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Abstract

We derive a simple formula characterizing the distribution of the size of the connected
component of a fixed vertex in the Erdős-Rényi random graph which allows us to give
elementary proofs of some results of [8] and [10] about the susceptibility in the subcritical
graph and the CLT [4] for the size of the giant component in the supercritical graph.
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1 Introduction

The Erdős-Rényi graph Gn,p, introduced in [7], is the random graph on n vertices where
each pair of vertices is connected with probability p, independently from each other. For an
introduction to this fundamental mathematical model of large networks, see [5, 11, 9].

We denote by Pn,p the law of Gn,p and En,p the corresponding expectation.
We assume that the vertex set of Gn,p is [n] = {1, . . . , n} and we denote by C the connected

component in Gn,p of the vertex indexed by 1. We denote by |C| the number of vertices of C.
For any n ∈ N, p ∈ [0, 1], j ∈ Z ∩ (−n,+∞), and k ∈ [n] we define

gn,p(j, k) = (1− p)jk
k−1∏
i=0

n− i+ j

n− i
. (1.1)

The central result of this short note is the following formula.

Proposition 1.1. For any n ∈ N, j ∈ Z ∩ (−n,+∞) and p ∈ [0, 1] we have

En,p [ gn,p(j, |C|) ] =
n+ j

n
(1− Pn+j,p[ |C| > n ]) . (1.2)

Note that if j ≤ 0 then the r.h.s. is simply n+j
n . We prove Proposition 1.1 in Section 2.

Remark 1.2. Let us define the n× n matrix M by Mj,k = gn,p(j, k) for j ∈ Z ∩ (−n, 0] and
k ∈ [n]. The matrix M is triangular with non-zero diagonal entries, hence it is invertible.
Therefore Proposition 1.1 uniquely characterizes the distribution of |C| under Pn,p.

Proposition 1.1 allows us to give short and self-contained proofs of some delicate results
about the sizes of connected components of the Erdős-Rényi graph in the subcritical (see
Theorem 1.4) as well as the supercritical (see Theorem 1.6) cases. First, we give a short
non-rigorous demonstration of how our formula is used in Remark 1.3.
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When we study the phase transition of the Erdős-Rényi graph, it is natural to introduce
a parameter t ∈ R+ and to study Gn,p for

p = p(t, n) = 1− e−t/n. (1.3)

We will fix this relation between p and t throughout this paper.
For any n ∈ N, λ ∈ R, and k ∈ [n] we define

fn,t(λ, k) =
k−1∏
i=0

e−λt ·

(
1 +

λ

1− i
n

)
, (1.4)

so that we have fn,t(
j
n , k) = gn,p(j, k) if j ∈ Z ∩ (−n,+∞) and thus

En,p [ fn,t(λ, |C|) ]
(1.2)
= (1 + λ)

(
1− P(1+λ)n,p[ |C| > n ]

)
, λ ∈ Z

n
∩ (−1,+∞). (1.5)

Remark 1.3. If we fix t < 1 and (non-rigorously) denote Gt(z) = limn→∞ En,p(n,t)[z|C|] for
any z ∈ [0, 1], then for λ = z − 1 we (non-rigorously) obtain

z = 1 + λ
(1.5)
= lim

n→∞
En,p(n,t) [fn,t(λ, |C|)]

(1.4)
= Gt

(
e−λt · (1 + λ)

)
= Gt

(
e(1−z)tz

)
. (1.6)

Now it is known that if p = 1 − e−t/n and n → ∞ then |C| converges in distribution to
the total number of offspring in a subcritical Galton-Watson branching process with POI(t)
offspring distribution (see [3, Section 10.4]), i.e., |C| has Borel distribution with parameter t
(see [2, Section 2.2] or [10, Section 7]). The generating function Gt of the Borel distribution
with parameter t is known to be characterized by the identity Gt(z) ≡ ze(Gt(z)−1)t (see [3,
Sections 10.4 and 10.5]), which is in turn equivalent to z ≡ Gt

(
e(1−z)tz

)
, therefore a more

rigorous version of (1.6) can be used to show that the distribution |C| weakly converges to the
Borel distribution with parameter t as n→∞.

Now we state our rigorous results. We will use the Bachmann-Landau big O notation: we
write f(n, t) = O (g(n, t)) if there exists a universal constant C such that f(n, t) ≤ Cg(n, t)
for any n ∈ N and any t in an explicitly specified domain. We write f(n) = O (g(n)) if there
exists a constant C (that may depend on t) such that f(n) ≤ Cg(n) for any n ∈ N.

