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1. Introduction1

Pattern recognition. This is one of the most powerful skills of2

mankind having a great contribution to reach our current tech-3

nological and scientific level. For instance, without the recogni-4

tion of stellar constellations and understanding of weather cycles,5

the rise of civilized empires would not have been possible. More6

specifically, pattern recognition is important, for instance, in the7

statistical analysis of financial time series to identify the dynamics8

of stock market crashes [2], in the prediction of earthquakes by9

determining patterns of time series (such as fractal behaviour) in10

stick-slip models [3].11

Thus, pattern recognition plays a role in many branches of science, and12

nonlinear dynamics is not an exception. The extensive study of periodically13

driven nonlinear oscillators in the last few decades have revealed several14

unique features of these systems. As computer capacities increased, more15

and more information has been accumulated about the bifurcation struc-16

tures of various systems, and summarised in many textbooks [4–6]. Some of17

these classical models are the Duffing, Van der Pol or Toda oscillators. The18

huge number of numerical investigations have uncovered several topological19

universalities in the bifurcation structure with respect to a single control20

parameter. For instance, the standard Feigenbaum period-doubling cascade21

[7], the alteration of regular periodic and chaotic motions through different22

kinds of crises [8], or the topological templates of chaotic motions [9].23

The real challenge now is to find universalities in a two-dimensional pa-24

rameter space. In the early stage of investigations, the endoskeletons of the25

domains of some simple periodic oscillations were computed by using the26

efficient continuation method. Although they could not reveal the fine bi-27

furcation structures, the appearance of resonance horns organized as a Farey28

ordering tree for small amplitude oscillations [10] or the universal descrip-29

tion of the formation of stable periodic orbits above the first subharmonic30

resonance [11] in the amplitude-frequency parameter plane provided valuable31

information about the system behaviour.32

The exponentially increasing computational resources allowed comput-33

ing high resolution bi-parametric plots with the shooting method; see for34

example the pioneering work of Bonatto et al. [12] and Lauterborn et al.35

[13]. Here, at every parameter pair a simulation was started by using an36

initial value problem solver with suitable initial conditions, and after con-37
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vergence to a stable solution some properties are recorded. For instance,38

positive values of the Lyapunov exponent indicate the regions with chaotic39

solutions. These very resource-intensive computations showed specific fea-40

tures of bi-parametric plots, such as the existence of isoperiodic stable struc-41

tures immersed in large chaotic domains. These structures are usually form42

shrimp-shaped domains or denominated Arnold tongues, and they can be43

organized in several ways, such as Fibonacci-type series and Golden ratio for44

Arnold tongues [14], located along a specific direction with an accumulation45

point [15], or they can form zig-zag pattern [16]. In spite of the already ex-46

isting huge amount of numerical results, no general rule has been found for47

the organization of these structures. They can differ from system to system,48

and year by year new patterns are discovered. This suggests that we are far49

from global understanding of bi-parametric structures, not to mention higher50

dimensional parameter spaces.51

The present study intends to add a piece to the puzzle of the global52

picture of two-parametric bifurcation structures in the excitation amplitude-53

frequency parameter plane of a harmonically excited system, namely, the54

Rayleigh–Plesset equation which is a spherical bubble oscillator. Via thor-55

ough numerical investigations by combining the shooting and the pseudo-56

arclength continuation techniques (for more details see Chapter 10 of [17]),57

it has been revealed that the topological description of the bifurcation pat-58

tern of stable periodic oscillations can be determined provided that excitation59

frequency is above the first subharmonic resonance frequency of the system.60

This structure is defined by an infinite sequence of two-sided Farey ordering61

trees [18] and Feigenbaum cascades [7] based on a primary structure, which62

is an asymmetric Farey tree and serves as an endoskeleton of the whole bi-63

furcation pattern. The topology of each two-sided Farey tree is governed by64

the homoclinic tangency of the invariant manifolds of a saddle-type periodic65

orbit [17, 19]. These findings are in good agreement with the results of other66

models, such as, complex maps [20], Duffing [21] or Toda [11] oscillators.67

Still, this is the first study to put the partial results together and68

to give a more general explanation of the bifurcation structure and69

the validity range in the two-dimensional parameter space.70

The present investigation is also a natural continuation of Hegedűs [1],71

who found stable periodic solutions beyond Blake’s critical threshold with-72

out applying any linearization or other reduced order modelling. The next73

subsection intends to summarise this topic briefly.74
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1.1. Blake’s critical threshold75

