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We consider in detail the calculation of the decay rate of high-energy superluminal neutrinos
against (charged) lepton pair Cerenkov radiation (LPCR), and neutrino pair Cerenkov radiation
(NPCR), i.e., against the decay channels ν → ν e+ e− and ν → ν ν ν. Under the hypothesis of a
tachyonic nature of neutrinos, these decay channels put constraints on the lifetime of high-energy
neutrinos for terrestrial experiments as well as on cosmic scales. For the oncoming neutrino, we
use the Lorentz-covariant tachyonic relation Eν =

√

~p2 −m2
ν , where mν is the tachyonic mass

parameter. We derive both threshold conditions as well as decay and energy loss rates, using the
plane-wave fundamental bispinor solutions of the tachyonic Dirac equation. Various intricacies of rest
frame versus lab frame calculations are highlighted. The results are compared to the observations
of high-energy IceCube neutrinos of cosmological origin.
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I. INTRODUCTION

We describe a calculation of the decay rate and energy loss rate of tachyonic (superluminal, “faster-than-light”)
neutrinos due to (charged) lepton pair Cerenkov radiation (LPCR) and neutrino pair Cerenkov radiation (NPCR).
These two decay channels proceed via virtual Z0 bosons. The processes are kinematically allowed for tachyonic (space-
like) neutrinos, and in the case of LPCR, above a certain energy threshold dependent on the neutrino mass. We base
our treatment on a Lorentz-covariant theory of tachyonic (faster-than-light) spin-1/2 particles, i.e., on the tachyonic
Dirac (not Majorana) equation [1–5]. Solutions of this equation [6–10] fulfill the Lorentz covariant dispersion relation

E = (~k 2−m2
ν)

1/2, where E is the energy and ~k is the spatial momentum vector, while mν is the tachyonic parameter,

corresponding to a negative Lorentz-invariant mass square −m2
ν . The quantity pµ pµ = E2 − ~k 2 = −m2

ν is Lorentz
invariant. (Again, we shall assume here that neutrinos are Dirac particles and use the tachyonic Dirac equation [1–5]
as a candidate for their physical description.)
Tachyonic kinematics are somewhat counter-intuitive. For example, tachyons accelerate as they lose energy. For a

subluminal (“tardyonic”) particle, one can perform a Lorentz transformation into the rest frame where the spatial
momentum k′ of the particle vanishes. For a tachyonic particle, one can show that, starting from a state with real
(as opposed to complex) energy

√
k2 −m2

ν , that the Lorentz-transformed momentum always remains greater or equal
than than mν , i.e., k

′ ≥ mν , and the Lorentz-transformed energy E′ remains real [10]. One thus cannot possibly enter
the rest frame where otherwise we would have k′ = 0, and the energy would become complex. All that we can do for
a tachyon is to transform into a frame where the Lorentz-transformed energy of the neutrino vanishes, i.e., we can
enforce E′ = 0, but not k′ = 0. The latter frame constitutes a (distant) analogue of the “rest frame” of a tachyonic

particle, where according to the classical dispersion relation, the fact that E = mν/
√
v2ν − 1 = 0 otherwise implies an

infinite velocity vν = ∞. All of these intricacies have to be taken into account in the calculation of threshold conditions
and decay rates.
Here, we analyze the decay of energetic tachyonic neutrino via LPCR and NPCR. In the calculation of the decay

and energy loss rates, we make extensive use of a recently developed formalism which expresses the solutions of the
tachyonic Dirac equation in terms of helicity spinors [6–10]. Indeed, helicity remains a good quantum number for
tachyonic solutions while the chirality operator does not commute with the tachyonic Dirac Hamiltonian, a fact which,
among other things, leads to a natural explanation for the V − A structure of the weak leptonic current [11]. On a
different issue, in particle physics, one usually carries out sums over the bispinor solutions using Casimir’s trick [12],
which is based on sum formulas that allow one to express the sum over the spin orientations of the spin-1/2 in a very
concise, analytic form. For the tachyonic Dirac equation, the analogous sum formulas have recently been found [6, 9],
in the helicity basis.
A further complication arises because the time ordering along a space-like trajectory of a tachyonic neutrino is not

unique. For a straight space-like trajectory with velocity vν > c, it is possible to boost into a system with velocity
u = c2/vν , where the tachyonic particle assumes an infinite velocity, according to the velocity addition theorem
v′ = (vν − u)/(1 − u vν/c

2). Because vν > c, we still have u = c2/vν < c, which makes the boost permissible. A
boost into any frame with velocity u′ (with u < u′ < c) will reverse the time ordering along a tachyonic trajectory.
The time ordering problem for a tachyonic trajectory is connected with the problem that some fundamental tachyonic
particle operators necessarily transform into tachyonic antiparticle operators upon Lorentz transformation [13–21].
For the decay of a tachyonic neutrino into an electron-positron pair, this consideration implies that one is at risk of
picking up a contribution from neutrino-antineutrino annihilation when considering the decay of an incoming tachyonic
neutrino. One can avoid this pitfall by introducing helicity projectors; these eliminate the spurious contribution from the
annihilation channel. A clear exposition of the underlying formalism is one of the purposes of the current investigation.
The observation of highly energetic cosmic neutrinos by the IceCube collaboration [22–24] puts constraints on the

superluminality of neutrinos because they need to “survive” the decay processes ν → ν e+ e− and ν → ν ν ν. So, if the
decay rate is otherwise sufficiently large in order to account for a substantial energy loss on interstellar time and distance
scales, then one may relate the tachyonic threshold to a conceivable high-energy cutoff of the cosmic neutrino spectrum
at a threshold energy E = Eth ≈ 2PeV [22–24]. Namely, in principle (see Ref. [25]), the tachyonic theory allows us to
express the threshold energy as a function of the electron and neutrino masses, Eth = f(me,mν); a specific value of
the threshold thus implies a definite value of mν and also determines a numerical value for δν = v2ν/c

2 − 1, because of

the dispersion relation E = mν/δ
1/2
ν . However, all these conjectures crucially depend on the overall magnitude of the

decay and energy loss rates: If these should turn out to be negligible on cosmic distance and time scales, then it will
be impossible to relate the tachyonic mass parameter to the cutoff; hence, it is very important to have explicit results
for the decay rates at hand.
We here continue a series of investigations, continued over the last decades, on tachyonic particles [13, 15–18, 26, 27]

in general and spin-1/2 particles and the superluminal neutrino hypothesis in particular [1, 19–21, 28–30]. The latter
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FIG. 1. The incoming and outgoing momenta, for lepton pair Cerenkov radiation (LPCR), from a
tachyonic neutrino, are used as indicated in the Feynman diagram (a). The arrow of time is from
bottom to top. The four-momentum of the incoming highly energetic superluminal neutrino carries
a subscript 1; it decays into a neutrino of lesser energy (subscript 3), while producing an electron-
positron pair (subscripts 2 and 4). In Fig. (b), the decay products are tachyonic neutrinos of the same
mass eigenstate as the oncoming one. The depicted process is referred to as neutrino-pair Cerenkov
radiation (NPCR).

include Lorentz-violating models [31–38] which lead to superluminality; such models have been applied to the analysis
of astrophysical data [39, 40]. Energy loss mechanisms due to LPCR have been subjected to alternative statistical
analyses [41], and compared to other energy loss mechanisms, e.g., due to neutrino splitting [42]. Neutrino speed
modifications have been linked to conceivable (local) variations in fundamental constants [43], and a connection of
neutrino speed and neutrino flavor oscillations has been highlighted in Ref. [44]. Gravitational interactions have also
been linked to neutrino speed modifications [45, 46]. In terms of conceptual questions underlying both spinless as well
as spin-1/2 tachyonic theories, including the stability of the vacuum, we refer to the discussion in Refs. [9, 47]. A
lengthy further discussion on the conceptual issues underlying the tachyonic model would otherwise be beyond the
current paper, which already is quite verbose.
We organize our investigations as follows. In Sec. II, we derive the energy threshold for LPCR as a function of the

tachyonic mass parameter mν . The derivation of the decay and energy loss rates due to lepton pair Cerenkov radiation
is described in Sec. III. For neutrino pair Cerenkov radiation, formulas can be found in Sec. IV. Phenomenological
consequences (IceCube data) are discussed in Sec. V. Units with ~ = c = ǫ0 = 1 are used throughout this paper.

II. THRESHOLDS, FERMI THEORY AND TACHYONIC DECAYS

A. Tachyonic Lepton Pair Threshold Based on a Space–Like Dispersion Relation

We consider the process shown in Fig. 1(a), which is lepton-pair Cerenkov radiation (LPCR). The threshold condition

reads as q2 = (E3−E1)
2−(~k3−~k1)2 ≥ 4m2

e, where q is the four-momentum of the virtual Z0 boson, while the incoming

and outgoing neutrino momenta are pµ1 = (E1, ~k1) and pµ3 = (E3, ~k3). Threshold is reached when, depending on the
geometry, the energy transfer from initial to final state is maximum, while the spatial momentum transfer is minimum.
This implies that a larger spatial momentum transfer actually is disfavored from a point of view of pair production,
because it leads to lesser values of q2. In other words, the greater the spatial momentum transfer, the smaller is the
four-momentum transfer. Geometrically, we want the outgoing spatial momentum to be as close to the incoming spatial
momentum as possible. At threshold, we can thus safely assume that the final neutrino state actually propagates into
the same direction as the initial state.
Threshold is reached for a collinear geometry of maximum symmetry. The incoming and outgoing tachyonic particles
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are on the mass shell, i.e., E1 =
√
k 2
1 −m2

ν and E3 =
√
k 2
3 −m2

ν . The four-vector notation can thus be reduced to
just two components, q = (E3, k3)− (E1, k1), and the momentum transfer q2 carried by the Z0 boson therefore reads
as follows,

q2 = (E1 − E3)
2 − (k1 − k3)

2 . (II.1)

Electron-positron pair production threshold is reached at

q2 =

(√
k 2
1 −m2

ν −
√
k 2
3 −m2

ν

)2

− (k1 − k3)
2 = 4m2

e . (II.2)

For minimum energy and momentum of the final neutrino state, we haveE3 = 0 and k3 = mν . Then, the condition (II.2)
transforms into

(k1)th = 2
m2

e

mν
+mν . (II.3)

The energy of the tachyonic neutrino at threshold is given as

(E1)th =
√
(k1)2th −m2

ν = 2
me

mν

√
m2

e +m2
ν ≈ 2

m2
e

mν
+mν +O

(
m3

ν

m2
e

)
, (II.4)

where the latter approximation is valid for δ ≪ 1. One can rewrite this result, based on the tachyonic dispersion
relation mν = E1

√
v2ν − 1 = E1

√
δν ,

(E1)th ≈ (k1)th = 2
m2

e

mν
+mν ≈ 2

m2
e

mν
= 2

m2
e

(E1)th
√
δν

⇒ (E1)th ≈
√
2
me

δ
1/4
ν

. (II.5)

We note that the tachyonic threshold is a definite function of the mass parametersmν andme of the tachyonic neutrino
and of the electron (positron), respectively.