We will give a short and self-contained proof of some results of [8] and [10]:

Theorem 1.4. For any t ∈ [0, 1− n−1/3] we have

En,p(|C|) =
1

1− t
+

t2

2 − t
(1− t)4

1

n
+O

(
1

(1− t)7

1

n2

)
, (1.7)

En,p(|C|2) =
1

(1− t)3
+O

(
1

(1− t)6

1

n

)
. (1.8)

We will prove Theorem 1.4 in Section 3.

Remark 1.5. En,p(|C|) is often called the susceptibility of the Erdős-Rényi graph.

(i) Equation (1.15) of [8, Theorem 1.2] states that if p = µ
n−1 and 0 < µ < 1 then

En,p(|C|) =
1

1− µ
− 2µ2 − µ4

2(1− µ)4

1

n
+O

(
1

n2

)
. (1.9)

Now (1.9) follows from (1.7) if we take into account that µ = (n − 1)(1 − e−t/n). The
proof of (1.9) in [8, Section 2] uses a coupling of the breadth-first exploration process of
C and a process related to a branching random walk. Our proof of (1.7) is completely
different as it only uses Proposition 1.1.
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(ii) Equation (1.3) of [10, Theorem 1.1] follows from our (1.7). In fact it already follows from
our short Lemma 3.2, see (3.7). Our (1.8) is equivalent to one of the statements about
S3 in [10, Theorem 3.4]. The proofs of these results in [10, Section 3] use differential
equations (in the variable t) and are completely different from ours.

(iii) Both statements of Theorem 1.4 give something meaningful in the whole subcritical
regime outside the critical window, e.g., the first term of the r.h.s. of (1.7) is much
bigger than the second one, which is much bigger than the third one if (1− t)3n� 1.

We also give a short and self-contained proof of the central limit theorem for the size of
the giant connected component of Gn,p, [4, Theorem 1.1], which only uses Proposition 1.1, see
Theorem 1.6 below. We begin with some notation.

Given some t > 1 let us define the function ϕ : [0, 1)→ R by

ϕ(x) = −xt− ln(1− x). (1.10)

Then ϕ is a convex function satisfying ϕ(0) = 0, ϕ′(0) < 0 and ϕ(1−) = +∞.
Given t > 1 define θ = θ(t) ∈ (0, 1) to be unique number for which

ϕ(θ) = 0, or, equivalently etθ(1− θ) = 1. (1.11)

We note that

ϕ′(θ) = −t+
1

1− θ
> 0. (1.12)

Recall the notion of p = p(t, n) = 1− e−t/n from (1.3).

Theorem 1.6. Let us denote by |Cmax| the size of the largest connected component of Gn,p.
For any t > 1 we have

lim
n→∞

Pn,p(t,n)

[
|Cmax| − θn

σ
√
n

≤ x
]

= Φ(x), where σ =

√
θ

ϕ′(θ)
√

1− θ
(1.13)

and Φ(x) is the c.d.f. of the standard normal distribution.

We prove Theorem 1.6 in Section 4. Our proof is completely different from the proof of
[4], which uses exploration processes. In contrast to [4, Theorem 1.1], our elementary proof
does not provide information about the rate of convergence to the limit distribution.

Remark 1.7. We believe that (1.2) can also be used to give elementary alternative proofs
of other results on the size of the connected component of a fixed vertex in the Erdős-Rényi
graph, e.g. the relation between the scaling limit of |C| in the critical window and the excursion
length measure of Brownian motion with parabolic drift (see [1, Section 5.2]) or finding the
time t for which d

dt ln(En,p(n,t)(|C|)) is maximal (see [12]).

We discuss the origins and possible extensions of (1.2) to other models in Remark 2.2.

2 Proof of Proposition 1.1

Lemma 2.1. For any M,N ∈ N, p ∈ [0, 1], and k ∈ {1, . . . , N} we have

PM,p[ |C| = k ] = PN,p[ |C| = k ] · (1− p)(M−N)k
k−1∏
i=1

M − i
N − i

. (2.1)
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Proof. If k > M then both sides of (2.1) are zero. Thus w.l.o.g. we can assume k ≤ M ∧N .
Now we observe that if we prove (2.1) for some M ≤ N , then we also obtain (2.1) for M ′ = N
and N ′ = M by rearranging the formula (2.1), thus we may assume w.l.o.g. that k ≤M ≤ N .
In order to prove (2.1) it is enough to show(

M − 1

k − 1

)−1

PM,p[ |C| = k ] · (1− p)k(N−M) =

(
N − 1

k − 1

)−1

PN,p[ |C| = k ]. (2.2)

Now if we denote by V (C) the vertex set of C then

PN,p[ |C| = k ] =

(
N − 1

k − 1

)
PN,p[V (C) = [k] ], (2.3)

since PN,p is invariant under the permutation of vertices and there are
(
N−1
k−1

)
subsets of [N ]

with cardinality k that contain the vertex indexed by 1. Using (2.3) for PN,p as well as PM,p,
the formula (2.2) reduces to showing

PM,p[V (C) = [k] ] · (1− p)k(N−M) = PN,p[V (C) = [k] ]. (2.4)

Now (2.4) holds since V (C) = [k] in GN,p if and only if V (C) = [k] in GM,p and there are no
edges in GN,p between [k] and [N ] \ [M ]. This completes the proof of Lemma 2.1.