The equilibrium radius of a gas-filled bubble is governed by the mechanical76

balance77

0 = pV − P∞ + pgo

(

Ro

RE

)3n

−
2σ

RE

(1)

at the bubble interface, where RE is the equilibrium bubble radius. The78

vapour and the ambient pressures are pV and P∞, respectively. The surface79

tension is σ. The polytropic exponent n, the gas reference pressure pgo and80

radius Ro determine the mass of gas mG within the bubble.81

The equilibrium radius with respect to the tension pV − P∞ at ambient82

temperature T∞ = 37 oC is presented in Fig. 1. The curve contains a turning83

point called Blake’s critical threshold, first identified by Blake [22], which84

separates the stable Rs
E (solid line) and unstable Ru

E (dashed line) branches.85

Beyond this threshold the bubble tends to grow indefinitely regardless of86

its initial state as a consequence of the absence of both the stable and the87

unstable equilibrium radii.88

The experimental work with cryogenic liquids of Marston and Greene89

[23], however, implied that such bubbles can be stabilized by applying a har-90

monically varying pressure field on the liquid domain (acoustic irradiation).91

For decades, many authors attempted to find numerical evidence for this sta-92

bilisation mechanism only with partial success. Gumerov [24], for instance,93

found stable oscillations beyond Blake’s threshold but the applied third order94

approximation limited the findings only to relatively small amplitude oscilla-95

tions. Although Hao and Prosperetti [25] used no reduced order modelling,96

the applied numerical technique was practically unsuitable to find any stable97

solutions even after thousands of simulated cycles. The first break-through98

was achieved by Hegedűs [1], who was able to stabilize the bubble with-99

out linearization or other reduced order modelling by using the well-known100

Rayleigh–Plesset equation.101

Although the results of Hegedűs [1] are important for the understand-102

ing of the stabilization mechanism, they are restricted to a special kind of103

solution called period 1 oscillation (the period is equal to the period of the104

excitation). The seeking process was rather simple. Below the critical thresh-105

old, stable period 1 oscillations emerge from the stable equilibrium radius as106

the excitation pressure amplitude pA starts to increase from zero. With107

the pseudo-arclength continuation technique, the complete exploration of108

the stable period 1 domains in the excitation pressure amplitude-excitation109
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frequency (pA-ω) parameter plane could be determined. By gradually de-110

creasing the ambient pressure beyond the critical threshold, it was observed111

that only one large stable period 1 domain remained.112

The present findings are very important from this stabilisation point of113

view, since a large stable period 1 domain beyond Blake’s threshold was found114

at the higher frequency regions. This implies that results can be extended115

to arbitrary periodicities described topologically in more detail in the next116

sections.117

It is worth emphasizing that the system under such conditions (low pres-118

sure) is not-strictly dissipative, implying that stable bubble motions are not119

guaranteed, see also the review of Feng and Leal [26]. Such bubble be-120

haviour (near Blake’s threshold) has already been investigated by Chang121

and Chen [27] and Smereka et al. [28] with Hamiltonian formalism near122

the resonance frequency but a detailed topological analysis in the pressure123

amplitude-frequency (pA-ω) parameter space is still missing in the literature.124

2. Formulation of the problem125

The applied bubble model in this paper is the well-known Rayleigh–126

Plesset equation [29] written in the form127

RR̈ +
3

2
Ṙ2 =

1

ρL
(pL − p∞(t)) , (2)

where R(t) is the time dependent bubble radius, ρL is the liquid density, pL128

and p∞(t) is the pressure at the bubble wall and far away from the bubble,129

respectively. The dot stands for the derivation with respect to time t. The130

time-dependent far field pressure131

p∞(t) = P∞ + pA sin(ωt) (3)

is a sum of the static ambient pressure P∞ and the harmonic forcing with132

pressure amplitude pA and angular frequency ω. The bubble interior is a133

mixture of vapour and non-condensable gas. Both are treated as ideal gases,134

therefore, the pressure inside the bubble is the sum of their partial pressures:135

pG + pV = pL +
2σ

R
+ 4µL

Ṙ

R
, (4)

where σ is the surface tension and µL is the liquid dynamic viscosity. The136

vapour pressure depends on the ambient temperature T∞ which was constant137
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during the computations. The gas content inside the bubble follows a simple138

polytropic relationship139

pG = pgo

(

Ro

R

)3n

(5)

with a polytropic exponent n = 1.4 (adiabatic behaviour). The reference140

properties pgo and Ro determine the mass of gas mG inside the bubble, that141

is, the size of the bubble. The material properties of the liquid water (ρL, pV ,142

σ, µL) were calculated by means of the Haar–Galagher–Kell equation of state143

[30], at an ambient temperature T∞ = 37 oC and pressure P∞ = 5458Pa. The144

choice of the ambient pressure is explained in the next subsection.145

2.1. Equilibrium radius, parameters and the dimensionless system146

The equilibrium bubble radius RE of the unexcited system (pA = 0) as147

a function of the tension pV − P∞ is shown in Fig. 1, and computed by148

means of Equation (1), for a given mass of gas mG and ambient temperature149

T∞ = 37 oC. The curve contains a turning point, called Blake’s critical150

threshold marked by the black dot, which separates the stable Rs
E (solid)151

and unstable Ru
E (dashed) branches at the critical radius RC . In the paper152

of Hegedűs [1] it has been derived that the critical radius, which is chosen to153

be RC = 0.1mm, determines the gas reference pressure154

pgo =
2σ

3nRC

, (6)

the mass of the gas content155

mG =
8σR2

Cπ

9nℜT∞

(7)

