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Abstract The bifurcation structure of a periodically driven spherical gas/vapour bubble is
examined by means of methods of nonlinear analysis. The study of Behnia and his co-
workers [1] revealed that the bifurcation structures with the pressure amplitude of the ex-
citation as control parameter are structurally similar provided that REω is kept constant. In
the present paper, this problem is revisited. Analytical and numerical investigations of the
bubble oscillator, which is the Keller–Miksis equation, are presented. It is shown that the
validity range of Behnia’s condition is governed by the viscosity and the surface tension,
and holds only for relatively large bubbles. In water, the effect of viscosity is negligible, and
the surface tension plays significant role at bubble size lower than approximately 5 µm.

Keywords Bubble dynamics · Bifurcation structure · Topology · Keller-Miksis equation ·
Nonlinear dynamics

1 Introduction

The radial oscillation of a periodically excited gas/vapour bubble is known to be strongly
nonlinear. In the past century, many researchers devoted their attention to the dynamics of
such bubbles. They are noteworthy not only from theoretical point of view but also due to
the phenomena and their corresponding applications associated with them as well.

Irradiating a liquid domain with high frequency high amplitude ultrasound (periodic
driving), micron-sized bubbles may develop forming bubble clusters [2–4]. Their radial pul-
sation can be so violent that at the minimum radius, the temperature and pressure inside
the bubble can reach thousands of Kelvin and bar, respectively. This phenomenon is known
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as the bubble collapse. The generated extreme conditions are exploited by many indus-
trial applications including sonochemistry [5–10], food processing [11–13] or even medical
treatment [14–17].

As the size of the literature of experimental research is continuously growing, so is the
number of theoretical and numerical papers on the topic of bubble oscillation. The accumu-
lated knowledge of this nonlinear behavior has been summarized in many reviews [18–20]
and papers [1,21–36]. The most important findings are the existence of period-doubling cas-
cades in the bifurcation structure [1,21,30,31,35], the appearance of resonance horns in the
amplitude–frequency plane of the driving [24,27,34] or the alternation of chaotic and pe-
riodic windows [21,23,33]. These structures show similarities with the results obtained on
other nonlinear oscillators such as Toda [37], Duffing [38–41] and others [42], implying that
they are universal features of nonlinear systems rather than unique properties of oscillating
bubbles.

The results of Behnia et al. [1], however, is a specialty of nonlinear bubble dynamics.
They found that the bifurcation structures of different pressure amplitude response curves
are remarkably similar when REω is kept constant, but detailed physical explanation and
range of validity was omitted. Here RE is the equilibrium radius (size of the bubble) and
ω is the excitation frequency of the periodic driving. Later Hegedűs et. al. [27], using the
Rayleigh–Plesset equation, pointed out that almost all the parameters of the dimensionless
form of the equation with constant REω remain constant as well. Therefore, the bifurcation
structure should not change drastically either. In the present paper, this problem is revisited
using the same equation, the Keller–Miksis oscillator, as applied by Behnia et al. [1]. The
detailed analytical and numerical investigations revealed the range of the applicability of
Behnia’s condition, which is affected by the viscosity and the surface tension. In case of
water, the influence of the viscosity is negligible while the effect of surface tension becomes
important at bubble size lower than 5 µm.

2 The bubble oscillator

To describe the time evolution of the bubble radius R(t) in liquid water, a slightly modified
form [18] of the well-known Keller–Miksis equation [43] was used:(

1− Ṙ
cL

)
RR̈+

(
1− Ṙ

3cL

)
3
2

Ṙ2 =

1
ρL

(
1+

Ṙ
cL

)
(pL− p∞(t))+

R
ρLcL

d (pL− p∞(t))
dt

. (1)

This equation assumes spherical bubble and takes into account the compressibility of the
liquid domain, thus it incorporates sound radiation. The dot stands for the derivative with
respect to time. ρL and cL are the density and sound speed of the liquid, respectively. The
pressure at the bubble wall is pL while the pressure far away from the bubble is

p∞ = P∞ + pA sin(ωt), (2)

where P∞ is the static or ambient pressure, pA is the pressure amplitude and ω is the angular
frequency of the periodic excitation.