Proof of Proposition 1.1. For any n ∈ N, j ∈ Z ∩ (−n,+∞) and p ∈ [0, 1] we have

En,p [ gn,p(j, |C|)]
(1.1)
=

n+ j

n

n∑
k=1

Pn,p[ |C| = k ] · (1− p)jk
k−1∏
i=1

n+ j − i
n− i

(∗)
=

n+ j

n

n∑
k=1

Pn+j,p[ |C| = k ] =
n+ j

n
(1− Pn+j,p[ |C| > n ]) , (2.5)

where in (∗) we used (2.1) with n = N and M = n+ j. The proof of (1.2) is complete.

Remark 2.2.

(i) Our original proof of Proposition 1.1 used the so-called rigid representation of the time
evolution of the component size structure of the Erdős-Rényi graph, see [13, Section
6.1.1, Case 1]. In a nutshell, if Yk = t − Xk, k ∈ [n], where X1, X2, . . . , Xn denote
independent exponentially distributed random variables Xk ∼ EXP

(
1− k

n

)
, then τ =

min{ k : Y1+· · ·+Yk < 0 } has the same distribution as |C| under Pn,p, p = 1−e−t/n. We
chose to include an elementary proof instead in order to keep the paper self-contained.

(ii) It is formally possible to extend Proposition 1.1 (in particular (2.4)) to the inhomoge-
neous random graph model of [6], however it is hard to assess at this point whether the
resulting generalization of (1.2) is simple enough to be useful.

3 Proof of Theorem 1.4

The basic idea is to treat En,p [gn,p(j, |C|)] as the generating function of |C|, c.f. Remark 1.3.
Thus if we want to obtain information about the first and second moments of |C|, we have
to “differentiate” with respect to the variable j twice. Since j can only take integer values,
we have to consider the first order discrete differences gn,p(j, |C|)− gn,p(0, |C|) for j = −1 and
j = −2 in the proof of Lemmas 3.2 and 3.4, and the second order discrete difference (i.e., the
difference of the first order differences) in the proof of Lemma 3.5.
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The statement of Lemma 3.1 is equivalent to [10, Lemma 3.2] (which is proved using
differential equations), moreover it also classically follows from the fact that |C| is stochastically
dominated by a subcritical branching process if t < 1. Despite of this, we chose to include a
proof of Lemma 3.1 which only uses Proposition 1.1 in order to keep the paper self-contained.

Recall our convention p = 1− e−t/n from (1.3).

Lemma 3.1. If t ∈ (0, 1) then

En,p
(
|C|i
)

= O
(

1

(1− t)2i−1

)
, i ∈ N. (3.1)

Proof. W.l.o.g. we assume t ∈ [1
2 , 1) and 100

1−t ≤ n. For any j ≥ 0 we have

En,p

[(
e−tj/n

(
1 +

j

n

))|C|] (1.4)

≤ En,p
[
fn,t

(
j

n
, |C|

)]
(1.5)

≤ 1 +
j

n
. (3.2)

Note that if we let λ̃ = 1
t −1 then we have maxλ e

−λt(1 +λ) = e−λ̃t(1 + λ̃) = 1
t e
t−1 > e

1
2

(1−t)2 .
Thus choosing j∗ = bn ·

(
1
t − 1

)
c we can use 100

1−t ≤ n to infer

e−tj
∗/n

(
1 +

j∗

n

)
≥ e

1
4

(1−t)2 , (3.3)

therefore for any i ∈ N we have

1 +
1

i!

1

4i
(1− t)2iEn,p

(
|C|i
)
≤ En,p

[ ∞∑
`=0

(
1
4(1− t)2|C|

)`
`!

]
=

En,p
[
e

1
4

(1−t)2|C|
] (3.3)

≤ En,p

[(
e−tj

∗/n

(
1 +

j∗

n

))|C|] (3.2)

≤ 1 +
j∗

n
≤ 1

t
, (3.4)

from which (3.1) follows if t ∈ [1
2 , 1).