B. Tachyonic Neutrino Pair Threshold Based on a Space–Like Dispersion Relation

In the previous section, we found that for electron-positron (charged lepton) pair production, threshold is reached
for a collinear geometry. In order to investigate the presence or absence of a threshold for tachyonic pair production
(i.e, with two outgoing tachyons), it is instructive to have a look at various geometries. Let us consider a pair of

tachyons, both of them on the mass shell, E2 − ~k 2 = −m2
ν. The outgoing particles of the pair are labeled with the

indices 2 and 4, as in Fig. 1. If we assume that the tachyons are emitted collinearly and with the same energy, then

pµ = (E,~k) = pµ2 = (E2, ~k2) = pµ4 = (E4, ~k4), and

q2 = (p2 + p4)
2 = 4pµpµ = 4 (~k2 −m2

µ)− 4~k 2 = −4m2
µ , (II.6)

which is negative. For two neutrinos of different energy, emitted collinearly. i.e., with ~k2 = k2 êz and ~k4 = k4 êz), one
has

E2 =
√
k 2
2 −m2

µ , E4 =
√
k 2
4 −m2

µ , (II.7a)

q2 =
(√

k 2
2 −m2

µ +
√
k 2
4 −m2

µ

)2
− (k2 + k4)

2 . (II.7b)

For small tachyonic mass parameter mν , a Taylor expansion yields

q2 = −
(
2 +

k2
k4

+
k4
k2

)
m2

ν +O(m4
ν) . (II.8)

In the limits k2 → 0, k4 → ∞ (or vice versa), q2 assumes very large negative numerical values, demonstrating the
absence of a lower threshold.
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One might ask, however, if there is perhaps a higher cutoff for the allowed q2 in relativistic tachyonic pair production
kinematics. For the production of an anti-collinear pair, one has

~k2 = k2 êz , ~k4 = −k4 êz , (II.9a)

E2 =
√
k 2
2 −m2

µ , E4 =
√
k 2
4 −m2

µ , (II.9b)

q2 =
(√

k 2
2 −m2

µ +
√
k 2
4 −m2

µ

)2
− (k2 − k4)

2

= 4k2k4 +O(m2
ν) . (II.9c)

For large k1 and k2, this expression assumes arbitrarily large positive numerical values. The only condition relevant
to the allowed range of q2 for tachyonic pair production thus is

−∞ < q2 <∞ , q0 > 0 . (II.10)

This result has important consequences for the calculation of neutrino-pair Cerenkov radiation (see Fig. 1(b)).

C. Tachyonic Maximum Momentum Transfer and Fermi Theory

One crucial question one might ask concerns the applicability of Fermi theory for the decay processes shown in
Figs. 1(a) and (b), in the high-energy regime. The question is whether the condition q2 ≪ M2

Z , which ensures the
applicability of Fermi theory, remains valid for a highly energetic, oncoming neutrino. Concerning this question, we
first recall that, as already shown, threshold for pair production is reached for collinear geometry, i.e., when the final
neutrino momentum k3 is along the same direction as the initial state momentum k1. This implies that the maximum
momentum transfer, for given energy E1 of the incoming particle, also is reached for collinear geometry. Reducing
space to one dimension, we find for the square q2 of the momentum transfer,

q2 =

(√
k21 −m2

ν −
√
k23 −m2

ν

)2

− (k1 − k3)
2

= 2

(
k1k3 −

√
k21 −m2

ν

√
k23 −m2

ν −m2
ν

)
. (II.11)

For given k1, maximum four-momentum transfer is reached when the momentum of the outgoing particle is equal to
k3 = mν , and thus E3 = 0. This implies that

q2max = 2mν (k1 −mν) ≈ 2k1mν . (II.12)

The condition for using the effective Fermi theory for the virtual Z0 boson exchange in Figs. 1(a) and (b) is q2 ≪M2
Z ,

which in the high-energy limit can be reformulated as

q2 ≈ 2k1mν ≈ 2E1mν ≪M2
Z , E1 ≪ M2

Z

mν
∼ (1011 eV)2

1 eV
∼ 1022 eV . (II.13)

where we have conservatively estimated the neutrino mass parameter to be on the order of 1 eV. (In general, one
estimates the neutrino masses to be of order (0.01 ÷ 0.05) eV, see Sect. 1 of Ref. [48] and the discussion around
Eq. (14.21) of Ref. [49].) The condition E1 ≪ 1022 eV = 107PeV is easily fulfilled by the most energetic neutrinos
seen by the IceCube collaboration [22, 23], which do not exceed ∼ 2PeV in energy. Hence, we can safely assume Fermi
theory to be valid in the entire range of incoming neutrino energies relevant for the current investigation.

D. “Rest” Frame of the Tachyon

Let us briefly analyze the role of the “rest frame” of the faster-than-light, incoming neutrino in the context of the
tachyonic dispersion relation E =

√
k2 −m2

ν . As is evident from a Minkowski diagram (see Fig. 2), the rest frame of
the tachyonic “space-like” neutrino cannot be reached via a Lorentz transformation. By contrast, for a tachyon, it is
possible to transform into a frame where the time interval (not the space interval!) swept on the tachyonic trajectory is
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FIG. 2. An incoming tachyonic neutrino follows the world line 1 7→ 2 7→ 3, decaying into a zero-energy, infinitely
fast neutrino [Fig. (a)]. In the primed frame in Fig. (a), the time ordering of the trajectory 2 7→ 3 is reversed. The
initial neutrino has turned into a zero-energy decay “product” in Fig. (b). Complete reversal of the time ordering
of the decay process takes place in Fig. (c), where the moving observer (in the triple-primed frame) interprets the
process as the decay of an incoming antineutrino along the trajectory 3 7→ 2 7→ 1. Further explanations are in the
text.

zero, i.e., the tachyonic particle assumes an infinite velocity. This frame of infinite velocity, in some sense, constitutes
the equivalent of the rest frame; namely, the incoming particle has zero time evolution (as opposed to zero space
evolution), and thus infinite velocity. According to tachyonic kinematics, it then has zero energy. For illustration, we
consider the boost into a frame with energy 0 < u < 1 (see Fig. 3),

E′ = γ (E − u k) , k′ = γ (k − uE) , E =
√
k2 −m2

ν . (II.14)

For a boost velocity u = E/k =
√
k2 −m2

ν/k < 1, we have E′ = 0, k′ = m.
One might be tempted to suggest that the decay rate calculation could be simplified in the tachyonic “rest” frame

(with respect to the time, not space, i.e., E′ = 0). However, in this frame, one cannot calculate the decay rate. This is
most easily seen from an energy conservation condition. The oncoming neutrino energy vanishes for infinite velocity
(E′ = 0). Hence, the oncoming particle cannot provide the energy necessary to produce an electron-positron pair.
By contrast and for comparison, for a tardyonic (subluminal) particle, the Dirac “gap” between positive-energy and

negative-energy states ensures that the energy of an oncoming, say, muon, is always bound by its rest mass mµ from
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FIG. 3. Lorentz-transformed momentum vector k′ and transformed energy E′ of a tachy-
onic neutrino, for boost velocities −1 < u < 1. In the lab frame (u = 0), we have k = 1.25
and −m2

ν = −(0.8)2. Under a Lorentz transformation, the modulus of the momentum
vector k′ indeed never gets smaller than k′ > mν (see the solid curve). The energy E′

(indicated by long dashes), however, can go to zero, and in fact changes sign at the point
where the modulus of the momentum vector just becomes equal to k′ = mν which is the
point of infinite velocity. (The constant curve k′ = mν is indicated via short dashes.)
When the energy E′ changes sign, the propagation direction of the neutrino changes sign,
and it moves in the negative x direction as opposed to the positive x direction. From the
plot (solid curve), one might think that the momentum component along the boost does
not change sign, but this is not physical. From the Minkowski diagram (see Fig. 2), one
sees that the neutrino is still moving along the positive x axis, but with the time ordering
of the start and end point interchanged.

below, even under a Lorentz transformation. Hence, the muon decay from rest, with E = mµ ≫ 2me, is kinematically
possible. Because the oncoming muon is timelike, the emitted virtual W boson can still carry enough momentum
transfer q2 > 0 in order to produce an electron, and an electron antineutrino. This is not the case for an oncoming
tachyonic neutrino, whose energy is not bound from below, and can in fact vanish. When the oncoming neutrino energy
vanishes, so does the decay rate.
Alternatively, one can observe that in its own rest frame (the “real rest frame” where the tachyon has a vanishing

spatial momentum), the neutrino has the following properties,

vν = 0, kν =
mνvν√
v2ν − 1

= 0, (II.15)

but

Eν = mν/
√
02 − 1 =

√
k2ν −m2

ν =
√
02 −m2

ν = imν . (II.16)

The energy becomes imaginary in its own rest frame. According to Fig. 3, the rest frame of a space-like, tachyonic
neutrino cannot be reached via a Lorentz transformation, consistent with the purely real (rather than complex)
quantities which enter Eq. (II.14). A further kinematic consideration is illustrative. Namely, according to Fig. 3, the
energy of the tachyonic particle decreases as one “chases” it, then approaches zero and eventually flips sign at boost
velocity u. For boost velocities beyond this point, the energy becomes negative, or alternatively, the time ordering
of the start and end point of the trajectory of the tachyon reverses. A left-handed tachyonic neutrino, for boost
velocities beyond u, would be seen as a right-handed antitachyon moving in the opposite spatial direction, for the
moving observer. The spatial momentum k′, as seen from Fig. 3, always remains in the region k′ ≥ mν . The region

with imaginary energies Eν = ±i

√
m2

ν − ~k2ν with kν < mν , never can be reached for an initial plane-wave tachyonic

state with kν > mν , via a Lorentz transformation.
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These considerations, together, afford an immediate explanation for the observation that the final result for the
decay rate must necessarily vanish with the energy of the oncoming neutrino, and in fact, shall later be seen to contain
the neutrino energy as a linear term. The calculation of the decay rate of the tachyonic neutrino needs to be done in
the laboratory frame (lab frame).

