it is not possible to tell what the highest possible classifier 
performance could have been, the aforementioned small 
difference suggests that the values are close to the theoretical 
limits. The best performance is provided by a differentiation 
between BCCs and nevi, followed by the clinically much more 
useful differentiation between benign nevi and cancerous 
lesions (melanoma and BCC). 

Although the high values of AUC suggest good 
differentiation, the value of specificity at 100% sensitivity 
provides a clinically more relevant question – for instance, in 
the case of nevus vs others, this value shows the number of 
correctly classified nevi while all cancerous lesions are 
detected. For both classifiers, this is about a fifth of all cases, 
which means that if the current method was used as a 
prescreening tool prior to observation by a dermatologist, about 
four-fifths of benign nevi would still be referred to the 
dermatologist if nearly all melanoma were to be spotted. At 
91.1% sensitivity, 50.2% of nevi were spotted, which means 
that only half of the nevi would be referred to a specialist; 
however, this would come at the unacceptable cost of missing 
nearly 10% of melanoma lesions. 

 

 SVM AdaBoost 
 AUC Specificity AUC Specificity 

Nevus vs others 0.86 0.19 0.84 0.23 
BCC vs others 0.80 0.15 0.81 0.20 
MM vs others 0.59 0.04 0.62 0.03 
BCC vs nevus 0.90 0.45 0.90 0.43 
MM vs nevus 0.80 0.18 0.78 0.26 
MM vs BCC 0.69 0.18 0.74 0.21 

Table 2. Classifier performance for all possible permutations of lesion groups. 
Specificity is quoted for when sensitivity is set to 100% for the class in bold. 

From the above results, it can be seen that although the 
results are promising, further work needs to establish the source 
of errors in the ultrasound classification to see if these can be 
remedied. One possible source of error is the segmentation 
algorithm, whose accuracy and robustness should be tested. 
Another way to improve diagnostic accuracy could be to take 
several images of the lesion, thereby providing more data 
points for the calculation of the features. Lastly, the  sample 
size could be increased to provide for better classifier training 
as well as better evaluation of classifier performance. 

IV. SUMMARY 

The current work has shown that using a set of 12 
ultrasound image features inspired by the observations of a 
radiologist, automated differentiation between nevi and 
cancerous lesions (melanoma, BCC) could be attained.  An 
AUC of at least 0.84 for both classifiers was obtained, 
demonstrating the potential of ultrasound imaging for 
performing such differential diagnosis. However, at a 
specificity of at most 23% for 100% sensitivity, the current 
method is not yet clinically useful. Having more images of the 
same lesion, improving the segmentation algorithm, refining 
the feature definitions, as well as increasing the number of 



training images, could all help in improving the method to the 
point of making it clinically useful. 
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