Lemma 3.2. For any t ∈ [0, 1) we have

1 = (1− t)En,p(|C|) +

(
t− t2

2

)
En,p(|C|2)

n
+

(
t2

2
− t3

6

)
En,p(|C|3)

n2
+O

(
1

(1− t)7n3

)
. (3.5)

Before we prove Lemma 3.2, let us state the immediate

Corollary 3.3. Applying (3.1) to En,p(|C|3) in (3.5) we obtain

En,p(|C|) =
1

1− t
+

t2

2 − t
1− t

En,p(|C|2)

n
+O

(
1

(1− t)6n2

)
, t ∈ [0, 1− n−1/3]. (3.6)

Applying (3.1) to En,p(|C|2) in (3.6) we obtain

En,p(|C|) =
1

1− t
+O

(
1

(1− t)4n

)
, t ∈ [0, 1− n−1/3]. (3.7)

Proof of Lemma 3.2. Let k ∈ [n]. We begin with with observing that (1.1) is a telescopic
product if j = −1 and then we apply Taylor expansion:

gn,p(−1, k)
(1.1),(1.3)

= etk/n
(

1− k

n

)
=

(
3∑
i=0

1

i!

tiki

ni
+O

(
k4

n4

))(
1− k

n

)
= 1 + (t− 1)

k

n
+

(
t2

2
− t
)
k2

n2
+

(
t3

6
− t2

2

)
k3

n3
+O

(
k4

n4

)
. (3.8)
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Combining (3.8) with Proposition 1.1 we obtain

1− 1

n
= 1 + (t− 1)

En,p(|C|)
n

+(
t2

2
− t
)

En,p(|C|2)

n2
+

(
t3

6
− t2

2

)
En,p(|C|3)

n3
+O

(
En,p(|C|4)

n4

)
. (3.9)

Subtracting one from both sides of (3.9), multiplying the result by −n and applying (3.1) to
En,p(|C|4), we obtain (3.5).

Lemma 3.4. For any t ∈ [0, 1− n−1/3] we have

− 2 = (2t− 2)En,p[|C|] + (1− 4t+ 2t2)
En,p[|C|2]

n
− En,p[|C|]

n
+

(2t− 4t2 +
4

3
t3)

En,p[|C|3]

n2
+O

(
1

(1− t)7n3

)
. (3.10)

Proof. Let k ∈ [n]. We begin with a calculation similar to (3.8):

gn,p(−2, k)
(1.1),(1.3)

= e2tk/n

(
1− k

n

)(
1− k

n− 1

)
=(

3∑
i=0

1

i!

2itiki

ni
+O

(
k4

n4

))(
1− k

n

)1− k

n

 2∑
j=0

1

nj
+O

(
1

n3

) =

1 + (2t− 2)
k

n
+ (1− 4t+ 2t2)

k2

n2
− k

n2
+ (2t− 4t2 +

4

3
t3)

k3

n3
+ (1− 2t)

k2

n3
− k

n3
+O

(
k4

n4

)
.

(3.11)

From (3.11) and Proposition 1.1 we obtain

1− 2

n
= 1 + (2t− 2)

En,p[|C|]
n

+ (1− 4t+ 2t2)
En,p[|C|2]

n2
− En,p[|C|]

n2
+

(2t− 4t2 +
4

3
t3)

En,p[|C|3]

n3
+ (1− 2t)

En,p[|C|2]

n3
− En,p[|C|]

n3
+O

(
En,p[|C|4]

n4

)
. (3.12)

Subtracting one from both sides of (3.12), multiplying the result by n and applying (3.1) to
the last three terms of (3.12), we obtain (3.10).

Lemma 3.5. For any t ∈ [0, 1− n−1/3] we have

En,p(|C|2) =
En,p(|C|)
(1− t)2

+O
(

1

(1− t)6n

)
. (3.13)

Proof. Adding (3.10) to twice (3.5) we obtain

0 = (1− 2t+ t2)
En,p(|C|2)

n
− En,p(|C|)

n
+ (t3 − 3t2 + 2t)

En,p(|C|3)

n2
+O

(
1

(1− t)7n3

)
. (3.14)

Rearranging (3.14) and multiplying by n we obtain

En,p(|C|) = (1− t)2En,p(|C|2) + t(t− 1)(t− 2)
En,p(|C|3)

n
+O

(
1

(1− t)7n2

)
. (3.15)

Dividing both sides of (3.15) by (1− t)2 we use (3.1) to obtain (3.13).