(ℜ is the specific gas constant) and thus the size of the bubble, and the156

critical tension157

pV − PC =
2σ

RC

3n− 1

3n
(8)

provided that the arbitrarily specifiable gas reference radius is Ro = RC .158

By defining a dimensionless relative pressure as159

PR =
pV − P∞

pV − PC

(9)
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Figure 1: Typical equilibrium bubble radius curves for water at T∞ = 37 oC as a function
of tension pV − P∞. The solid and dashed lines are the stable and unstable equilibrium
radius curves, respectively. The black dot denotes Blake’s critical threshold.

the ambient pressure P∞ ∈ (pV , PC) can be transformed into PR ∈ (0, 1), see160

also Fig. 1. The region PR > 1 does not have any equilibrium radius, neither161

stable nor unstable, leading to steadily growing bubbles to infinity. This162

region has been the subject of keen interest because of the issue of bubble163

stabilisation with harmonic forcing discussed in the Introduction. From the164

stabilisation mechanism point of view, however, the domain 0 < PR < 1 is165

much more important. At PR = 0.9, Hegedűs [1] successfully explored all166

the period 1 solutions, bifurcated from the equilibrium radii Rs
E and Ru

E as167

pA started to increase from zero, in the pressure amplitude pA - frequency168

ω plane. Then, by gradually decreasing P∞ beyond Blake’s threshold the169

stable domains which survive the procedure could be easily determined with170

the effective pseudo-arclength continuation technique. This paper focuses on171

the topological description of the bifurcation structure of the stable periodic172

solutions at PR = 0.9, which is crucial for the extension of the numerical173

results beyond Blake’s threshold to arbitrary periodicity. At the applied174

relative pressure, the tension is pV − P∞ = 1067Pa, as shown by the blue175

vertical line in Fig. 1, resulting in P∞ = 5458Pa.176

Introducing dimensionless time τ , dimensionless bubble radius y1 and

7



dimensionless bubble wall velocity y2 defined as

τ =
t
2π
ω

, (10)

y1 =
R

RC

, (11)

y2 =
Ṙ

RCω
2π

, (12)

the governing second order nonlinear differential equation (2) can be rewrit-
ten as a system of first order dimensionless equations:

y′1 = y2, (13)

y′2 =
pL − p∞(t)

pref

1

y1
−

3

2

y22
y1
, (14)

where ’ stands for the derivative with respect to the dimensionless time τ .177

The reference pressure is178

pref = ρR2
C

( ω

2π

)2

. (15)

The mechanical balance at the bubble interface becomes179

pG + pV = pL +
2σ

RC

1

y1
+

4µLω

2π

y2
y1
. (16)

The polytropic relationship of the gas content is180

pG =
2σ

3nRC

(

1

y1

)3n

. (17)

Finally, the harmonic excitation far away from the bubble is181

p∞(t) = P∞ + pA sin(2π τ). (18)

Note that in the dimensionless system, the period of the excitation becomes182

unity (τo = 1) according to equation (18).183
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3. Numerical results184

3.1. Global scan of stable periodic attractors185

The simplest way to obtain a global picture about the stable solutions186

(attractors) in a parameter range is to take an initial value problem solver187

and perform numerical simulations at each parameter value with suitably188

chosen initial conditions. After the convergence of the transient trajectory,189

the points of the Poincaré sections, obtained by sampling the continuous so-190

lution at every integer multiple of the period of the excitation τo, are recorded191

for some additional cycles. With the method of Poincaré section, the three-192

dimensional continuous dynamics can be transformed into a two-dimensional193

map. The Poincaré points of the continuous solutions y1(t) and y2(t) are de-194

noted by Π(y1) and Π(y2), respectively.195

The employed initial value problem solver was a fourth order196

Runge–Kutta scheme with fifth order embedded error estimation197

built in MATLAB (ode45). The absolute and relative error tol-198

erances were both 10−9. The solutions were relatively smooth in199

time, see e.g. Fig. 2A, therefore, such non-stiff ordinary differen-200

tial equation solver was quite suitable. Parenthetically, far away201

from Blake’s critical threshold the bubble oscillators are usually202

stiff problems due to the large amplitude collapse-like oscillations.203

In such cases, they must be solved with an implicit scheme. Due204

to the relatively low dissipation (viscosity) the transients died out205

approximately within 700 to 1000 acoustic cycles.206

During the computations, three kinds of solutions occurred. The most207

common stable solution is a simple periodic attractor whose periodicity is an208

integer multiple of the period of the excitation. The dimensionless bubble209

radius vs. time curves of a period 1 (black) and a period 3 (blue) co-existing210

attractors are presented in Fig. 2A, where the dots are the sampled Poincaré211

points. The trajectories in the phase space (y1–y2 plane) form closed curves,212

and they can intersect themselves and each other due to the non-autonomous213

nature of the system, see Fig. 2B. Observe that the number of the Poincaré214

points in the state space of the period 1 and the period 3 orbits are 1 and 3,215

respectively. In the rest of the paper, only the points of the Poincaré map216

will be presented to avoid overcrowded figures.217

Because of the non-strictly dissipative property of the bubble model, there218

are special, unbounded trajectories where the bubble radius exhibits infinite219

growth. An example is presented by the red curve and dots in Fig. 2A-B.220

9



After only 10 cycles, the bubble escapes from the global basin of attraction of221

the system, its radius tends to increase very rapidly and keeps growing with222

time. This behaviour makes the hunting for stable oscillations difficult, and223

thus, the application of several initial conditions at given parameter values224

is necessary.225
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Figure 2: Different kind of solutions of applied bubble model. The upper panels show a
period 1, a period 3 and an unbounded co-existing solutions. The lower panels represent
an unbounded trajectory initiated near an unstable chaotic solution (transient chaos).