The relationship between the pressures inside and outside the bubble at the bubble wall
can be written as

pG + pV = pL +
2σ

R
+4µL

Ṙ
R
, (3)
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Table 1 Liquid properties calculated at T∞ = 25 oC and at P∞ = 1bar by means of the Haar–Gallagher–Kell
equation of state [44].

parameter value [unit]

pV 3166.8 [Pa]
σ 0.0720 [N/m]
µL 0.00089 [kg/ms]
ρL 997.064 [kg/m3]

where the total pressure inside the bubble is the sum of the partial pressures of the non-
condensable gas content pG and the vapour pressure pV . The surface tension is σ and the
liquid kinematic viscosity is µL. The gas inside the bubble obeys a simple polytropic rela-
tionship:

pG = pg0

(
R0

R

)3n

, (4)

where pg0 and R0 are the gas reference pressure and radius, respectively. Assuming adiabatic
state of change and diatomic molecules of the gas content, the polytropic exponent is set to
n = 1.4.

2.1 Parameters of the system

During the computations, the ambient pressure P∞ = 1bar and the ambient temperature T∞ =
25 oC were constants. These quantities specify all the liquid material properties, which were
determined by means of the Haar–Gallagher–Kell equation of state [44]. The values of the
material properties for water are listed in Table 1.

The bubble size is defined by the equilibrium radius RE of the unexcited system, which
is governed by the static mechanical balance at the gas-liquid interface:

0 = pg0

(
R0

RE

)3n

+ pV −P∞−
2σ

RE
. (5)

The reference pressure pg0 and reference radius R0 can be arbitrarily chosen. In this study,
the equilibrium radius RE is the main control parameter. Therefore, if R0 is set to be the
equilibrium radius RE , than the reference pressure can be determined from Eq. (5):

pg0 =
2σ

RE
− (pV −P∞). (6)

Finally, the pressure amplitude pA and the excitation frequency ω of the harmonic forc-
ing are regarded as secondary control parameters.

2.2 The dimensionless equation system

For the numerical simulations, Eqs. (1)-(4) need to be rewritten into a first order dimen-
sionless differential equation system. By the introduction of dimensionless time τ = tω/2π ,
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dimensionless bubble radius y1 =R/RE and bubble wall velocity y2 = 2πṘ/REω , the system
can be written as

y′1 = y2,

y′2 =
N
D
,

(7)

where ′ denotes the derivative with respect to τ . The numerator N is defined as

N =
(pL− p∞)

pre f y1
+

y2

µA
re f y1

(pG(1−3n)− p∞(τ)+ pV )

− pA cos(2πτ)

µB
re f

−
(

1− M
3

)
3
2

y2
2

y1
(8)

and the denominator D is
D = 1−M+

4µL

µre f y1
. (9)

The parameters in Eqs. (8) and (9) are defined as follows. The reference pressure is

pre f = ρLR2
E

(
ω

2π

)2
. (10)

The reference viscosities are

µre f = cLρLRE , (11)

µ
A
re f = cLρLRE

ω

2π
= µre f

ω

2π
, (12)

µ
B
re f = cLρLRE

ω

(2π)2 = µ
A
re f

1
2π

. (13)

The Mach number is
M =

REωy2

2πcL
. (14)

The gas pressure inside the bubble becomes

pG =

(
2σ

RE
− (pV −P∞)

)(
1
y1

)3n

. (15)

The pressure in the liquid domain at the bubble wall and the pressure far away from the
bubble are

pL = pG + pV −
2σ

REy1
−4µL

ω

2π

y2

y1
(16)

and
p∞(τ) = P∞ + pA sin(2πτ), (17)

respectively.
Since the angular frequency can vary on a scale of many orders of magnitude, it is

reasonable to normalize it with a suitable reference quantity. Therefore, a dimensionless
relative frequency was used for the computations defined as

ω f =
ω

ω0
, (18)
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where ω0 is the linear resonant frequency of the system. According to Brennen [45], ω0 can
be calculated from the following equation:

ω0 =

√
3n(P∞− pv)

ρLR2
E

+
2(3n−1)σ

ρLR3
E

−
4µ2

L

ρ2
LR4

E
. (19)

2.3 Numerical tools

Being system (7) strongly nonlinear, analytical solution is not known to exist. Slight changes
of the parameters may cause topologically different solutions. Therefore, to analyze the
system and to describe the oscillation structure of the bubble, one has to solve it numerically.