E. Particle–Antiparticle Transformations and Tachyonic Decays

A few final considerations regarding the time ordering of tachyonic world lines and the calculation of the decay rate
are in order. As already emphasized, decay rates are normally calculated most easily in the rest frame of the decaying
particle. For tachyons, we cannot go into the true rest frame of the decaying particle, because the frame with k′ = 0
cannot be reached for a tachyon, as already described. In the case of a tardyonic particle, there is an energy gap of twice
the rest mass between the spectrum of positive-energy (particle) versus negative-energy (anti-particle) states. This
energy gap vanishes for tachyons. A tardyonic oncoming particle state cannot transform into an incoming anti-particle
state, irrespective of the Lorentz frame in which the process is observed. This implies that, e.g., for the decay of an
oncoming muon into a muon neutrino, electron and electron anti-neutrino, there is no Lorentz frame in which the
same process would be observed as a time-reversed process, i.e., the annihilation of an incoming muon antineutrino
and an incoming muon, into a W boson, and the eventual production of an electron and an electron antineutrino.
Furthermore, it is known that the energy of a tachyonic particle may change sign upon a Lorentz transformation

(see Fig. 3), so that particle trajectories may become anti-particle trajectories (with the time ordering of start and end
points reversed). Indeed, the fact that some particle creation and annihilation operators transform into anti-particle
operator upon a Lorentz transformation, has been mentioned as an important problematic aspect of tachyonic field
theories [13–21], while possible re-interpretations have recently been discussed in Ref. [6].
For a tachyonic decay of an oncoming initial tachyonic neutrino into an electron-positron pair, and an energetically

lower neutrino, this means the following. The interpretation of the process may depend on the Lorentz frame in which
it is observed; tachyonic trajectories have no definite time ordering. (The only ordering in the tachyonic case concerns
the helicity: A left-handed particle state will transform into a right-handed anti-particle state, and vice versa.) The
decay of a highly energetic oncoming neutrino (“Big Bird”, see Refs. [22, 23]) into a energetically lesser one (“Tweety”)
via electron-positron pair production is interpreted equivalently as the annihilation of an incoming tachyonic neutrino,
and an incoming tachyonic anti-neutrino, in specific Lorentz frames [see Fig. 2(b)]. In other Lorentz frames, it is even
reinterpreted as the decay of an incoming highly energetic anti-neutrino, into a less energetic anti-neutrino and an
electron-positron pair [see Fig. 2(c)].
We now consider the kinematics of the tachyonic decays displayed in Fig. 2 in detail. In Fig. 2(a), the world-line

trajectories of the oncoming neutrino (joining space-time points labeled 1 and 2) and of the final zero-energy neutrino
(joining space-time points labeled 2 and 3) are displayed. When “chasing” the decaying neutrino with a Lorentz boost,
transforming the x and t axes into x′ and t′, respectively, then from visual inspection, it is evident that the time
ordering on the final decay product trajectory has reversed (t2 = t3 but t′3 < t′2). The decay product has turned into
an incoming antineutrino, and the Lorentz-transformed process describes neutrino-antineutrino annihilation (into an
electron-positron pair, but the world lines of the decay products are not displayed in Fig. 2). Physical reality has to
be ascribed to both interpretations [13–16]. The observation of the moving (“primed”) observer is equally valid. For
the lab frame, this means that unless we have a counter-propagating beam of antineutrinos, the neutrino-antineutrino
annihilation process does not contribute to the discussion of the “decay”, which only converts the oncoming highly
energetic neutrino into one with lesser energy.
Let us now consider Fig. 2(b). The incoming neutrino is chased by a “faster” Lorentz boost. The transformed axes

become x′′ and t′′, and the first, the decaying neutrino, now constitutes a zero-energy decay product, for the decay of
an incoming antineutrino (time-ordered trajectory 3 7→ 2). As the boost velocity crosses the x′′ and t′′ axes, the decay
“product” (from the point of view of the lab frame) has turned into an incoming, highly energetic, antineutrino, which
in the triple-primed frame in Fig. 2(c), decays into an energetically lower antineutrino (from the point of view of the
boosted frame). At the point where the x′′ and t′′ axes are crossed, the initial, incoming neutrino has transformed
into an outgoing zero-energy neutrino or anti-neutrino state (the interpretation changes exactly at the point where
the energy changes sign).
What do these considerations imply for the description of the tachyonic decay of a neutrino? We are working in

the lab frame, and we need to calculate the process in the lab frame. Processes with incoming anti-neutrinos must be
excluded from the integration, because they cannot contribute to the decay of an incoming neutrino. The interpretation
of a process involving tachyons may depend on the Lorentz frame; for the calculation of the decay rate, only processes
with incoming and outgoing positive-energy neutrino states may be considered, even if these states may transform into
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anti-particle states upon a Lorentz transformation. The final results are still Lorentz-invariant, as discussed below in
Sec. VC.

III. LEPTON PAIR CERENKOV RADIATION

A. Interaction Terms in Glashow–Weinberg–Salam Theory

In order to proceed to the calculation of the decay rate of the tachyonic, incoming neutrino, we briefly compile
known Lagrangians from standard electroweak theory (see also Appendix A). We denote the weak coupling constant
as gw. According to Chap. 12 of Ref. [50], quantum electrodynamics (QED) is described by the coupling of the electron
to the photon,

L1 = −gw sin θW (e γµe) Aµ , (III.1)

where θW is the Weinberg angle and e and e describe the electron-positron field operators, while Aµ is the electro-
magnetic field operator. Furthermore, the charged vector boson W± interacts with a neutrino-electron current,

L2 =

{
− gw

2
√
2

[
e γρ

(
1− γ5

)
νe
]
W+

ρ + h.c.

}
+

{
− gw

2
√
2

[
νµ γ

ρ
(
1− γ5

)
µ
]
W−

ρ + h.c.

}
, (III.2)

where the addition of the Hermitian adjoint is necessary in order to include the W+ boson. For the calculation of the
muon decay, one needs the full Lagrangian given in Eq. (III.2), even twice, namely, once for the muon–muon-neutrino
current, and a second time for the decay of the W into the electron and electron antineutrino, i.e., the same current
is used in the electron and in the neutrino sector.
For the decay process of the tachyonic neutrino, one needs the coupling of the neutrino to the Z0 boson,

L3 = − gw
4 cos θW

[
ν γµ(1− γ5) ν

]
Zµ , (III.3)

as well as the coupling of the left- and right-handed electron to the Z0 boson,

L4 =
gw

4 cos θW
e
[
γµ(1− γ5)− 4 sin2(θW ) γµ

]
e Zµ

= − gw
2 cos θW

e
[
cV γ

µ − cA γ
µ γ5

]
e Zµ ,

cV = − 1

2
+ 2 sin2(θW ) , cA = −1

2
. (III.4)

The latter form allows us to identify the vector-coupling and axial-vector coupling coefficient cV and cA. According to
Eq. (12.237) of Ref. [50], the vacuum-expectation value v of the Higgs, the weak coupling constants gw and g′w, and
the masses of the vector gauge bosons W±, Z0 and A, are related by

MW =
1

2
v gw , MZ =

1

2
v (g2w+g′2w )

1/2 , MA = 0 ,
MW

MZ
=

gw
(g2w + g′2w )

1/2
= cos θW ≈

√
3

2
≈ 0.877 . (III.5)

These values match the experimental observations of MW = 80.385(15)GeV/c2 and MZ = 91.1876(21)GeV/c2. The
matching with Fermi’s effective coupling constant is given as

GF√
2
=

g2w
8M2

W

. (III.6)

Let us anticipate a certain consideration regarding the prefactors encountered in the calculation of invariant matrix
elements, in the weak decay of the muon, and in the weak decay of a tachyonic neutrino. For the weak decay of the
muon, one uses the Lagrangian (III.2), whose prefactors give a numerical factor 1/(2

√
2)2 = 1/8. For the weak decay

by LPCR, we need to use the Lagrangians (III.3) and (III.4), whose combination results in a prefactor

(
− 1

4 cos θW

)
×
(
− 1

2 cos θW

)
=

1

8 cos2 θW
. (III.7)
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However, the weak decay of the tachyonic neutrino is mediated by a Z boson as opposed to a W boson, which results
in a factor

1

8 cos2 θW

g2w
M2

Z

=
g2w

8 (cos θWMZ)2
=
GF√
2
, (III.8)

which is the same prefactor that we encounter in the invariant matrix element for the weak decay of the muon.

B. Degrees of Freedom in Three–Body Decay

Let us analyze the degrees of freedom in the phase-space of the final state, in three-body decay of a tachyonic
neutrino into a less energetic neutrino, and a light fermion-antifermion pair. The momentum transfer is q2 > (2me)

2

from the first fermion line. The decay rate is then obtained as an integral over the differential decay rate,

dΓ = d3k1 d
3k2 d

3k3 δ
(4)(p1 + p2 + p3) . (III.9)

This decay rate is 9 times differential, with 4 conservation conditions. We thus have 5 effective free variables.

These can be assigned as follows: For the decay of a tachyonic neutrino via pair production, we may fix the three
momentum components of the outgoing neutrino. Because both the incoming as well as the outgoing neutrino have to
be on the mass shell, this fixes the four-vector qµ = pµ1 − pµ3 = (q0, ~q) completely. We can then go into the rest frame
of the virtual Z0 boson and argue that the decay must be completely symmetric there; i.e., the electron and positron
should come out in directions exactly opposite of each other. This gives us two more degrees of freedom, namely, the
polar and azimuthal angles of one of the outgoing fermions.

The three momenta of the outgoing neutrino and the two light fermion angles add up to the five effective degrees
of freedom. So, once we have qµ = (q0, ~q), we have only two degrees of freedom left for the electron-positron pair.

C. Rationale of the Investigation

The rationale behind the calculations reported below can be summarized as follows. We shall approach the eventual
calculation of the decay rate of a tachyonic neutrino due to electron-positron pair production in two steps.

• Step 1 (Complexities in the lab frame): As already emphasized, the tachyonic calculation, in which we are
eventually interested, requires us to consider amplitudes in the lab frame, as opposed to the rest frame of the
decaying particle. We thus need experience with calculations in the lab frame. The calculation of the muon
decay rate is in principle very well known for the rest frame of the decaying particle. Here, we generalize the

calculation to a muon decay rate calculation in the lab frame, where as we shall see, the allowed ~k3 momenta
(in the conventions used for Fig. 1) are inside an ellipsoid. Lorentz invariance of the integral over the allowed
outgoing momenta is explicitly shown.

• Step 2 (Decay of tachyonic, space-like particles): In the calculation of the decay rate of the tachyonic neutrino, we
assume (in the spirit of Fig. 1) that both the incoming as well as the outgoing neutrinos are on the tachyonic mass

shell, E1 = (~k 2
1 −m2

ν)
1/2 and E3 = (~k 2

3 −m2
ν)

1/2. Under these circumstances, tachyonic decay is made possible
exclusively due to the mass terms in the dispersion relations; hence we cannot ignore these terms. Furthermore,

as we have already discussed, we need to remember that the region with |~k3| < mν actually is excluded from
the region of allowed tachyonic momenta. We find that the physically allowed outgoing momenta are located
inside the rotationally symmetric, shallow hull of a cupola-like structure, centered about the axis of the oncoming
(decaying) neutrino (which we choose to be the positive z axis). As already anticipated in Sec. II E, we shall
need to explicitly exclude from the calculation any processes related to neutrino-antineutrino annihilation. This
necessity, in turn, makes the use of the explicit spinor solutions of the tachyonic Dirac equation [6, 9] necessary.

In the calculation, we also need to overcome the pitfall connected with the time ordering of the tachyonic trajectories,
anticipated in Sec. II E.

10



νe

µ

νµ

W−

e−

−p2 p4

p1

p3

FIG. 4. Conventions for muon decay.