The especially long, seemingly stable transient oscillations prior to the226

infinite growth of an unbounded trajectory imply the presence of transient227

(unstable) chaos, see Fig. 2C-D. Such solutions usually cannot be found even228

if one integrates the system backward in time as they are often chaotic sad-229

dles. The determination of their properties, such as the fractal dimension230

or Lyapunov exponent, needs large computation capacities. The methods231

based on measuring the escape rate, for instance, require the solution of mil-232

lions of transient trajectories initiated systematically from a grid of points233
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defined on a rectangular domain in the state space. A thorough discussion234

on the properties of unstable chaos and its effect on the global dynamics of a235

system can be found in the book of Lai and Tél [31]. These theories can be236

successfully applied on very complex geometries as well [32]. Although the237

investigation of transient chaos is beyond the scope of the present paper, its238

presence makes the monitoring of the convergence difficult. Therefore, the239

maximum number of allowed acoustic cycles were as high as 1500 which was240

sufficient for most of the trajectories to escape from the neighbourhood of241

the unstable chaotic solutions, if there were any.242

The bifurcation diagram is a very efficient tool for the analysis of the243

qualitative change of the different attractors with respect to a parameter. As244

a global scan of the bifurcations structure, Fig. 3 presents the first component245

of the Poincaré points P (y1) at different relative frequencies ωR with the246

pressure amplitude pA as control parameter varied between 0Pa and 12000Pa247

with an increment of 1 Pa. At every parameter value, 40 randomly chosen248

initial conditions were used to reveal the co-existing stable solutions. Observe249

that the achieved maximum pressure amplitudes never reach the prescribed250

upper limit because of the non-strictly dissipative nature of the system. That251

means that, in spite of the applied large number of initial conditions, at252

sufficiently high pressure amplitudes, only unbounded trajectories can be253

found. Throughout the subfigures, the periodicities of the relevant attractors254

are denoted by arabic numbers.255

The bifurcation structure at relative frequency ωR = 0.4 is rather simple.256

A period 1 attractor emerges from the stable equilibrium radius Rs
E, and it257

goes through a pair of saddle-node (SN) bifurcations forming a hysteresis258

at approximately pA = 35Pa. It becomes unstable at pA = 100Pa via a259

period doubling (PD) bifurcation, and the evolved period 2 attractor exists260

only up to pA = 110Pa pressure amplitude. In a very narrow parameter261

range, a period 3 stable solution co-exists with the dominant period 1 orbit.262

Increasing the relative frequency to ωR = 1.0, the hysteresis of the period 1263

curve disappears, and a period 2 and a period 3 domain arise in the region264

of small pressure amplitude.265

At higher relative frequencies, above ωR = 2.0 (Fig. 3C-F), the attractors266

survive larger pressure amplitudes. At ωR = 5.0, stable domains exist up to267

pA = 10000Pa. In parallel, the period doubling bifurcation of the period 1268

solution is shifted towards larger pressure amplitudes, that is, the parameter269

region of the existence the fundamental period 1 orbit increases with the270

relative frequency. Within this domain, regular patterns in the bifurcation271
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diagram of periodic attractors with a large variety of periodicities can be272

detected whose complex structure continuously unfolds as the relative fre-273

quency increases. In the following, the rules of organisation of these periodic274

orbits at such high frequencies will be systematically explored, and the full275

topological description of the bifurcation pattern will be given.276

The simple initial value problem solver, applied here, has been used for277

decades to investigate the bifurcation structure of various bubble oscillators278

with a variety of control parameters. The interested reader is referred to the279

publications [1, 33–46].280

3.2. The main structure281

In Fig. 4, the magnification of Fig. 3F is presented for a better overall282

view of the bifurcation structure. The lower subfigure shows the period of the283

found attractors (N) which help identify the periodicities and the bifurcation284

patterns. The main structure is composed by orbits with relatively low pe-285

riodicities marked by the arabic numbers in the lower panel of Fig. 4. They286

appear via SN bifurcations (except the period 2 solution which originates287

from the period 1 curve via period-doubling bifurcation) and their period288

gradually increases one by one towards the lower pressure amplitudes up to289

period 9. Observe that the SN bifurcations seem to approach to an accu-290

mulation point exists somewhere between 1000 Pa < pA < 2000 Pa pressure291

amplitude. We shall see that this plays an important role in the dynamics292

explained later. Each periodic block in the main structure exhibits an un-293

finished Feigenbaum period doubling cascade indicating the presence of the294

aforementioned transient chaos. Moreover, between the SN and the first PD295

bifurcation in each block, there is a fine structure with very high periodicities296