In the present study, system (7) was treated as an initial value problem (IVP). From
a fixed initial condition, the differential equation system was integrated forward in time
until the transient solution converged to an attractor. After the convergence of a solution,
its characteristic properties were saved such as points of the Poincaré section, period, or
maximum bubble radius [21]. This is a very common method to examine nonlinear systems
in general, for details see e.g. [46–49]. The IVP solver was a 4th order Runge–Kutta scheme
with 5th order embedded error estimation. In order to find all the relevant stable orbits, at
each parameter set, 5 IVPs were solved with randomly chosen initial conditions.

The basic means to explore the topological structure of the attractors were pressure am-
plitude response curves, where the first coordinate of the Poincaré plane P(y1) was plotted
versus the control parameter pA at different equilibrium radii RE . The number of the applied
equilibrium radii RE was 19 varied between 1 µm and 0.1m, and distributed logarithmically.
In each diagram, the pressure amplitude pA was varied between 1bar and 5bar with 0.01bar
increment. From the series of such bifurcation curves, two dimensional bi-parametric plots
(contour plots) were generated. In this pA−RE plane, the color-coded period of the sta-
ble solutions were presented in order to efficiently show the evolution of the bifurcation
structure.

3 Results

The computed pressure amplitude response curves and bi-parametric diagrams reveal the
strong similarities between the bifurcation structures obtained at different equilibrium radii
RE , if the relative frequency ω f is kept constant. In this section, we show few examples of
these diagrams, and discus that how our results extend Behnia’s findings [1].

3.1 Topological similarities of the bifurcation structures

Figure 1 shows eight pressure amplitude response curves at different equilibrium radii and
two excitation frequencies. The series of Fig. 1a-d corresponds to relative frequency ω f =
0.5, while Fig. 1e-h to ω f = 2. The results suggest that the bifurcation structure is indepen-
dent of the bubble radius approximately above RE = 5 µm. The main features of the two
kinds of bifurcation structures are as follows.

At low frequency (ω f = 0.5), the initial period 1 orbit, which is emerged from the di-
mensionless equilibrium radius y1,E = 1 of the unexcited system, undergoes a period dou-
bling (PD) bifurcation near pressure amplitude pA = 1bar and becomes unstable. Here, a
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narrow band of chaotic solutions also exists indicated by the scattered Poincaré points. The
upper branch of the period 1 curve, appeared via a saddle–node (SN) bifurcation, exhibits
Feigenbaum period doubling cascade transforming gradually into a large chaotic domain.

At the subharmonic resonant frequency (ω f = 2), the initial period 1 solution undergoes
a PD bifurcation at very low pressure amplitude pA. This is a well-known characteristic
properties of nonlinear systems excited at frequency value two times their resonant fre-
quency [36,50]. The emerged period 2 region exists approximately up to pressure amplitude
pA = 3bar. Meanwhile, a co-existing period 3 orbit appears via SN bifurcation and finishes
in PD cascade. Above pA = 3.5bar, the bifurcation structure alternates between periodic and
chaotic windows.

At bubble size lower than RE = 5 µm, the topology becomes more simple. The bifurca-
tion points are shifted towards higher pressure amplitudes, and the chaotic oscillations are
almost disappeared, see Fig. 1d and h.