D. Step 1: Integrating the Muon Decay Width in the Lab Frame

We shall consider the weak decay of the muon, in the conventions of Fig. 4. The interaction terms from the electroweak
standard model is used according to Eq. (III.2). For momentum transfers q2 ≪ M2

W , the effective four-fermion
Lagrangian thus is

L =
g2w

8M2
W

(
νµ γλ (1 − γ5)µ

) (
e γλ (1− γ5)νe

)

=
GF√
2

(
νµ γλ (1 − γ5)µ

) (
e γλ (1− γ5)νe

)
, (III.10)

where we use the matching (III.6). The Lorentz-invariant matrix element thus is (within the conventions of Fig. 4)

M =
GF√
2

(
u(p3) γλ (1− γ5)u(p1)

) (
u(p4) γ

λ (1 − γ5)v(p2)
)
. (III.11)

Summing over the final spin states and averaging over the spin projections of the initial state leads to

1

2

∑

spins

|M|2 =
G2

F

4
Tr
[
✁p3 γλ (1− γ5)(✁p1 +mµ)γν (1− γ5)

]
Tr
[
✁p2 γ

λ (1− γ5)(✁p4 +me)γ
ν (1− γ5)

]

=
G2

F

4
[256 (p1 · p2) (p3 · p4)] = 64G2

F (p1 · p2) (p3 · p4) . (III.12)

The procedure of integration in the rest frame of the decaying particle is discussed in Eq. (10.16) ff. of Ref. [12].
Furthermore, a mixed approach, where certain intermediate integrals are carried out covariantly, and only the final
stages of the calculation are carried out in the rest frame of the decaying particle, is outlined in Chap. 7.2.2 of Ref. [51].
In the actual evaluation, in the conventions of Fig. 4, we keep the outgoing neutrino momentum as our final integration

11



variable and write the decay rate in the lab frame as follows [for the expression in the lab frame, see Ref. [52]],

Γ =
1

2E1

∫
d3k3

(2π)3 2E3



∫

d3k2
(2π)3 2E2

∫
d3k4

(2π)3 2E4
(2π)4 δ(4)(p1 − p3 − p2 − p4)


1
2

∑

spins

|M|2





=
1

2E1

∫
d3k3

(2π)3 2E3

(∫
d3k2

(2π)3 2E2

∫
d3k4

(2π)3 2E4
(2π)4 δ(4)(p1 − p3 − p2 − p4)

[
64G2

F (p1 · p2) (p3 · p4)
])

=
2G2

F

π5 (2E1)

∫
d3k3
2E3

(∫
d3k2
2E2

∫
d3k4
2E4

(2π)4 δ(4)(p1 − p3 − p2 − p4) (p
λ
1 · p2λ) (p3ρ · pρ4)

)

=
2G2

F

π5 (2E1)

∫
d3p3
2E3

(
pλ1p

ρ
3 Jλρ(p1 − p3)

)
=

G2
F

12 π4 (2E1)

∫
d3p3
2E3

pλ1p
ρ
3

(
gλρ q

2 + 2 qλ qρ
)

=
G2

F

12 π4 (2E1)

∫
d3k3
2E3

(
p1 · p3 q2 + 2 (p1 · q) (p3 · q)

)
. (III.13)

We have used the following result, derived in Eq. (B.1), which is obtained for two outgoing particles with labels 2 and
4 which are on the electronic mass shell p22 = p24 = m2

e,

Jλρ(q) =

∫
d3k2
2E2

∫
d3k4
2E4

δ(4)(q − p2 − p4) (p2λ p4ρ)

=

√
1− 4m2

e

q2

[
gλρ

π

24

(
q2 − 4m2

e

)
+ qλ qρ

π

12

(
1 +

2m2
e

q2

)]

≈ π

24
gλρ q

2 +
π

12
qλ qρ , me → 0 . (III.14)

By symmetry, we have Jλρ(q) = Jλρ(q). We have carried out the p2 and p4 integrals covariantly. Then, for the remaining
integral over p3, we need the appropriate integration limits. We thus need to integrate

Γ =
G2

F

12 π4 (2E1)

∫
d3k3
2E3

(
p1 · p3 q2 + 2 (p1 · q) (p3 · q)

)
, (III.15)

assuming an incoming muon with energy E1 in the positive z direction, with the incoming p1 on the muon mass shell,
p21 = m2

µ. The final p3 describes the muon neutrino, so that within our approximations (p3)
2 ≈ 0. The domain of the

d3p3 integration in Eq. (III.15) contains all four-momenta p3 for which q2 = (p1 − p2)
2 > 0.

In the rest frame of the decaying muon, the integration domain would consist of a sphere composed of vectors

p3 = (|~k3|, ~k3), with p1 = (E1,~0) and |~k3| ≤ mν/2. By contrast, in the lab fame, we consider a muon moving up the z

axis, with energy E1 and wave vector ~k1, and an outgoing muon neutrino with energy E3 and wave vector ~k3,

~k1 = k1 êz , E1 =
√
k21 +m2

µ ,
~k3 = kρ êρ + kz êz , E3 = |~k3| =

√
k2ρ + k2z . (III.16)

The momentum transfer reads as follows,

q2 = 2k1 kz +m2
µ − 2

√
k2ρ + k2z

√
k21 +m2

µ . (III.17)

The allowed vectors ~k3 are located inside a rotationally symmetric ellipsoid (see Fig. 5), which is centered at the point
(0, 0, kz0) on the z axis. Let us denote by a the half axis of the ellipsoid in the radial direction (“away” from the z
axis) and by b the half axis of the ellipsoid in the z direction (see Fig. 5). These half axes are given as follows,

a =
mµ

2
, b =

1

2

√
k21 +m2

µ , kz0 =
k1
2
. (III.18)

For the integration of the final phase-space in the expression (III.15), we need to calculate

Γ =
G2

F

12 π4 (2E1)

∫

q2=(p1−p3)2>0

d3p3
2E3

(
p1 · p3 q2 + 2 (p1 · q) (p3 · q)

)
. (III.19)
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One uses the following parameterization (kx ≡ k3x, ky ≡ k3y, and kz ≡ k3z),

kx = a ξ sin θ cosϕ , ky = a ξ sin θ sinϕ , kz = kz0 + b ξ cos θ . (III.20)

The Jacobian is

d3k3 =

∣∣∣∣∣∣∣∣∣∣∣∣

det




∂kx
∂ξ

∂kx
∂θ

∂kx
∂ϕ

∂ky
∂ξ

∂ky
∂θ

∂ky
∂ϕ

∂kz
∂ξ

∂kz
∂θ

∂kz
∂ϕ




∣∣∣∣∣∣∣∣∣∣∣∣

= a2 b ξ sin θ . (III.21)

Then, with u = cos θ and k1 = χmµ, one has after the trivial integration over ϕ,

Γ =
G2

Fm
6
µ

12 π3 (2E1)

∫ 1

0

dξ

∫ 1

−1

du
ξ2
√
1 + χ2

8

√
ξ
(
ξ(1 + u2 χ2) + 2u

√
1 + χ2 χ

)
+ χ2

×
[(

4ξ uχ(χ2 + 1) + (4χ2 + 3)
√
χ2 + 1

) √
ξ
(
ξ(1 + u2 χ2) + 2u

√
1 + χ2 χ

)
+ χ2

−ξ u
√
χ2 + 1 (8χ2 + 7)χ− 2ξ2(χ2 + 1) (2u2χ2 + 1)− 4χ2 − 5χ2

]
. (III.22)

After a somewhat tedious u integration, the result can be written in terms of the variable

∣∣∣ξ
√
1 + χ2 − χ

∣∣∣ =





χ− ξ
√
1 + χ2 0 < ξ <

χ√
1 + χ2

ξ
√
1 + χ2 − χ

χ√
1 + χ2

< ξ < 1

.

The decay rate is naturally written as Γ = Γ1 + Γ2, where the integration domains are such that
∣∣∣ξ
√
1 + χ2 − χ

∣∣∣
assumes either of the values given in Eq. (III.23). Here,

Γ1 =
G2

Fm
6
µ

12 π3 (2E1)

χ/
√

1+χ2∫

0

dξ

8χ
ξ

(√
1 + χ2 ln

(
1 + ξ

1− ξ

)
− 2ξ(1 + χ2)

(
χ
(
4χ (

√
1 + χ2 − χ)− 3

)
+
√
1 + χ2

))
,

(III.23a)

Γ2 =
G2

Fm
6
µ

12 π3 (2E1)

1∫

χ/
√

1+χ2

dξ

8χ
ξ

(
√
1 + χ2 ln

(
1 +

√
1 + χ2

1−
√
1 + χ2

)
+ 2χ

(
2(1− ξ2)χ2 − 2ξ2 + 3ξ − 1

)
(1 + χ2)

)
.

(III.23b)

The two contributions evaluate to the expressions,

Γ1 =
G2

Fm
6
µ

12 π3 (2E1)

2χ(3 + 4χ2)

(
√
1 + χ2 + 2χ2(χ−

√
1 + χ2)− 3 ln

(√
1 + χ2 + χ√
1 + χ2 − χ

))

48χ
√
1 + χ2

, (III.24a)

Γ2 =
G2

Fm
6
µ

12 π3 (2E1)



1

8
−

2χ(3 + 4χ2)

(
√
1 + χ2 + 2χ2(χ−

√
1 + χ2)− 3 ln

(√
1 + χ2 + χ√
1 + χ2 − χ

))

48χ
√
1 + χ2



, (III.24b)
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FIG. 5. A muon with wave vector k1 = 8 and mass mµ = 2 is incoming along the positive
z direction. The electron mass as well as the neutrino masses are assumed to be negligible,
and the threshold condition for weak decay into a muon neutrino, electron and electron
anti-neutrino therefore simplifies to q2 = (p1 − p3)

2 > 0. We investigate the boundaries
of the volume of allowed k3 vectors, with Cartesian components kx = k3x, ky = k3y , and
kz = k3z. The z components of the allowed k3 vectors range from k3,min = −0.1231 to
k3,max = 8.1231. The geometry of allowed k3 vectors is that of an ellipsoid, rotationally
symmetric about the z axis, with parameters a = 1 and b = 4.1231 as given in Eq. (III.18).

so that

Γ = Γ1 + Γ2 =
G2

Fm
6
µ

12 π3 (2E1)
× 1

8
=
G2

Fm
5
µ

192 π3

mµ

E1
. (III.25)

This is the expected result for the muon decay width, with the 1/E1 prefactor already included, which is here obtained
directly by an explicit integration in the lab frame.

We have also verified [25] the results of Cohen and Glashow for superluminal neutrino decay, based on the nonco-
variant dispersion relation used in Ref. [31], via an independent calculation in the lab frame, as envisaged in Ref. [33].

The treatment described in Ref. [31] is based on a Lorentz-violating dispersion relation E = |~k| vν with vν > 1, which
constitutes a fundamentally different theoretical model as compared to the Lorentz-invariant tachyonic treatment pre-
sented here. In addition to the decay rate, we shall also consider the energy loss rate of an incoming neutrino beam
in the lab frame, due to LPCR and NPCR. A remark is in order: The calculation of the energy loss per time of an
incoming muon beam, to complement a corresponding calculation for the tachyonic neutrino beam, is not applicable,
because the end product of the decay is not a less energetic muon, but the muon disappears from the beam altogether
(see Fig. 4).
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FIG. 6. A tachyonic neutrino with wave vector k1 = 122 and mass −m2
ν = −(0.2)2 is

incoming along the positive z direction. The electron mass is set equal to unity, me =
1. The threshold condition therefore reads as q2 = (p1 − p3)

2 ≥ 4. The boundaries of
the volume of allowed k3 vectors, with Cartesian components kx = k3x, ky = k3y , and
kz = k3z, are mainly concentrated in a narrow, rotationally symmetric cone about the

z axis. Final states with |~k3| < mν correspond to evanescent outgoing waves, lead to a
complex-valued momentum transfer, and have to be excluded.