(up to even period 50) highlighted in the lower panel of Fig. 4 for the period297

5 block.298

Besides periodicity, a more powerful tool to analyse the topology is the299

winding number w which describes the average number of twists of a nearby300

trajectory around a given solution during one period of the excitation. By301

straightforward calculation, the winding number can be expressed as frac-302

tion of w = M/N , where M is the torsion number (the number of twists of a303

nearby trajectory) and N is the period of the solution, for the details of the304

computation see e.g. [47]. In general, the winding number is a real positive305

number, but near saddle–node and period–doubling bifurcations it becomes306

rational due to the real Floquet multipliers [9], and more importantly it is307
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Figure 4: Magnification of the structure of the periodic attractors at ωR = 5.0 (upper
panel). Periodicity of the attractors (lower panel).

invariant for a wide range of parameters. The winding numbers correspond-308

ing to the SN bifurcations of the main blocks and the first PD point of the309

period 1 solution are denoted by the italic bold fractions in the upper panel310

of Fig. 4. This invariant quantity was successfully applied to classify the en-311

doskeleton of the bifurcation structures of different oscillators, for instance,312

Duffing [47–49], van der Pol [50], Toda [51, 52], different bubble oscillators313

[34, 41, 53] or even comparison of several nonlinear oscillators [10].314

To completely understand the mechanisms that build up the topology of315

the stable periodic orbits, one needs to compute the unstable periodic solu-316

tions as well. An efficient way to do that, is to reformulate the problem into a317

boundary value problem (BVP) by specifying periodic boundary conditions318

for the system (13)-(18):319
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y1(0) = y1(Nτo), (19)

y2(0) = y2(Nτo), (20)

where N is the periodicity of the desired orbit. Keep in mind that τo = 1 is320

the period of the dimensionless excitation, see again equation (18). With a321

boundary value problem solver, the periodic orbit can be obtained directly,322

independently of its stability. During the computations, the AUTO bifur-323

cation analysis software was used [54], which discretizes the problem by the324

method of orthogonal collocation using piecewise polynomials with 2−7 col-325

location points per mesh interval [55]. The mesh is automatically refined to326

the solution according to the local discretization error [56]. In our case, the327

relative error was given as 10−10. A thorough investigation on its capabili-328

ties were carried out by Hegedűs [1] and Hegedűs and Klapcsik [46]. In the329

field of bubble dynamics, this powerful software was also used by Fyrillas330

and Szeri [57] for the rectified diffusion problem, Lauterborn and co-workers331

to investigate the bifurcation patterns of a single bubble [58], and Hős and332

co-workers to study the stability of compression systems and pressure relief333

valves [59–61].334

AUTO uses pseudo-arclength continuation to follow solution families (bi-335

furcation curves) with respect to a control parameter. From the stable equi-336

librium radius Rs
E , for instance, a complete stable period 1 bifurcation curve337

can be traced as a function of the pressure amplitude pA, shown by the lowest338

black curve in Fig. 5. Observe that here the maximum of the dimensionless339

bubble radius ymax
1 is presented in the vertical axis. Since AUTO can han-340

dle a periodic solution only as a whole object, the representative picture of341

the Poincaré points has been lost. As the BVP solver is insensitive to the342

stability, the unstable part of the period 1 curve can be continuated for-343

ward indicated by the small red segment above pA = 9000Pa. In Fig. 5, the344

stable and unstable branches are marked by black and red curve sections,345

respectively. The bifurcation points where the change of stability takes place346

can be detected as well. In Fig. 5, the saddle–node (SN) and the period–347

doubling (PD) bifurcations are denoted by dots and crosses, respectively.348

With a suitable branch switching algorithm, the family of the period 2 or-349

bits, originated from the PD point of the period 1 curve, was computed up350

to pA = 10000Pa pressure amplitude which also contains a PD point. It is351

important to emphasize that a saddle-type period 1 branch is evolved from352
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the unstable equilibrium point Ru
E presented by the upper red curve in in353

Fig. 5.354

Similarly, all the periodic orbits from period 3 up to period 9 of the main355

structure were computed and presented in Fig. 5. They are composed of a356

single branch containing a turning point, which is an SN bifurcation, and a357

period-doubling point. Between the two bifurcation points, a relatively small358

segment of stable orbits exist. Keep in mind again that only the maximum359

values of the whole periodic solutions were recorded. That is, with each so-360

lution family only a single curve is associated. The aforementioned winding361

numbers for the bifurcation points are indicated by the bold fractions. As362

can be seen, the winding numbers of the main periodic blocks obey a Farey363

ordering. Between two given bifurcation points characterised by w1 = M1/N1364

and w2 = M2/N2, another one exists with w3 = (M1 +M2)/(N1 +N2). For365

instance, between the bifurcation points of order 0/1 and 1/2 there is an-366

other one with order 1/3. Similarly, between points 0/1 and 1/3 there is367
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an SN point with order of 1/4. This topological description is commonly368