For a better visualisation of the evolution of the bifurcation structure, two bi-parametric
plots were created at both relative frequency employing all the pressure amplitude response
curves computed at the prescribed 19 number of bubble sizes (Fig. 2 and 3). Instead of
the first component of the Poincaré section P(y1), here, the period of the found attractors
is presented to be able to easily trace the bifurcation points. The results in the pA − RE
plane show clearly that there is no sharp threshold (in terms of bubble size RE ) for the
conformity of the structure. The bifurcation points are gradually dislocated towards high
pressure amplitudes with decreasing equilibrium bubble radius. Consequently, any threshold
must be somehow an arbitrarily chosen value. Our choice, the previously prescribed RE =
5 µm, is highlighted by the red lines in Fig. 2 and 3.

A very similar observation was found by Behnia and his co-workers [1]. They stated that
the bifurcation structure of the pressure amplitude response diagrams are strongly similar
provided that REω is kept constant. This condition is not exactly the same as ours (ω f
is constant). The relationship between them will be explained in more details in the next
subsections. An important conclusion, however, have to be noticed here. Although Behnia
provided no validity limit for their condition, Fig. 2 and 3 reveal that it is not universal.

3.2 The dimensionless equation system with constant REω

In this subsection, Behnia’s condition is examined via dimensional analysis of system (7).
For simplicity, let us define C as

C =
REω

2π
. (20)

With constant C, parameters (10)-(14) read as follows:

pre f = ρLC2, (21)

µre f = cLρLRE , (22)

µ
A
re f = cLρLC, (23)

µ
B
re f = cLρL

C
(2π)

, (24)

and finally the Mach number at time τ is

M =
y2

cL
C. (25)
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Fig. 1 Pressure amplitude response curves of the dimensionless bubble radius. at the different relative fre-
quencies and equilibrium radii.

Equations (15)-(17) cannot be simplified further. The gas pressure pG and liquid pres-
sure pL are still affected by the surface tension σ and the liquid dynamic viscosity µL. Due
to the introduced dimensionless time τ , the pressure far away from the bubble p∞(τ) no
longer depends on ω , but still on the pressure amplitude pA.
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Fig. 2 Bi-parametric bifurcation structure of the bubble oscillator at relative frequency ω f = 0.5. The color-
bar represents the highest period of the found attractors in the pA−RE plane.

Fig. 3 Bi-parametric bifurcation structure of the bubble oscillator at relative frequency ω f = 2. The colorbar
represents the highest period of the found attractors in the pA−RE plane.

With the above listed equations, the numerator (8) and the denominator (9) become

N =
pG + pV

C2ρL
− 1

y1CρL

2σ

RE
− y2

y1C
4µL

ρLRE

+
y2

y1cLCρL
(pG(1−3n)− p∞(τ)+ pV )

− 1
2π

pA cos(2πτ)

cLCρL
−
(

3− y2

cL
C
)

1
2

y2
2

y1
, (26)

and

D = 1− y2

cL
C+

1
y1cL

4µL

ρLRE
, (27)

respectively. In the expressions N and D (including pG and pL), there are only two kinds of
parameters which are not constant when C is constant, namely,

2σ

RE
(28)
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and
4µL

ρLRE
. (29)

It follows that when the dynamic viscosity of the liquid µL and the surface tension σ are
negligible, the bifurcation structure does not change when C = REω/2π is kept constant.
This gives a precise explanation on why the bifurcation structures are similar on a wide
range of parameters in the study of Behnia [1]. But the influences of σ and µL with respect
to the equilibrium bubble radius RE have to be still clarified.

3.3 The linear resonance frequency of the bubble

Before proceeding with the discussion of the validity threshold in terms of RE , let us deter-
mine the relationship between the conditions of Behnia

REω = constant (30)

and the present study
ω f =

ω

ω0
= constant. (31)

The linear resonant frequency ω0 of the system, Eq. (19), multiplied by RE is

ω0RE =

√
3n(P∞− pv)

ρL
+

2(3n−1)σ
ρLRE

−
4µ2

L

ρ2
LR2

E
, (32)

which can be further simplified to

ω0RE =

√
3n(P∞− pv)