E. Step 2: Tachyonic Neutrino Decay (Covariant Dispersion Relation)

We calculate the decay width of the incoming tachyonic neutrino, in the lab frame, employing a relativistically
covariant (tachyonic) dispersion relation, with both incoming as well as outgoing neutrinos on the tachyonic mass shell

[E1 = (~k21 −m2
ν)

1/2, and E3 = (~k21 −m2
ν)

1/2, in the conventions of Fig. 1]. In the lab frame, in full accordance with
Ref. [52], the decay rate simply is

Γ =
1

2E1

∫
d3p3

(2π)3 2E3

(∫
d3p2

(2π)3 2E2

∫
d3p4

(2π)3 2E4
(2π)4 δ(4)(p1 − p3 − p2 − p4)

[∑̃
spins

|M|2
])

(III.26)

Here,
∑̃

spins refers to the specific way in which the average over the oncoming helicity states, and the outgoing helicities,
needs to be carried out for tachyons. As explained in Sec. II D, we cannot reach the rest frame of the decaying particle
by a Lorentz transformation, in the case of a tachyonic neutrino. Furthermore, as outlined in Sec. II C, a calculation
with just the Fermi effective coupling constant actually is sufficient for the tachyonic case. For the relevant interaction
terms, we use the same expression as in Sec. III E. We recall the coupling of the decaying neutrino to the Z0 boson
according to Eq. (III.3),

L3 = − g

4 cos θW
ν̄ γλ (1− γ5) ν Zλ . (III.27)
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FIG. 7. Plot of the tachyonic momentum transfer q2 in the kinematically allowed region,
for an oncoming neutrino (along the positive z direction) with parameters k1 = 223,
mν = 0.1, and me = 1. The lines on the surface describe constant angle θ. and lines

of constant |~k3|. We set ky = 0, which would otherwise correspond to an azimuth angle

ϕ = 0 for the outgoing neutrino momentum ~k3. The vector modulus k3 = |~k3| varies from
its minimum tachyonic value of (k3)min = mν = 0.1 to the maximum value (k3)max given
in Eq. (III.49). For maximum k3, q

2 assumes the threshold value q2 = 4m2
e = 4. The

maximum q2 is reached at the minimum value for k3, and for collinear geometry, θ3 = 0,
and reads as (q2)max = 44.58 [see Eq. (III.47)].

For the coupling of the electron to the Z boson, we have according to Eq. (III.4),

L4 = − gw
2 cos θW

e
[
cV γ

λ − cA γ
λ γ5

]
e Zλ , cV ≈ 0 , cA = −1

2
. (III.28)

In view of the compensation mechanism given by Eq. (III.8), the effective four-fermion Lagrangian thus is given by

L =
GF√
2

{
ν̄ γλ (1− γ5) ν

} {
e
[
cV γ

ρ − cA γ
λ γ5

]
e
}
, (III.29)

The matrix element of the fundamental spinor solutions reads as follows,

M =
GF√
2

[
uT (p3) γλ (1− γ5)uT (p1)

] [
u(p4)

(
cV γ

λ − cA γ
λ γ5

)
v(p2)

]
. (III.30)

Here, the uT (p1), and uT (p3), constitute Dirac spinor solutions of the tachyonic Dirac equation. In the helicity
basis [9, 53], denoted by a subscript σ = ±, the tachyonic particle and antiparticle spinors are

uT+(
~k) =



√
|~k|+m a+(~k)√
|~k| −m a+(~k)


 , uT−(

~k) =



√
|~k| −m a−(~k)

−
√
|~k|+m a−(~k)


 , (III.31a)

vT+(~k) =


 −

√
|~k| −m a+(~k)

−
√
|~k|+m a+(~k)


 , vT−(~k) =


 −

√
|~k|+m a−(~k)√
|~k| −m a−(~k)


 , (III.31b)

where the aσ(~k) are the fundamental helicity spinors (see p. 87 of Ref. [50]).
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The properties of the tachyonic bispinor solutions differ somewhat from those of the “normal” tardyonic bispinors.
The well-known sum formula for the tardyonic states is (σ denotes the spin orientation)

∑

σ

uσ(p)⊗ uσ(p) = ✁p+me . (III.32)

For the tachyonic spin sums, one has the following sum rule for the positive-energy spinors,
∑

σ

(−σ) uTσ (p)⊗ uTσ (p) γ
5 =

∑

σ

(
−~Σ · p̂

)
uTσ (p)⊗ uT (p) γ5 = ✁p− γ5m, (III.33)

where we use p = (E, ~p) as the convention for the four-momentum and p̂ = ~p/|~p| is the unit vector in the ~p direction.
Upon promotion to a four-vector, we have p̂µ = (0, p̂). The sum rule can thus be reformulated as

∑

σ

uTσ (p)⊗ uTσ (p) =
(
−~Σ · p̂

)
(✁p− γ5mν) γ

5 = −γ5 γ0 γi p̂i (✁p− γ5mν) γ
5

= − ✁τ γ
5 γi p̂i (✁p− γ5mν) γ

5 = −✁τ γ
5
✁✁̂p (✁p− γ5mν) γ

5 , (III.34)

where τ = (1, 0, 0, 0) is a time-like unit vector. In Refs. [6, 9], it has been established that a consistent formulation
of the tachyonic propagator is achieved when we postulate that the right-handed neutrino states, and the left-handed
antineutrino states, acquire a negative Fock-space norm after quantization of the tachyonic spin-1/2 field. Hence, in
order to consider the decay process of an oncoming, left-handed, positive-energy neutrino, we should consider the
projection onto negative-helicity states,

1

2

(
1− ~Σ · p̂

) ∑

σ

uTσ (p)⊗ uTσ (p) = uσ=−1(p)⊗ uσ=−1(p) =
1

2

(
1− ✁τ γ

5
✁✁̂p
)
(✁p− γ5mν) γ

5 . (III.35)

The squared and spin-summed matrix element is

∑̃

spins

|M|2 =
G2

F

2
Tr

[
1

2

(
1− ✁τ γ

5
✁✁̂p3
)
(✁p3 − γ5mν) γ

5 γλ (1− γ5)
1

2

(
1− ✁τ γ

5
✁✁̂p1
)
(✁p1 − γ5mν) γ

5 γν (1 − γ5)

]

× Tr
[
(✁p4 +me)

(
cV γ

λ − cA γ
λ γ5

)
(✁p2 +me)

(
cV γ

ρ − cA γ
ρ γ5

)]
=
G2

F

2
S(p1, p2, p3, p4) , (III.36)

with cV ≈ 0, cA ≈ −1/2 (the last step implicitly defines the expression S). Here, the meaning of the notation
∑̃

spins
becomes clear: We have summed over the spins of the outgoing electron-positron pair, while only one specific helicity
is taken into account for the oncoming (decaying) neutrino.
The Dirac γ traces in Eq. (III.36) give rise to a rather lengthy expression, which can be simplified somewhat because

incoming and outgoing particles are on their respective mass shells, p22 = p24 = m2
e, while on the tachyonic mass shell,

we have p21 = p23 = −m2
ν . Some other scalar products vanish, e.g., the scalar product of the time-like unit vector τ and

the space-like unit vector, which is τ · p̂ = 0.
The result of the Dirac γ traces from Eq. (III.36) can then be inserted into Eq. (III.26), and the d3p2 and d3p4

integrals can be carried out using the following formulas, which we recall from Appendix B [see Eq. (B.1)],

I(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) =
π

2

√
1− 4m2

e

q2
, (III.37)

Jλρ(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (p2λ p4ρ) =

√
1− 4m2

e

q2

[
gλρ

π

24

(
q2 − 4m2

e

)
+ qλ qρ

π

12

(
1 +

2m2
e

q2

)]
,

(III.38)

K(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (p2 · p4) =
π

4

√
1− 4m2

e

q2
(
q2 − 2m2

e

)
. (III.39)

After the d3p2 and d3p4 integrations, we are left with an expression of the form

Γ =
G2

F

2

1

(2π)5

∫

q2>4m2
e

d3p3
2E3

F(p1, p3) , (III.40)
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where

F(p1, p3) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(p1 − p2 − p3 − p4)S(p1, p2, p3, p4) . (III.41)

Both the expressions for S(p1, p2, p3, p4) as well as F(p1, p3) are too lengthy to be displayed in the context of the
current paper. However, approximate formulas can be given, e.g., when the incoming energy E1 is near threshold.
In order to obtain a better intuitive picture for the domain of allowed p3 four-vectors, we have to analyze the

tachyonic kinematics in some more detail. We calculate in the lab frame and assume that the oncoming neutrino has
the energy-momentum four-vector

pµ1 = (E1, 0, 0, k1) , E1 ≥ (E1)th = 2
me

mν

√
m2

e +m2
ν , k1 ≥ (k1)th = 2

m2
e

mν
+mν , E2

1 − k21 = −m2
ν (III.42)

[see Eqs. (II.3) and (II.4)]. The final-state four-vector is conveniently parameterized as

pµ3 = (E3, k3 sin θ cosϕ, k3 sin θ sinϕ, k3 cos θ) , k3 > mν . E2
3 − k23 = −m2

ν (III.43)

The condition k3 > mν is naturally imposed for tachyonic kinematics (see Fig. 3). The squared four-momentum
transfer then reads as

q2 = 2

(√
E2

1 +m2
ν

√
E2

3 +m2
ν cos θ − E1E3 −m2

ν

)

= 2

(
k1 k3 cos θ −

√
k21 −m2

ν

√
k23 −m2

ν −m2
ν

)
, (III.44)

where it is convenient to define u = cos θ. One may solve for the threshold angle cos θth,

q2 = 4m2
e ⇒ u = cos θ = uth = cos θth =

E1E3 + 2m2
e +m2

ν√
E2

1 +m2
ν

√
E2

2 +m2
ν

. (III.45)

For given E1 and E3, all angles θ with cos θ > cos θth, i.e., for θ < θth, are permissible. Conversely, setting cos θth = 1
and E3 = 0, one may solve for E1 and rederive the threshold condition (II.3). All of this implies that the domain

of permissible ~k3 vectors, near threshold, is centered about the z axis and forms a “cupola” of inner radius mν (see
Fig. 6). Within the kinematically allowed region, the tachyonic momentum transfer q2 is plotted in Fig. 7.
For given E1, the widest opening angle θ = θth is reached when E3 becomes zero. One finds

cos θth

∣∣∣∣
E3=0

=
2m2

e +m2
ν

mν

√
E2

1 +m2
ν

≈
(
2m2

e

mν
+mν

)
E−1

1 =
kth
E1

, (III.46)

where the latter form is valid in the high-energy limit. Here, kth =
2m2

e

mν

+mν is the threshold momentum. It means
that the produced pairs will be emitted in a very narrow cone, centered in the forward direction with respect to the
decaying neutrino.
Maximum squared momentum transfer is reached at E3 = 0 and θ = 0,

q2 = q2max = 2mν

(√
E2

1 +m2
ν −mν

)
= 2mν (k1 −mν) , (III.47)

confirming Eq. (II.12). Maximum outgoing energy E3 is reached for minimum momentum transfer q2 = q2min = 4m2
e,

with the final-state neutrino propagating into the positive z direction. Its energy is