called as Farey ordering tree, summarised in Fig. 6, and it can help identify369

stable periodic orbits using the pressure amplitude as the control parameter.370

Therefore, it also seems to be a promising and efficient tool in the hunt-371

ing for stable solutions beyond Blake’s critical threshold. In Fig. 6, the372

extensions of the period doubling bifurcations of orders 1/4 and373

1/6 included only for the better understanding of the forthcoming374

substructures presented in Fig. 9 and Fig. 11, respectively.375

0/1

1/3

1/2

1/4

1/5

1/6

1/9

PD

PD

1/6
Fig. 11

1/4
Fig. 9

Figure 6: Farey ordering tree of the found periodic attractors of the primary structure.
The period doubling bifurcations of order 1/4 and 1/6 serve only for the better

understanding of Fig. 9 and Fig. 11, respectively.

It is apparent that the Farey ordering tree describing the topology of the376

main structure is far from complete. Although there are SN bifurcations with377

orders of 2/5 and 2/7 appearing also in Fig. 4, which would fit very well into378

the Farey structure, they were omitted in Fig. 6 with reason. In the next379

section, it will become clear that such higher order periodic orbits, lying380

between each adjacent pair of main SN blocks, constitute the well-defined381

substructures of the system. Therefore, they have a more proper place and382

role in the overall bifurcation pattern. Such incomplete Farey ordering tree is383

very common in the literature, for instance, in the case of the forced Duffing384

oscillator [21]. The structure in the asymmetric Farey tree, presented in385

Fig. 6, is governed by the ordinary saddle Ru
E with order of 0/1, that is, the386

aforementioned accumulation point of the SN bifurcations, see again Fig. 5,387

is also governed by the ordinary saddle. Moreover, it is well-known (Wiggins388

[19]) that near the homoclinic tangency of the stable and unstable manifolds389

of a saddle-type solution, an infinite number of SN and PD bifurcations390

accumulate. This accumulation behaviour can be seen both in Fig. 5 (results391

of AUTO) and in Fig. 6 (Farey ordering tree). Therefore, the organisation of392
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the stable periodic orbits in the main structure is governed by the homoclinic393

tangency of the manifolds of the saddle-type periodic orbit bifurcated from394

the unstable equilibrium point, that is, from the regular saddle Ru
E .395

Each stable family of solutions appearing via the SN bifurcation exhibit396

period–doubling cascades, see the upper panel of Fig. 4. However, after a397

few PD bifurcations the cascades seemingly terminate without the398

evolution of any stable chaotic solution. The non-strictly dissipative399

nature of the system enhances the tendency that solutions with high peri-400

odicities have usually smaller domain of attraction. Consequently, they are401

hard to find with a simple initial value problem solver (shooting method).402

Although there is no clear evidence for the existence of stable chaotic os-403

cillations evolving via fully developed period–doubling cascades, it is worth404

discussing the evolutions and the limits of the winding numbers of the PD405

points in the cascades. There are two winding number routes to the accu-406

mulation point of period doubling cascades [47, 62–64], namely,407

wk = w∞ +
(−1)k

3m02k
, (21)

w∞ = w0 −
1

3m0

, (22)

and408

wk = w∞ −
(−1)k

3m02k
, (23)

w∞ = w0 +
1

3m0

, (24)

where wk is the kth winding number in the cascade, w∞ is the winding num-409

ber at the accumulation points, w0 and m0 are the basic winding number410

and the basic period of the cascade, respectively. The winding numbers of411

the first PD, and the winding numbers of the accumulation points of some of412

the PD sequence are presented in Fig. 5. Interestingly, the winding numbers413

in a PD sequence can also be described by the Farey fractions [65], that is,414

the Farey sum of two adjacent winding numbers is the winding number at415

the accumulation point. Therefore, the bifurcation pattern of stable solu-416

tions of the main structure can fully be characterised by Farey orderings.417
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One is responsible for the development of the SN bifurcations and418

the other one governs the PD cascade, and they form a complete419

endoskeleton of the bifurcation structure of the periodic orbits.420

It is worth mentioning that the organization of stable periodic orbits by421

Farey ordering originates from dynamical systems where the trajectories lie422

on an invariant torus [53]. The behaviour of such systems is usually governed423

by the sine circle map, and the Farey ordering is valid provided that the424

torus exists. Moreover, the presence of Farey structure in the appearance of425

resonance horns as a function of the excitation frequency ω is reported by426

Parlitz et al. [34] and more recently by Hegedűs et al. [41].427
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Figure 7: Bi-parametric bifurcation curves of the SN (red curves) and PD (black curves)
points found by the BVP solver and presented in Fig. 5.