Proof of Theorem 1.4. From (3.7) and (3.13) we obtain (1.8).
Plugging (1.8) into (3.6) we obtain (1.7).
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4 Proof of Theorem 1.6

We will deduce Theorem 1.6 (i.e., the CLT for |Cmax|) from Lemma 4.1 (i.e., the CLT for |C|).
We deduce Lemma 4.1 from Lemmas 4.2 and 4.3 using that convergence of moment generating
functions implies weak convergence of probability distributions. We prove Lemmas 4.2 and
4.3 by viewing (1.5) as moment generating function identity. The crux of the proof of Lemma
4.2 is (4.24) and the crux of the proof of Lemma 4.3 is (4.38).

Throughout this section we fix t > 1. Recall the notion of ϕ : [0, 1)→ R from (1.10) and
θ = θ(t) ∈ (0, 1) from (1.11). Recall the notion of p = p(t, n) = 1− e−t/n from (1.3).

We will often use the shorthand P for Pn,p(n,t) and E for En,p(n,t).
If X is a random variable and A is an event, we will denote E(X;A) := E(X1A).

Lemma 4.1. Let us define σ as in (1.13). For any x ∈ R we have

lim
n→∞

Pn,p(n,t)
[
|C| − θn
σ
√
n
≤ x

]
= (1− θ) + θΦ(x). (4.1)

Before we prove Lemma 4.1, we use it to prove Theorem 1.6.

Proof of Theorem 1.6. Given some γ ∈ R+, let us define the events

An,γ = { Gn,p has a component bigger than θn+ γ
√
n }, (4.2)

Bn,γ = { Gn,p has at least two components bigger than θn− γ
√
n }, (4.3)

Cn,γ = { Gn,p has a component bigger than θn− γ
√
n }. (4.4)

Before we deduce Theorem 1.6 from Lemma 4.1, we will first show

lim
γ→∞

lim sup
n→∞

Pn,p(n,t)[An,γ ] = 0, (4.5)

lim
γ→∞

lim sup
n→∞

Pn,p(n,t)[Bn,γ ] = 0, (4.6)

lim
γ→∞

lim inf
n→∞

Pn,p(n,t)[Cn,γ ] = 1. (4.7)

Proof of (4.5): Since |C| is a size-biased sample from the collection of component sizes
of the graph Gn,p, we have P [|C| > θn+ γ

√
n] = P

[
|C| > θn+ γ

√
n
∣∣An,γ]P[An,γ ] ≥ θP[An,γ ],

thus from (4.1) we can infer (4.5).

Proof of (4.6): Let v = min{[n] \ C} and let C∗ denote the connected component of the
vertex v in Gn,p. If C = [n], let C∗ = ∅. Note that C ∩ C∗ = ∅ and that we have

Pn,p
[
|C∗| = `

∣∣ |C| = k
]

= Pn−k,p [ |C| = ` ] . (4.8)

Let us denote ñ = bn− θn+ γ
√
nc. We have(

θ − γ√
n

)2

P[Bn,γ ] ≤ P
[{
|C|
n
> θ − γ√

n

}
∩
{
|C∗|
n

> θ − γ√
n

}
∩Bn,γ

]
=

P
[
|C∗| > θn− γ

√
n
∣∣ |C| > θn− γ

√
n
]
P
[
|C| > θn− γ

√
n
]
≤

P
[
|C∗| > θn− γ

√
n
∣∣ |C| > θn− γ

√
n
] (4.8)

≤ Pñ,p
[
|C| > θn− γ

√
n
]
≤

Eñ,p [|C|]
θn− γ

√
n
. (4.9)

Now we observe that Gñ,p is a subcritical Erdős-Rényi graph, since

lim
n→∞

ñp
(1.3)
= lim

n→∞
bn− θn+ γ

√
nc · (1− e−t/n) = (1− θ)t

(1.12)
< 1.
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Now Eñ,p [|C|] remains bounded as n→∞ by (3.1), hence (4.6) follows from (4.9).

Proof of (4.7): Let us define Dn,γ = Acn,γ ∩Bc
n,γ ∩ Cn,γ .

Now we bound the probability of Cn,γ from below.