(E3)max = E1

(
2
m2

e

m2
ν

+ 1

)
− 2me

√
E2

1 +m2
ν

√
m2

e +m2
ν

m2
ν

≈ E1m
2
ν

4m2
e

, (III.48)

where the latter form is valid in the limit of large E1. This corresponds to the maximum allowed k3,

(k3)max =
k1(2m

2
e +m2

ν)− 2me

√
k21 −m2

ν

√
m2

e +m2
ν

m2
ν

≈ k1m
2
ν

4m2
e

, (III.49)
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where, again, the latter form is valid in high-energy limit k1 → ∞. A plot of the physically relevant range for q2 is
given in Fig. 7.
Because of azimuthal symmetry, it is easily possible to find a convenient parameterization of the regime of allowed

~k3 in spherical coordinates [using the parameterization given in Eq. (III.43)]. We may finally express the integrand F
from Eq. (III.41) in terms of the initial and final energies E1 and E3 of the decay process, and of the scattering angle
θ (with u = cos θ). The decay rate given by Eq. (III.40) can thus be written as follows,

Γ =
G2

F

2

1

(2π)5

2π∫

0

dϕ

(k3)max∫

(k3)min

dk3 k
2
3

2E3

1∫

uth

duF(E1, E3, u)

=
G2

F

4

1

(2π)4

(E3)max∫

(E3)min

dE3

√
E2

3 +m2
ν

1∫

uth

duF(E1, E3, u) . (III.50)

Here, (k3)min = mν , while (k3)max is given by Eq. (III.49). Furthermore, we have (E3)min = 0, while (E3)max is given
by Eq. (III.48), and we have used the identity

dk3 k3 = dE3E3 , k3 =
√
E2

3 +m2
ν . (III.51)

It is instructive to consider the double-differential energy loss d2E1, for a particle traveling at velocity vν ≈ c (we
restore factors of c for the moment), as it undergoes a decay with energy loss E1 − E3, due to the energy-resolved
decay rate (dΓ/dE) dE, in time dt = dx/c. It reads as follows,

d2E1 = −(E1 − E3)
dΓ

dE3
dE3

dx

c
. (III.52)

Now we revert to natural units with c = 1, divide both sides of the equation by dx and integrate over the energy loss.
One obtains

dE1

dx
= −

∫
dE3 (E1 − E3)

dΓ

dE3
. (III.53)

Hence, the energy loss rate is obtained as

dE

dx
= −G

2
F

4

1

(2π)4

(E3)max∫

(E3)min

dE3

√
E2

3 +m2
ν (E1 − E3)

1∫

uth

duF(E1, E3, u) . (III.54)

After a long, and somewhat tedious integration one finds the following expressions, which have been briefly indicated
in Ref. [25],

Γ =





3

2

G2
F m

5
ν

192 π3

mν (E1 − Eth)
2

m2
e Eth

E1 ' Eth

2

3

G2
F m

5
ν

192π3

E1

mν
E1 ≫ Eth

, (III.55a)

dE

dx
=





3
G2

F m
5
ν

192 π3

(E1 − Eth)
2

Eth
E1 ' Eth

4

3

G2
F m

5
ν

192π3

E2
1

mν
E1 ≫ Eth

. (III.55b)

In the high-energy limit, one may rewrite the expressions as follows,

Γ =
G2

F E
5
1 δ

2

288 π3
,

dE

dx
=
G2

F E
6
1 δ

2

144 π3
, E1 ≫ Eth . (III.56)
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The ratio of the energy loss rate to the decay rate is given as

1

Γ

dE

dx
=





2
m2

e

mν
≈ Eth E1 ≥ Eth

2E1 E1 ≫ Eth

. (III.57)

Here, according to Eq. (II.4), the threshold energy is

Eth = (E1)th =
√
(k1)2th −m2

ν = 2
me

mν

√
m2

e +m2
ν ≈ 2

m2
e

mν
. (III.58)

For all results given in Eqs. (III.55), (III.56) and (III.57), we have assumed that me ≫ mν . Interpolating formulas are
given as

Γ ≈ G2
F m

6
ν

128 π3m2
e

(E1 − Eth)
2

Eth

(
1 +

9m2
ν

4m2
e

E1 − Eth

Eth

)−1

,

dE

dx
≈ G2

Fm
5
ν

64π3

(E1 − Eth)
2

Eth

(
4E1Eth

4E2
th + 9mν(E1 − Eth)

)
. (III.59)

These formulas interpolate between the regimes E1 ' Eth and E1 ≫ Eth given in Eq. (III.55).

IV. NEUTRINO PAIR CERENKOV RADIATION

A. Preliminary Steps

Having laid out the formalism in Sec. III, we can be brief in the current section. In the lab frame, again, the decay
rate evaluates to

Γ =
1

2E1

∫
d3p3

(2π)3 2E3

(∫
d3p2

(2π)3 2E2

∫
d3p4

(2π)3 2E4

×(2π)4 δ(4)(p1 − p3 − p2 − p4)

[∑̃
spins

|M|2
])

. (IV.1)

Here,
∑̃

spins refers to the specific way in which the average over the oncoming helicity states, and the outgoing helicities,

needs to be carried out for tachyons [25]. We use the Lagrangian (III.3). The effective four-fermion interaction thus is

L =
GF

2
√
2

[
ν γµ(1 − γ5) ν

] [
ν γµ(1− γ5) ν

]
. (IV.2)

The matrix element M evaluates to

M =
GF

2
√
2

[
uT (p3) γλ (1 − γ5)uT (p1)

] [
uT (p4) γ

λ (1− γ5) vT (p2)
]
, (IV.3)

in the notation for the tachyonic bispinors adopted previously. We use, again, the helicity-projected sum rule

∑

σ

uTσ (p)⊗ uTσ (p) =
(
−~Σ · k̂

)
(✁p− γ5mν) γ

5 = −γ5 γ0 γi k̂i (✁p− γ5mν) γ
5 = −✁τ γ

5 ✁✁̂k (✁p− γ5mν) γ
5 , (IV.4)

where τ = (1, 0, 0, 0) is a time-like unit vector. This leads to

1

2

(
1− ~Σ · k̂

) ∑

σ

uTσ (
~k)⊗ uTσ (

~k) = uσ=−1(p)⊗ uσ=−1(p) =
1

2

(
1− ✁τ γ

5 ✁✁̂k
)
(✁p− γ5mν) γ

5 . (IV.5)
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The squared and spin-summed matrix element for the tachyonic decay process thus is

∑̃

spins

|M|2 =
G2

F

8
Tr

[
1

2

(
1− ✁τ γ

5✁✁̂k3
)

(✁p3 − γ5mν) γ
5 γλ (1 − γ5)

1

2

(
1− ✁τ γ

5 ✁✁̂k1
)

(✁p1 − γ5mν) γ
5 γν (1− γ5)

]

× Tr

[
1

2

(
1− ✁τ γ

5✁✁̂k4
)
(✁p4 − γ5mν) γ

5 γλ(1− γ5)× 1

2

(
1− ✁τ γ

5✁✁̂k2
)
(✁p2 + γ5mν) γ

5 γλ(1 − γ5)

]
.

(IV.6)

Again, we have chosen the convention to denote the by p2 the momentum of the outgoing antiparticle.

B. Integration and Results

We now turn to the integration over the four-momenta of the outgoing particles. In the calculation, one may use
the fact that the helicity projector is well approximated equal to the chirality projector for tachyonic particle in
the high-energy limit (with the energy being significantly larger than the tachyonic mass). On the tachyonic mass
shell, one has p21 = p22 = p23 = p24 = −m2

ν . The trace over the Dirac γ matrices can be evaluated with standard
computer algebra [54, 55] and is inserted into Eq. (III.26). The d3p2 and d3p4 integrals are carried out with the help
of the formulas (B.1a), (B.1b) and (B.1c), under the appropriate replacement m2

e → −m2
ν . After the d3p2 and d3p4

integrations, we are left with an expression of the form

Γ =
G2

F

8

1

(2π)5

∫

q2>4m2
e

d3p3
2E3

F(p1, p3) , (IV.7)

where

F(p1, p3) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(p1 − p2 − p3 − p4)S(p1, p2, p3, p4) . (IV.8)

The expressions for S(p1, p2, p3, p4) as well as F(p1, p3) are too lengthy to be displayed in the context of the current
paper. We assume the same kinematics as in Eqs. (III.42) and (III.43). The integrations are done with under the
conditions that all 0 < E3 < E1, and all q2 = (p2 + p4)

2 for the pair are allowed [see Eq. II.10], leading to

Γ =
G2

F

8

1

(2π)5

2π∫

0

dϕ

kmax∫

k3=mν

dk3 k
2
3

2E3

1∫

−1

duF(E1, E3, u)

=
G2

F
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1

(2π)4

E1∫

0

dE3

√
E2

3 +m2
ν

1∫

−1

duF(E1, E3, u) , (IV.9)

in full analogy with Eq. (II.10). Finally, the energy loss rate is obtained in full analogy with Eq. (III.54),

dE

dx
= −G

2
F

4

1

(2π)4

E1∫

0

dE3

√
E2

3 +m2
ν (E1 − E3)

1∫

−1

duF(E1, E3, u) . (IV.10)

After rather tedious integration one finds the following expressions,

Γ =
1

3

G2
F m

4
ν

192π3
E1 , (IV.11a)

dE1

dx
=

1

3

G2
F m

4
ν

192π3
E2

1 . (IV.11b)

Strictly speaking, these formulas are valid only for E1 ≫ mν , but this condition is easily fulfilled for all phenomeno-
logically relevant neutrino energy, assuming that the modulus of neutrino masses |mν | does not exceed 1 eV. We reem-
phasize that, unlike in Eq. (III.55), there is no further threshold condition. Parametrically, the results in Eqs. (III.55)
and (IV.11) are of the same order-of-magnitude. Hence, neutrino pair emission is the dominant decay channel in the
medium-energy domain, for an oncoming tachyonic neutrino flavor eigenstate.
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V. PHENOMENOLOGICAL CONSEQUENCES