After the exploration of the topology of the main structure at ωR =428

5.0, the main question is how the found topology changes with the relative429

frequency ωR? In other words, does the topology remain invariant under the430

change of the parameter ωR? The advantage of AUTO is that the detected431

bifurcation points (SN and PD) can be traced in a two-dimensional parameter432

space; in our case, in the ωR–pA plane, by choosing the relative frequency as433

a secondary control parameter. The results are summarised in Fig. 7, where434
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the SN and PD bifurcation points are marked by the red and black curves,435

respectively. The low frequency, low amplitude region is enlarged in the436

upper left corner of the figure. In the enlargement, the subharmonic resonant437

frequency of order 1/2 is represented by the vertical blue line. As usually,438

the winding numbers are indicated by the bold fractions. The bi-parametric439

plots in Fig. 7 reveal that the topology remains invariant (the curves do440

not cross each other) in the high frequency region, approximately above the441

subharmonic resonance frequency of order 1/2 (ωR = 1.671). Notice that the442

higher order subharmonic resonances (e.g. of order 1/3 and 1/4) are far less443

developed and vigorous than the resonance of order 1/2, and the resonance444

of order 1/9 is not recognisable at all.445

3.3. Substructures446

The main structure, described in the previous section, defines the en-447

doskeleton of the topology of the stable periodic orbits with respect to the448

pressure amplitude as control parameter. This topology is invariant under449

the change of the relative frequency provided that it is higher than the sub-450

harmonic resonance frequency of order 1/2. In the following, the topology of451

the fine substructures, such as those already highlighted in Fig. 3 and Fig. 4,452

will be clarified. First, let us examine the region near the PD point of order453

1/2 between pressure amplitudes pA = 9 kPa and pA = 10 kPa. The scan for454

stable solutions with the IVP solver is summarised in Fig. 8. The increment455

of the control parameter was reduced from pA = 1Pa to pA = 0.1 Pa in order456

to obtain a better resolution but the number of initiations per control param-457

eter remained 40. The winding numbers are denoted by the bold fractions,458

as usual.459

The results of Fig. 8 show that near the PD point of order 1/2, the fine460

structure of the SN bifurcations tend to accumulate to a certain value of the461

pressure amplitude from both the right and left hand sides. This accumula-462

tion point is supposed to be at the previously discussed homoclinic tangency463

but now corresponding to the saddle-type, period 1 solution evolving through464

the PD point of order 1/2, see the BVP computations in Fig. 5. Since this465

family of the solutions is unstable, it does not appear in the IVP scan. Ac-466

cordingly, the topology of the fine structure can be described by a two-sided467

Farey tree shown in Fig. 9. This representation of the Farey structure un-468

derlines the fact that the topology in this substructure is dominated by the469

homoclinic tangency of the invariant manifolds of the periodic saddle of or-470

der 1/2, and it ”collects” the SN bifurcations from both sides. The left hand471
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Farey structure starts with the SN point of order 1/3 located immediately472

next to the dominant PD point from left in the main structure, compare473

Fig. 9 and Fig. 6. In contrast, the right hand side of the Farey structure474

starts with the next PD point in the Feigenbaum period–doubling sequence,475

precisely, with the PD point of order 1/4, highlighted also in Fig. 5. The476

basic elements of this two-sided Farey tree are also highlighted in477

Fig. 6 by the corresponding rectangle.478
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Figure 9: The double-sided Farey ordering tree of the found periodic attractors at ωR = 5.0
near the PD point of order 1/2. The structure is dominated by the homoclinic tangency
of the invariant manifolds of the periodic saddle of order 1/2.
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Now, let us examine the topology of the fine structures in a different479

region of the control parameter pA. Figure 10 shows the scan of the stable480

periodic orbits between pressure amplitudes pA = 7 kPa and pA = 8 kPa.481

The increment of pA was 0.1 kPa but the number of the initial conditions482

had to increase to 60 for a sufficiently fine resolution of the structures.483
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Figure 10: Magnifications of the stable periodic attractors at ωR = 5.0, near the SN point
of order 1/3 marked also by the red rectangle in Fig. 4. The increment of the control
parameter was 0.1Pa. The number of initiations in each control parameter was 60.

Similarly to the previous example, an accumulation point of the SN bi-484

furcations can be observed marked by the dashed vertical line in Fig. 10.485

This accumulation point is at the location of the homoclinic tangency of the486

invariant manifolds of the period 3 saddle of order 1/3. The unstable saddle487

again cannot be represented by an IVP scan, it can be shown only in Fig. 5488

(BVP calculations) by the red curve originating from the corresponding SN489

of order 1/3. The topology of the fine structure is described also by a two-490

sided Farey tree. Although the accumulation of the series of SNs in left side491

is less characteristic than in the previous case, the Farey ordering reveals492

that the topological description is quite the same. The starting values of493

the two sides of the Farey tree can also be explained similarly. The left side494
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starts with the SN of order 1/4, which is next to the dominating SN point495

of order 1/3 from left in the main (parent) structure. Meanwhile, the right496

side again starts with the next PD point in period-doubling sequence. In497

this case, the basic elements of this two-sided Farey tree are again498

highlighted in Fig. 6 by the corresponding rectangle.499
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Figure 11: The double-sided Farey ordering tree of the found periodic attractors at ωR =
5.0 near the PD point of order 1/3. The structure is dominated by the homoclinic tangency
of the invarianr manifolds of the periodic saddle of order 1/3.