P
[
|C| > θn− γ

√
n
]

= P
[{
|C| > θn− γ

√
n
}
∩ Cn,γ

]
≤

P
[
|C| > θn− γ

√
n
∣∣ Dn,γ ]P[Dn,γ ] + P[An,γ ∩Bn,γ ] ≤(

θ +
γ√
n

)
P[Dn,γ ] + P[An,γ ∩Bn,γ ] ≤

(
θ +

γ√
n

)
P[Cn,γ ] + P[An,γ ∩Bn,γ ]. (4.10)

From (4.1), (4.5), (4.6) and (4.10) we obtain (4.7) and

lim
γ→∞

lim
n→∞

Pn,p(n,t)[Dn,γ ] = 1. (4.11)

Proof of (1.13): We first note that if the event Dn,γ occurs then Gn,p has exactly one
component Cmax which satisfies |Cmax| ∈ [nθ−γ

√
n, nθ+γ

√
n ] and Cmax is the unique largest

component in Gn,p. Hence, for any a < b ∈ R we have

θ(Φ(b)− Φ(a))
(4.1),(4.11)

= lim
γ→∞

lim
n→∞

Pn,p(n,t)
[
|C| − θn
σ
√
n
∈ [a, b], Dn,γ

]
=

lim
γ→∞

lim
n→∞

Pn,p(n,t)
[
C = Cmax,

|Cmax| − θn
σ
√
n

∈ [a, b], Dn,γ

]
(4.11)

=

θ lim
n→∞

Pn,p(n,t)
[
|Cmax| − θn

σ
√
n

∈ [a, b]

]
. (4.12)

This completes the proof of Theorem 1.6 given Lemma 4.1.

We will deduce Lemma 4.1 from Lemmas 4.2 and 4.3 below.
Let us subdivide the interval [1, n) into five disjoint sub-intervals:

In = [1, n1/4), Jn = [n1/4, n3/4), Kn = [n3/4, θn− n5/8), (4.13)

Ĩn = [θn− n5/8, θn+ n5/8), K̃n = [θn+ n5/8, n). (4.14)

The choice of the exponents 1
4 , 3

4 and 5
8 above is somewhat arbitrary.

Lemma 4.2. We have
lim
n→∞

Pn,p(n,t) (|C| ∈ In) = 1− θ. (4.15)

Lemma 4.3. For any α ∈ R we have

lim
n→∞

(
Pn,p(n,t) (|C| ∈ In) + En,p(n,t)

(
αϕ′(θ)

|C| − θn√
n
− α2

2

θ

1− θ
; |C| ∈ Ĩn

))
= 1. (4.16)

Before we prove Lemmas 4.2 and 4.3, let us deduce Lemma 4.1 from them.

Proof of Lemma 4.1. First note that it follows from (4.15) and the α = 0 case of (4.16) that

lim
n→∞

Pn,p(n,t)
(
|C| ∈ Ĩn

)
= θ. (4.17)

Denote by µn the conditional distribution of |C|−θn√
n

given |C| ∈ Ĩn. We have

lim
n→∞

∫
exp

(
αϕ′(θ)x

)
dµn(x)

(4.15),(4.16),(4.17)
= exp

(
α2

2

θ

1− θ

)
, α ∈ R. (4.18)

The r.h.s. of (4.18) is the moment generating function of N
(

0, θ
1−θ

)
, thus it classically follows

from (4.18) that µn weakly converges to N
(
0, σ2

)
as n → ∞, where σ appears in (1.13).

Together with (4.15) and (4.17) this implies Lemma 4.1, given Lemmas 4.2 and 4.3.
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We will prove Lemma 4.2 in Section 4.1 and Lemma 4.3 in Section 4.2. The proofs will
make excessive use of (1.5). Let us now introduce some notation that will be used throughout.

For any λ ∈ (−1,+∞) and any n ∈ N let us define

λ∗n =
1

n
bnλc. (4.19)

Now λ∗n ∈ Z
n ∩ (−1,+∞), which is required if we want to use (1.5).

Having fixed t > 1, we note that λ∗n approximates λ well, i.e., we have

fn,t(λ
∗
n, k)

(1.4)
= fn,t(λ, k) exp

(
O
(
k

n

))
, e−t − 1 ≤ λ ≤ 1, 1 ≤ k ≤ e−t

2
n. (4.20)

We will often implicitly use that for any λ > −1 we have

fn,t(λ
∗
n, k) = 0 if n+ bnλc < k ≤ n and fn,t(λ

∗
n, k) ≥ 0 if k ∈ {1, . . . , n}. (4.21)

We note that if we let

λ̃ :=
1

t
− 1 then we have x̃ := max

λ
e−λt(1 + λ) = e−λ̃t(1 + λ̃) =

1

t
et−1 > 1. (4.22)

In Sections 4.1 and 4.2 we will dominate fn,t(λ, k) by fn,t(λ̃
∗
n, k) for k ∈ Jn (defined in (4.13))

in order to show that “nothing interesting happens” in the interval Jn.
We will write f(n) = Ω (g(n)) if there exists a constant c > 0 (that may depend on t) such

that f(n) ≥ cg(n) for any n ∈ N.

4.1 Proof of Lemma 4.2

Before we outline the strategy of the proof of Lemma 4.2 in the paragraph below (4.23), we
need to introduce some notation. Let us abbreviate

X = fn,t(−θ, |C|) and X∗ = fn,t((−θ)∗n, |C|).