A. Decay Processes on Cosmic Distance and Time Scales

If we assume that the tachyonic neutrino hypothesis is real, then a natural question to ask concerns the phenomeno-
logical consequences of the calculations outlined above. Parametrically, the decays by LPCR and NPCR described by
Eqs. (III.55) and (IV.11) might set important limits on the observability of tachyonic neutrinos, provided the absolute
magnitude of the decay energy loss rates are sufficiently large in order to induce a significant decay probability for
neutrinos traveling across the Universe. This is because neutrinos registered by IceCube have to “survive” the possi-
bility of energy loss by decay, and if they are tachyonic, then lepton and neutrino pair Cerenkov radiation processes
become kinematically allowed.
Indeed, it is known that even very small Lorentz-violating parameters in a Lorentz-violating extension of the standard

model may induce very significant energy loss processes at high energies [39, 40]. This is because at high energies,
small violations of the Lorentz symmetry correspond to very high virtualities of the particles (kinematic deviations
from the mass shell), and therefore, the magnitude of the Lorentz-violating parameters is in fact severely constrained
by the 37 neutrinos with E > 60TeV which are believed to be of cosmological origin and which have been registered by
the IceCube collaboration [22, 23]. Meanwhile, preliminary evidence for a through-going muon depositing an energy of
≥ (2.6±0.3)PeV has been presented by some members of the IceCube collaboration [56]. The event could be interpreted
in terms of a decay product of a neutrino of even higher energy [56]. (The difference of the energy deposited inside
the detector and the neutrino energy, according to Fig. 4 of Ref. [23], is small.) If confirmed, this event would lead to
even more restrictive bounds on the Lorentz-violating parameters.
The results given in Eqs. (IV.11) for the decay rate and energy loss rate due to NPCR are not subject to a threshold

energy. Parametrically, they are of the same order-of-magnitude as those given for lepton pair Cerenkov radiation in
Eq. (III.55), but the threshold energy is zero. Let us take as a typical cosmological distance 15 billion light years,

L = 15× 109 ly = 1.42× 1026m , (V.1)

and assume a (relative large) neutrino mass parameter of m0 = 10−2 eV. One obtains for the relative energy loss
according to Eq. (IV.11a),

L

E1

dE1

dx
=

1

3

G2
F m

4
0

192π3
E1 L = 5.02× 10−20 E1

MeV
. (V.2)

Even at the large “Big Bird” energy of Eν ≈ 2PeV, the relative energy loss over 15 billion light years does not exceed
5× 10−20.
Again, assuming that mν = 10−2 eV), one obtains for the decay rate the result

Γ =
1

3

G2
F m

4
0

192π3
E1 = 1.06× 10−37

(
E1

MeV

) (
rad

s

)
. (V.3)

Even for Eν ≈ 2PeV, this means that the decay rate is only of order 10−28 rad
s , corresponding to a lifetime of

∼ 1020 years, far exceeding the age of the Universe. Within the tachyonic model, quite surprisingly, both LPCR as
well as NPCR are phenomenologically irrelevant, even for the highest-energy neutrinos registered by IceCube.

B. Neutrino Mass and Flavor Eigenstates

The tachyonic Dirac equation [1, 6] reads as

(iγµ∂µ − γ5mν)ψ(x) = 0 , (iγµpµ − γ5mν)u
T (p) = 0 , (V.4)

where the latter form holds for the plane-wave ansatz ψ(x) = uT (p) exp(−ip · x). The bispinor solutions uT (p) have
been discussed at length in Refs. [6, 9] and are used here in Eqs. (III.30) and (IV.3). They apply, first and foremost,
to a mass eigenstate, with a definite tachyonic mass parameter. The Fermi couplings are universal among all neutrino
flavors, and hence, the interaction Lagrangians used in our paper share this property. Our results (III.55) and (IV.11)
for the decay and energy loss rates thus apply, at face value, to an incoming neutrino mass eigenstate. The results are
thus relevant to the non-sterile neutrino flavor if at least one of the three observed non-sterile neutrino mass eigenstates
is tachyonic.
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We recall that the flavor eigenstates νf are connected to the mass eigenstatesmi by the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix,

m2(νf ) =

3∑

i=1

|Ufi|2m2
i , (V.5)

where Ufi denote the elements of the flavor-mass mixing matrix. The decay and energy loss rates of the flavor
eigenstates are given as

Γ(νf ) =

3∑

i=1

|Ufi|2 Γ(mi) , (V.6)

dE

dx
(νf ) =

3∑

i=1

|Ufi|2
dE

dx
(mi) . (V.7)

For a slower-than light mass eigenstate i, one sets Γ(mi) and dE
dx (mi) to zero. Here, just to be pedantic, we should

point out that the calculation of NPCR in this case has to be modified to include all tachyonic mass eigenstates in the
exit channel, conceivably modifying the overall results as much as by adding a multiplicative factor three (if all mass
eigenstates are available in the exit channel of the tachyonic NPCR decay, see Fig. 1(b)).

C. Lorentz Invariance

The tachyonic dispersion relation E2 − ~k 2 = −m2
ν conserves Lorentz invariance. Hence, one might ask about the

Lorentz invariance of our results, and in particular, about the Lorentz invariance of the threshold condition (II.5);
finally, one might “chase” the high-energy neutrino, lowering its energy in the Lorentz-transformed, moving frame to a
value below threshold. This question finds an answer in the subtleties of the tachyonic theory; we follow the discussion
in Ref. [17]. Namely, upon a Lorentz transformation of the vacuum state, because there is no “energy mass gap”
between the positive- and negative-energy states, some of the annihilation operators of quantized fields will turn into
creation operators, and vice versa. This point is explained in detail around Eqs. (4.7)—(4.9) of Ref. [17]. (Incidentally,
it is observed at the same place that the fundamental creation and annihilation operators of tachyonic fields have to
be quantized according to fermionic statistics, which is another argument in favor of spin-1/2 rather than spinless
tachyonic theories.) Furthermore, around Eq. (5.7) of Ref. [17], it is argued that the vacuum state in a tachyonic
theory cannot be Lorentz invariant, but is filled with those (real) anti-fermions whose energies are “pushed down”
to energies below zero, from initially positive-energy states, under the Lorentz transformation. Our Fig. 2 illustrates
how the decay and energy loss rates, under a Lorentz transformation, turn into neutrino-antineutrino collision rates
(leading to decay and energy loss) with the “downshifted” real antiparticle states which are the result of the Lorentz
transformation, finally restoring the Lorentz invariance of the results for the decay and energy loss rates, given in
Eqs. (III.55) and (IV.11).

D. Superluminal Signal Propagation

A very important question regarding the conceivable existence of tachyonic neutrinos concerns the possibility of
superluminal signal propagation. We thus follow Appendix A of Ref. [47] and ask how difficult it is to reliably “stamp”

any information onto the superluminal neutrinos. When assuming the dispersion relation E = (~k 2 −m2
ν)

1/2 with its

classical equivalent E = mν/
√
v2ν − 1 = 0, the dilemma is that high-energy tachyonic neutrinos approach the light

cone and travel only infinitesimally faster than light itself. In the high-energy limit, their interaction cross sections
may be sufficiently large to allow for good detection efficiency but this is achieved at the cost of sacrificing the “speed
advantage” in comparison to the speed of light. Low-energy tachyonic neutrinos may a substantially faster than light,
but their interaction cross sections are small and the information sent via them may be lost. The smallness of the
cross sections sets important boundaries for the possibility to transmit information, as follows. In Appendix A of
Ref. [47], it has been shown that, by postulating that superluminal particles should not have the capacity to transport
any “imprinted” information into the past, one is naturally led to the assumption that any conceivable superluminal
particles have to be very light, and weakly interacting.
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Following Fig. 1 of Ref. [57] and Ref. [58], we now supplement these considerations with a numerical estimate.
Neutrino-electron cross sections for 1GeV < Eν < 1PeV can be estimated to good accuracy using the formula

σ = A0
Eν

E0
, (V.8)

with A0 ∼ 0.0095 fb and E0 = 1GeV. By order-of-magnitude, Eq. (V.8) remains valid for neutrino scattering off
electrons, for all three neutrino flavors, even if additional charged-current interactions exist for electron neutrinos, due
to exchange graphs with virtual W bosons (for muon and tau neutrinos, only the Z boson contributes at tree level). A
particle typically cannot be localized to better than an area equal to the square of its (reduced) Compton wavelength
(we temporarily restore factors of ~ and c),

Amin = λ̄2 =

(
~

mν c

)2

. (V.9)

The detection probability P for a perfectly focused particle therefore cannot exceed

P =
σ

A2
min

=
A0 c

4m3
ν

E0 ~
2

√
1

δν
. (V.10)

If we are to send information reliably, then the detection probability should be of order unity. Setting P = 1 leads to

δν =
A2

0 c
8m6

ν

E2
0~

4
. (V.11)

When traveling at a speed c + δc for a path length s, the neutrino acquires a path length difference of δs, which
compares to its Compton wavelength λ̄ = ~/(mν c) as follows,

δs = s
δc

c
= s

δν
2
. (V.12)

The distance traveled by the superluminal neutrino exceeds the distance traveled by a light beam by an amount δs = λ̄
when s = s0 where

s0 =
2E2

0 ~
5

A2
0 c

9m7
ν

= 6.63× 1074m

(
mν

eV/c2

)−7

. (V.13)

Even at a (larger-than-realistic) mass square m2
ν = 1 eV2 for the tachyonic neutrino flavor eigenstate, the value of

s0 ∼ 1074 m far exceeds the commonly assumed size of the Universe of 1026 m by many orders of magnitude. The
permissibility of slightly superluminal propagation on small length and distance scales has been discussed in the
literature previously (see, e.g., Ref. [59]). Furthermore, we refer to the experiments in the group of Nimtz [60–62],
which also use a compact apparatus and rely on the quantum mechanical tunneling effect, which lies outside the
regime of classical mechanics. Thus, a very slightly superluminal neutrino flavor eigenstate with a light mass does not
necessarily lead to a detectable violation of causality.

VI. CONCLUSIONS

In the current article, we have considered the tachyonic neutrino decay width against lepton-pair and neutrino-
pair Cerenkov radiation (LPCR and NPCR, see Fig. 1), via the exchange of a virtual Z0 boson. This process is
kinematically allowed for a fast-than-light, oncoming neutrino. We use the hypothesis of tachyonic neutrinos described
by the tachyonic Dirac (not Majorana) equation [1–5]. Various kinematic considerations are summarized in Sec. II.
The tachyonic threshold is found according to Eq. (II.5), Eth ≈ 2m2

e/mν , in the limit me ≫ mν . Specificities of the
tachyonic decay are studied in Sec. II A (threshold calculation), Sec. II B (absence of threshold for NPCR), Sec. II C
(maximum q2 of the Z0 boson and validity of Fermi theory), and Sec. IID (rest frame of the tachyon). In Sec. II E, it
is shown that, because tachyonic particle states may transform into antiparticle states upon a Lorentz transformation,
it is indispensable to carry out the calculation directly in the lab frame [17, 18].
We continue with a discussion of the interaction Lagrangians relevant for our studies, from the GWS (Glashow–