ρL
≈

√
3nP∞

ρL
(33)

if the effects of the surface tension σ and dynamic liquid viscosity µL are neglected. Ob-
serve that these assumptions are exactly the same as in case of Behnia’s condition (30), see
also Eqs. (28) and (29). The resonant frequency ω0 in Equation (33) is also known as the
Minnaert frequency [51]. With the material properties summarized in Table 1, the relation
ω0RE ≈ 20.1m/s holds. Now, it is clear that if REω is constant than the relative frequency

ω f =
ω

ω0
=

REω

REω0
(34)

is constant as well, implying that conditions (30) and (31) are identical when σ ,µ → 0.
The validity range of these two conditions is examined through the analysis of the linear

resonant frequency (19). Figure 4 shows how the two terms of Eqs. (28) and (29) effect ω0 in
a wide range of equilibrium radius on a logarithmic scale. The black line is the full equation,
the blue line represents the case when µL is neglected, and the red line shows the Minnaert
frequency, when both µL and σ are zero.

For equilibrium radii larger than about RE = 0.05 µm, there is no significant difference
between the black and the blue line, which means that in this range of the bubble size, the
effect of µL is negligible, see Fig. 4b. When both terms related to σ and µL are neglected (red
solid line), the linear resonance frequency starts to differ from the black line for equilibrium
radii smaller than about RE = 5 µm. Since the effect of the liquid dynamic viscosity is
not significant for bubble sizes larger than RE = 0.05 µm, here, the difference between the
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Fig. 4 The linear resonance frequency ω0 of the bubble as the function of the equilibrium radius RE . When
both the damping µL and the surface tension σ are taken into account, its evolution is shown by the black
line. The undamped eigenfrequency is shown by the blue line, and the red line shows when both µL and σ is
neglected (Minnaert frequency [51]).

black and the red lines is caused solely by the surface tension. These threshold values for
the bubble sizes are rather arbitrarily, as it is already stated before. But the findings are in
very good accordance with the results obtained by analyzing the bifurcation structure itself
(Fig. 1).

Although the bubble size distribution of a bubble cluster in water is highly frequency
dependent, it is possible to roughly estimate a typical bubble size, which is approximately
between RE = 1 µm and RE = 5 µm [52–55]. During the radial pulsation of the bubbles, they
can grow by rectified diffusion [56–58], but the experimental and numerical results have
shown that their size cannot exceed approximately RE = 10 µm due to the shape instability
[59,60]. Therefore, in water, the effect of liquid viscosity µL can definitely be negligible.
However, the observed bubble sizes are exactly in the range where the effect of surface
tension σ becomes important implying that the similarity in the bifurcation structure shall
be hard to verify experimentally.

Increasing the liquid viscosity, the shape stability can be increased significantly. Hegedűs
et. al. [61] observed stable bubble oscillations even at equilibrium bubble radius RE =
0.1mm in highly viscous glycerine. In case of very high viscosity, however, the effect of
µL can become dominant, which may cause much higher threshold value for conditions (28)
and (29) than RE = 5 µm. This implication is supported by the observation of Hegedűs and
Klapcsik [23], who found overdamped bubble oscillations in pure glycerine with liquid tem-
perature smaller than T∞ = 27 oC. This means negative value under the root in Eq. (19). An
intermediate solution can be the application of water–glycerine mixture, where the viscosity
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is high enough to increase the shape stability but not as high as to become important in the
calculation of the linear resonant frequency.

4 Conclusion

In the present study, the characterization of the bifurcation structure of a harmonically ex-
cited, single spherical bubble was presented. The used bubble oscillator was the Keller-
Miksis equation, and the liquid medium was water. Results show in accordance with Behnia
et al. [1] that when the value of REω is kept constant, the bifurcation structure of the pressure
amplitude response curves are strongly similar. Examining the bubble oscillator analytically
and numerically, we found that this condition is not universal, but it depends on the liquid
dynamic viscosity µL and the surface tension σ . In water, the effect of the viscosity µL is
negligible, and the surface tension σ plays significant role only if the equilibrium radius is
smaller than approximately RE = 5 µm.
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61. F. Hegedűs, S. Koch, W. Garen, Z. Pandula, G. Paál, L. Kullmann, U. Teubner, Int. J. Heat Fluid Fl. 42,

200 (2013)