Recalling the definition of the intervals In and Jn from (4.13), we have

1 + (−θ)∗n
(1.5)
= E [X∗; |C| ∈ In] + E [X∗; |C| ∈ Jn] + E

[
X∗; n3/4 ≤ |C|

]
. (4.23)

We will estimate the three terms on the r.h.s. of (4.23). We will show that the first term
approximates P (|C| ∈ In) as n→∞, while the second and third terms vanish as n→∞.

Before we start estimating the three terms of (4.23), we observe

fn,t(−θ, k)
(1.4),(1.11)

=
k−1∏
i=0

(
1− θ

1− θ

i
n

1− i
n

)
, k ∈ [n]. (4.24)

Note that (−θ)∗n > e−t − 1 for large enough n, since θ < 1 − e−t by (1.10) and (1.11), so
we can apply (4.20) in (4.25) and (4.29) below. Now we bound the three terms of (4.23).

First term:

E [X∗; |C| ∈ In]
(4.13),(4.20)

= E
[
XeO(n−3/4) ; |C| ∈ In

]
(4.13),(4.24)

= P (|C| ∈ In) +O
(

1√
n

)
.

(4.25)
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Second term (E [X∗; |C| ∈ Jn]):

e−(−θ)∗nt

(
1 +

(−θ)∗n
1− i

n

)
(1.11),(4.19),(4.22)

≤
(

1 + x̃

2

)−1

e−λ̃
∗
nt

(
1 +

λ̃∗n
1− i

n

)
, 1 ≤ i ≤ n3/4,

(4.26)

E [X∗; |C| ∈ Jn]
(1.4),(4.13),(4.26)

≤ E

[(
1 + x̃

2

)−|C|
fn,t(λ̃

∗
n, |C|); |C| ∈ Jn

]
(4.13)

≤

(
1 + x̃

2

)−n1/4

E
[
fn,t(λ̃

∗
n, |C|)

]
(1.5)
=

(
1 + x̃

2

)−n1/4 (
1 + λ̃∗n

) (4.19),(4.22)

≤ e−Ω(n1/4). (4.27)

Third term (E
[
X∗; n3/4 ≤ |C|

]
):

e−(−θ)∗nt

(
1 +

(−θ)∗n
1− i

n

)
≤ eθt(1− θ) (1.11)

= 1 for any i ≥ dn3/4e, (4.28)

E
[
X∗; n3/4 ≤ |C|

] (1.4),(4.28)

≤ fn,t((−θ)∗n, dn3/4e) (4.20)
= fn,t(−θ, dn3/4e)eO(n−1/4)

(4.24)

≤

exp

− θ

1− θ

dn3/4e−1∑
i=0

i

n

 eO(n−1/4) ≤ e−Ω(
√
n). (4.29)

The statement of Lemma 4.2 follows from (4.23), (4.25), (4.27) and (4.29).

4.2 Proof of Lemma 4.3

Before we outline the strategy of the proof of Lemma 4.3 in the paragraph below (4.31), we
need to introduce some notation. If we define

α̃n :=
b
√
nαc√
n

then

(
α√
n

)∗
n

(4.19)
=

α̃n√
n

and |α̃n − α| ≤
1√
n
. (4.30)

Let us abbreviate

Y ∗ = fn,t

(
α̃n√
n
, |C|

)
.

Recall the definitions of the five intervals from (4.13) and (4.14). We have(
1 +

α̃n√
n

)(
1− Pn+b

√
nαc,p[ |C| > n ]

)
(1.5)
= E[Y ∗; |C| ∈ In] + E[Y ∗; |C| ∈ Jn]+

E[Y ∗; |C| ∈ Kn] + E[Y ∗; |C| ∈ Ĩn] + E[Y ∗; |C| ∈ K̃n]. (4.31)

We will estimate the five terms on the r.h.s. of (4.31). We will show that the terms corre-
sponding to In and Ĩn in (4.31) approximate the terms corresponding to In and Ĩn in (4.16)
as n→∞, while the terms corresponding to Jn, Kn and K̃n in (4.31) vanish as n→∞.
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Before we start estimating the five terms of (4.31), we note that if k ∈ In ∪ Jn ∪Kn ∪ Ĩn
then we can use Taylor expansion of ln(1 + x) to obtain for any α ∈ R the formula

fn,t

(
α√
n
, k

)
(1.4)
= exp

(
− α√

n
kt+

k−1∑
i=0

ln

(
1 +

α√
n

1− i
n

))
=

exp

(
− α√

n
kt+

k−1∑
i=0

α√
n

1

1− i
n

− 1

2

k−1∑
i=0

α2

n

1

(1− i
n)2

+O
(

1√
n

))
=

exp

(
α√
n

(
−kt+ n

∫ k
n

0

1

1− x
dx

)
− α2

2

∫ k
n

0

1

(1− x)2
dx+O

(
1√
n

))
(1.10)