Weinberg–Salam) model in Sec. III A. After a brief digression on the degrees of freedom of three-particle decay processes
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in Sec. III B and a discussion on the general rationale of the investigation in Sec. III C, the calculation of the tachyonic
decay width is approached in two steps. In Sec. III D, we first demonstrate that it is possible to carry out standard
decay rate calculations of the electroweak theory, directly in the lab frame, using the muon decay width as an example.
We are finally in the position (see Sec. III E) to carry out the integration of the decay rate, for the tachyonic dispersion
relation, in the lab frame. We find an explicit dependence of the formulas for the decay rate, Γ, and the energy loss
rate, dE/dx, on the energy E1 of the incoming neutrino (all decay processes are studied within the conventions from
Fig. 4). The main results of our investigations are summarized in Eqs. (III.55), (III.56) and (III.57); these formulas
describe the decay width of a tachyonic neutrino against LPCR, and the energy loss per distance of an incoming
tachyonic neutrino beam. This investigation is supplemented, in Sec. IV, by a calculation of NPCR, culminating in
the results given in Eq. (IV.11) for the decay and energy loss rates.
In Sec. V, we find that the neutrino pair Cerenkov radiation (NPCR) process, even if threshold-less, has such a

low probability due to the weak-interaction physics involved, that it cannot constrain the tachyonic models, even for
large tachyonic neutrino mass parameters of the order of 10−2 eV. The lifetime of a tachyonic neutrino against LPCR
and NPCR, assuming a realistic magnitude of the mass parameter, far exceeds the age of the Universe. Even a “Big
Bird” neutrino of energy of Eν ≈ 2PeV, would easily survive the travel from the blazar PKS B1424-418 (see Ref. [63].
In contrast to Lorentz-violating models, neutrino pair Cerenkov radiation does not pressure the tachyonic neutrino
hypothesis.
According to Sec. V, we should take the opportunity to clarify that in contrast to Ref. [25], it is actually impossible

to relate a hypothetical cutoff of the cosmic neutrino spectrum at the “Big Bird” energy of 2 PeV to the threshold
energy for (charged) lepton pair Cerenkov radiation, and thus, to a neutrino mass parameter. The reasons are twofold:
First, a further decay process exists for tachyonic neutrinos which is not subject to a threshold condition, namely
neutrino pair Cerenkov radiation. Second, the decay and energy loss rates for both (charged) lepton as well as neutrino
pair Cerenkov radiation simply are too small to lead to any appreciable energy loss for an oncoming tachyonic neutrino
flavor eigenstate, over cosmic distances and time scales. Formulated differently, we can say that that neither lepton
nor neutrino pair Cerenkov radiation processes pressure the tachyonic model in any way.
Finally, we hope that the detailed outline of the calculation of the decay processes given in Sec. III and IVk could be

of interest in a wider context, regarding decay processes and cross sections involving tachyonic spin-1/2 particles. It is
indispensable to introduce further helicity projectors in the calculation of the bispinor matrix elements relevant to the
process, and the calculations become a little more complex than for ordinary Dirac spinors [see Eqs. (III.33)—(III.35)].
Our approach relies on a consistent formalism developed for the fundamental tachyonic bispinor solutions, as reported
in various recent investigations [6–10].
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A. INTERACTION TERMS IN ELECTROWEAK THEORY

From Eq. (12.240) of Ref. [50], we have for the combined interaction of the left-handed and right-handed fermionic
currents with the W and Z bosons, and the electromagnetic A field, the following Lagrangian,

Lℓ = L̄e i γ
µ ∂µ Le + ēR i γµ ∂µ eR +

gw√
2

(
ν̄e γ

µW+
µ eL + ēL γ

µW−
µ νe

)
− gw sin θW ē γµAµ e

− gw
2 cos θW

ν̄e γ
µ Zµ νe +

gw
2

cos(2θW )

cos θW
ēL γ

µ Zµ eL − gw
sin2(θW )

cos θW
ēR γ

µ Zµ eR . (A.1)

Here, the subscripts L and R denote the left- and right-handed chirality components, e (as a mathematical symbol,
not subscript) denotes the electron-positron field operator, the weak coupling constant is gw, and θW is the Weinberg
angle. One immediately reads off the electromagnetic Lagrangian L1 given in Eq. (III.1). Using eL = [(1 − γ5)/2]e,
the coupling of the left-handed fermion currents to the W boson gives

L2 =
gw√
2

(
ν̄e γ

µW+
µ eL + ēL γ

µW−
µ νe

)
=

gw

2
√
2
ē γµW−

µ (1− γ5)νe + h.c. (A.2)
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which is just L2 [see Eq. (III.2)]. The coupling term of the neutrino to the Z boson can be read off as

L3 = − gw
2 cos θW

ν̄e γ
µ Zµ νe = − gw

4 cos θW
ν̄e γ

µ (1− γ5)Zµ νe , (A.3)

where we take into account that νe is equal to its left-handed chirality component [see Eq. (III.3)]. The only term
which requires a little work is the the interaction of the electron current with the Z boson,

L4 =
gw
2

cos(2θW )

cos θW
ēL γ

µ Zµ eL − gw
sin2(θW )

cos θW
ēR γ

µ Zµ eR

=
gw
2

1− 2 sin2(θW )

cos θW
ēL γ

µ Zµ eL − gw
sin2(θW )

cos θW
ēR γ

µ Zµ eR

=
gw
2

1

cos θW
ē γµ

1− γ5

2
Zµ e− gw

sin2(θW )

cos θW
Zµ

{
ē γµ

1− γ5

2
e+ ē γµ

1 + γ5

2
e

}

=
gw

2 cos θW
e

[
1

2
γµ(1− γ5)− 2 sin2(θW ) γµ

]
e Zµ

= − gw
2 cos θW

e

[(
−1

2
+ 2 sin2(θW )

)
γµ +

1

2
γµ γ5

]
e Zµ .

= − gw
2 cos θW

e
[
cV γ

µ − cA γ
µ γ5

]
e Zµ , (A.4)

where

cV = −1

2
+ 2 sin2(θW ) , cA = −1

2
. (A.5)

This result also is in agreement with Eq. (5.57) on p. 153 of Ref. [64], up to an overall minus sign which is fixed by
the conventions. According to p. 107 of Ref. [65], the effective Weinberg angle reads as

sin2 θW = 0.23146(12) , sin2 θW ≈ 0.25 , (A.6)

which justifies the approximation cV ≈ 0, and cA ≈ −1/2. This approximation is often used in the literature [see the
remark preceding Eq. (2) of Ref. [31] and p. 153 of Ref. [64]]. We also quote from Ref. [31] the W boson mass,

MW = (80.385± 0.015)
GeV

c2
= 80.385(15)

GeV

c2
, (A.7)

and the Z boson mass

MZ = (91.1876± 0.0021)
GeV

c2
= 91.1876(21)

GeV

c2
. (A.8)

The W and Z masses are connected by virtue of the Weinberg angle, according to Eq. (III.5).

B. COVARIANT PAIR PRODUCTION INTEGRALS

In our evaluation, for the outgoing electron-positron pair in the decay of the tachyonic neutrino, we shall need a few

integrals. In the conventions of Fig. 1, the outgoing momenta p2 and p4 are on the mass shell, E2 =

√
~k22 +m2

e and

E4 =

√
~k24 +m2

e. Let us anticipate the results for the integrals I, J , and K, which are defined as follows,

I(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) =
π

2

√
1− 4m2

e

q2
, (B.1a)

Jλρ(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (p2λ p4ρ) =

√
1− 4m2

e

q2

[
gλρ

π

24

(
q2 − 4m2

e

)
+ qλ qρ

π

12

(
1 +

2m2
e

q2

)]
,

(B.1b)

K(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (p2 · p4) =
π

4

√
1− 4m2

e

q2
(
q2 − 2m2

e

)
. (B.1c)
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By symmetry, one immediately has Jρλ(q) = Jλρ(q). The evaluation of these integrals is essentially simplified because
of the Lorentz invariance of the integration measures, which entails the possibility to choose a coordinate system where
q = (q0, ~q = ~0), and then, identify the occurrences of (q0)2 with q2. The derivation of the results is discussed below.

We observe that because E2 =

√
~k22 +m2

e and E4 =

√
~k24 +m2

e, we have

dE4

d|~k4|
=

d

√
|~k|24 +m2

e

d|~k4|
=

1
2 2|~k4|√
|~k|24 +m2

e

=
|~k4|
E4

, E4 dE4 = |~k4| d|~k4| . (B.2)

We shall go through the calculation if the integral I(q) in great detail,

I(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(3)(~q − ~k2 − ~k4) δ(q0 − E2 − E4)

~q = ~0
=

∫
d3p2
2E2

∫
d3p4
2E4

δ(3)(−~k2 − ~k4) δ(q0 − E2 − E4) =

∫
d3p4
2E4

1

2E4
δ(q0 − 2E4)

= 4π

∫
dE4E4 p4

4E2
4

(
1
2 δ(E4 − 1

2q0)
)
=
π

2

∫
dE4

√
E2

4 −m2
e

E2
4

δ(E4 − 1
2q0)

=
π

2

√
q20/4−m2

e

q20/4
=
π

2

√
1− 4m2

e

q2
. (B.3)

For Jλρ(q), we write

Jλρ(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (p2λ p4ρ) = Aq2 gλρ +B qλ qρ . (B.4)

Projection onto the tensors gλρ and qλ qρ leads to

gλρJλρ(q) = q2 (4A+ B) , qλ qρJλρ(q) = q4(A+B) . (B.5)

Now, we have

gλρJλρ(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (p2 · p4)

~q = ~0
=

∫
d3p2
2E2

∫
d3p4
2E4

δ(3)(−~k2 − ~k4) δ(q0 − E2 − E4)
(
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)
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∫
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2E4

1

2E4
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(
E2
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4

)
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4π

4
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1
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E2
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4
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= π

∫
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√
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1
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4 −m2
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π

2

√
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=
π

4

√
1− 4m2

e

q2
(
q2 − 2m2

e

)
. (B.6)

Yet,

qλqρJλρ(q) =

∫
d3p2
2E2

∫
d3p4
2E4

δ(4)(q − p2 − p4) (q · p2) (q · p4)

~q = ~0
=

∫
d3p2
2E2

∫
d3p4
2E4

δ(3)(−~k2 − ~k4) δ(q0 − E2 − E4) (q0E2) (q0E4)

=

∫
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2E4

1

2E4
δ(q0 − 2E4) (q0)

2 E2
4 =

4π

4

∫
dE4 E4 |~k4|

E2
4

1
2 δ(E4 − 1

2q0) (q0)
2 E2

4

= π

∫
dE4

√
E2

4 −m2
e

E2
4

δ(E4 − 1
2q0) (q0)

2
E2

4 =
π

2

√
q20/4−m2

e

q20/4

q40
4

=
π

8

√
1− 4m2

e

q2
q4 . (B.7)
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Combining Eqs. (B.5), (B.6) and (B.7), one may finally solve for A and B,

A =
π

24 q2

√
1− 4m2

e

q2
(
q2 − 4m2

e

)
, B =

π

12 q2

√
1− 4m2

e

q2
(
q2 + 2m2

e

)
. (B.8)

Thus, we confirm the result in Eq. (B.1b),

Jλρ(q) = gλρ
π

24

√
1− 4m2

e

q2
(
q2 − 4m2

e

)
+ qλ qρ

π

12

√
1− 4m2

e

q2

(
1 +

2m2
e

q2

)
. (B.9)

Finally, contracting with the metric, one has

K(q) = gλρJλρ(q) =
π

4

√
1− 4m2

e

q2
(
q2 − 2m2

e

)
, (B.10)

confirming the result in Eq. (B.1c).
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