3.4. Higher order substructures500

In the previous two subsections, it has been shown that for each member501

of the main structure (Farey tree) a substructure can be associated described502

by a two-sided Farey tree. Now, it will be demonstrated that for each element503

in each substructure there is a sub-substructure which has the same topology504

as its parent substructure. Figure 12, for instance, represents the usual505

sequence of stable periodic orbits appeared via SN bifurcations near the PD506

bifurcation of order 1/4 highlighted by the blue rectangle in Fig. 8. These SN507

points are governed by the homoclinic tangency of the invariant manifolds of508

the period 4 saddle originated from the PD point of order 1/4. The increment509

of the control parameter pA were reduced further to 0.001 Pa. The number510

of the initial conditions were 60 at each parameter value.511

The double-sided Farey tree corresponding to the marked stable periodic512

orbits in Fig. 12 are presented in Fig. 13. It is clear that it obeys the same513

rule as in the case of the previously discussed two examples. That is, the left514

side of the Farey tree starts with the element located next to the dominant515

saddle from left in the parent substructure, see the SN point of order 2/6516

both in Fig. 8 and Fig. 9. And as usual, the right side starts with the next PD517

point highlighted in Fig. 12. Therefore, it is reasonable to conclude that the518

subsequent substructures of the unique main structure follow a self-similar519

topological role, which are nested two-sided asymmetric Farey trees.520
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Figure 13: The double-sided Farey ordering tree of the found periodic attractors at ωR =
5.0 near the PD point of order 1/4 marked in Fig. 12. The structure is dominated by the
homoclinic tangency of the invariant manifolds of the periodic saddle of order 1/4.

4. Summary521

During the exploration of the dynamics of a harmonically excited gas522

bubble placed in water at low ambient pressure, the topology of the found523

periodic attractors was determined in the pressure amplitude-excitation fre-524

quency parameter space. It has been found that there is a main or primary525

structure composed by the subharmonic resonance curves, thus it is valid526

above the first subharmonic resonance or order 1/2. The organization of the527
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stable orbits obeys a simple Farey ordering, which is dominated by the ho-528

moclinic tangency of the invariant manifolds of a period 1 saddle bifurcated529

from the unstable equilibrium point of the unexcited system (the pressure530

amplitude is set to zero). These stable orbits, appearing via saddle–node531

bifurcations, exhibit a Feigenbaum period–doubling cascade, which can also532

be described by a Farey structure. This primary structure is the en-533

doskeleton of the topological description of the stable orbits.534

With each element in the main structure (parent), a substructure (child)535

can be associated composed by a series of saddle–node bifurcations and de-536

scribed by a two-sided Farey tree. The dynamics is again dominated by the537

homoclinic tangency of the invariant manifolds of a saddle-type, unstable538

solution corresponding to the element of the parent structure. The left hand539

side of the Farey tree (child structure) starts with left neighbouring element540

of the parent structure, while the right hand side starts with the next period541

doubling bifurcation corresponding to the element in the parent structure.542

Each element in the substructure then exhibits a period–doubling cascade.543

The aforementioned description of the two-sided Farey ordering holds for544

all the subsequent higher order substructures. That is, for the elements of545

the substructure and the elements of its own substructure and so forth. The546

only important thing is to precisely register the associations of the parent547

and children structures. Summarizing the results, the topology of the548

stable periodic orbits can be described by a series of repetitive,549

self-similar Farey ordering trees, provided the frequency is higher550

than the first subharmonic resonance frequency.551

To the best knowledge of the author, the results presented in552

this paper are the first ones to put the pieces together, obtained by553

other researchers on different physical models (see the references554

in the text), and provide a more general topological description555

of the stable orbits in a wide domain of the bi-parametric space556

spanned by the excitation frequency and pressure amplitude. That557

is, the appearance of solutions with high periodicities (in the literature called558

period-n tupling) are related to the cascade of Farey ordering tree and the559

domination of the homoclinic tangencies of the invariant manifolds of saddle-560

type unstable orbits. Moreover, the results are a natural extension of the561

work of Hegedűs [1], who provided evidence for the existence of stable period562

1 solutions beyond Blake’s critical threshold. Now, there is a possibility563

to extend those numerical results to arbitrary periodicities and provide a564

topological description for stable periodic orbits at that parameter region.565
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The better understanding of the behaviour of a harmonically ex-566

cited bubble can support several applications to operate in a more567

efficient way. These are mainly related to the ultrasonic technol-568

ogy, exploiting the physical phenomenon of bubble generation in a569

liquid domain by irradiating it with high intensity and frequency570

ultrasound. Sonochemistry, for instance, is currently regarded as571

a special trick of modern chemistry to increase the yield of various572

reaction products even by several hundreds of percentage [66–77].573

In food industry, the ultrasonic technology has been successfully574

applied in pasteurisation [78], to alter the viscosity of many food575

systems [79, 80], and to produce highly stable emulsions by mix-576

ing two immiscible liquids [81, 82]. As a special application, in577

medicine, the emitted shock waves of ultrasonically excited bubbles578

can be used to destroy kidney stones (litotropsy) [83], to remove579

tissues in a targeted area (histotropsy) [84], and to destroy tumour580

locally in cancer therapy [85, 86].581
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