= exp

(
α
√
nϕ

(
k

n

)
− α2

2

k
n

1− k
n

+O
(

1√
n

))
. (4.32)

Now we can estimate the five terms on the r.h.s. of (4.31).
First term:

E[Y ∗; |C| ∈ In]
(1.10),(4.13),(4.32)

= P (|C| ∈ In) +O
(
n−1/4

)
. (4.33)

Second term: The bound

E[Y ∗; |C| ∈ Jn] ≤ e−Ω(n1/4) (4.34)

can be deduced analogously to (4.27) using that for large enough n we have

e
− α̃n√

n
t

(
1 +

α̃n√
n

1− i
n

)
(4.19),(4.22)

≤
(

1 + x̃

2

)−1

e−λ̃
∗
nt

(
1 +

λ̃∗n
1− i

n

)
, 1 ≤ i ≤ n3/4. (4.35)

Third term (E[Y ∗; |C| ∈ Kn]): We note

fn,t

(
α̃n√
n
, k
)

fn,t

(
(̃α−1)n√

n
, k

) (4.32)
= exp

(√
nϕ

(
k

n

)
+O(1)

)
(1.10),(1.11),(4.13)

≤ e−Ω(n1/8), k ∈ Kn, (4.36)

E[Y ∗; |C| ∈ Kn]
(4.36)

≤ e−Ω(n1/8)E

[
fn,t

(
˜(α− 1)n√

n
, |C|

)
; |C| ∈ Kn

]
(1.5)

≤ 2e−Ω(n1/8). (4.37)

Fourth term (E[Y ∗; |C| ∈ Ĩn]): If x ∈ [−n1/8, n1/8], i.e., if k = bθn+ x
√
nc ∈ Ĩn then

fn,t

(
α√
n
, k

)
(1.11),(4.32)

= exp

(
αϕ′(θ)x− α2

2

θ

1− θ
+O

(
n−1/4

))
, (4.38)

fn,t

(
α̃n√
n
, k

)
(4.30),(4.38)

= exp

(
αϕ′(θ)x− α2

2

θ

1− θ

)
+O

(
n−1/4fn,t

(
α̃n√
n
, k

))
, (4.39)

E[Y ∗; |C| ∈ Ĩn]
(1.5),(4.14),(4.39)

= E
[
exp

(
αϕ′(θ)

|C| − θn√
n
− α2

2

θ

1− θ

)
; |C| ∈ Ĩn

]
+O

(
n−1/4

)
.

(4.40)
Fifth term (E[Y ∗; |C| ∈ K̃n]): We observe that

fn,t

(
α̃n√
n
, bθn+ n1/8√nc

)
fn,t

(
(̃α+1)n√

n
, bθn+ n1/8

√
nc
) (4.38)

= exp
(
−ϕ′(θ)n1/8 +O(1)

) (1.12)

≤ e−Ω(n1/8), (4.41)
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exp

(
− α̃n√

n
t

)(
1 +

α̃n√
n

1− i
n

)
(1.12)

≤ exp

(
−

˜(α+ 1)n√
n

t

)1 +

(̃α+1)n√
n

1− i
n

 , bθn+ n1/8√nc ≤ i,

(4.42)

fn,t

(
α̃n√
n
, k

)
(1.4),(4.41),(4.42)

≤ e−Ω(n1/8)fn,t

(
˜(α+ 1)n√

n
, k

)
, bθn+ n1/8√nc ≤ k, (4.43)

E[Y ∗; |C| ∈ K̃n]
(4.14),(4.43)

≤ e−Ω(n1/8)E

[
fn,t

(
˜(α+ 1)n√

n
, |C|

)
; |C| ∈ K̃n

]
(1.5)

≤ 2e−Ω(n1/8). (4.44)

Finally, the proof of the fact that the error term Pn+b
√
nαc,p[ |C| > n ] that appears on the

l.h.s. of (4.31) goes to zero as n→∞ is analogous to the α = 0 case of (4.44). The statement
of Lemma 4.3 follows from (4.31), (4.33), (4.34), (4.37), (4.40) and (4.44).
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[13] J. B. Martin, B. Ráth. Rigid representations of the multiplicative coalescent with linear deletion. (submit-
ted), arXiv:1610.00891, 2016.

12


