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Abstract 

Ljungan and Sebokele viruses are thought to be rodent-borne (picorna)viruses in the 

genus Parechovirus. Using random amplification and next generation sequencing method a 

novel Ljungan/Sebokele-like picornavirus was identified in birds of prey. Viral RNA was 

detected in total of 1 (9%) of the 11 and 2 (28.6%) of the 7 faecal samples from common 

kestrels and red-footed falcons in Hungary, respectively. High faecal viral RNA load 

(4.77x10
6
 genomic copies/ml) measured by qPCR. The complete genome of picornavirus 

strain falcon/HA18_080/2014/HUN (KY645497) is 7964-nucleotide (nt) long including a 

867-nt 5′end and a 101-nt 3′end (excluding the poly(A)-tail). Falcon/HA18_080/2014/HUN 

has type-II IRES related to hunnivirus IRES, encodes a polyprotein lacking a leader protein, a 

VP0 maturation cleavage site and it predicted to encode three 2A proteins (2A1
NPG↓P

, 2A2
NPG↓P

 

and 2A3
H-Box/NC

), two of them end with ‘ribosome-skipping’ sites (DxExNPG
↓
P). Sequence 

analyses indicated that the ORF1 (6996nt) polyprotein (2331 amino acid - aa) of 

falcon/HA18_080/2014/HUN shares the highest aa identity, 59% and 57%, to the 

corresponding polyproteins of Ljungan and Sebokele viruses. This study reports the 

identification and complete genome characterization of a novel Ljungan/Sebokele-like 

picornavirus in faeces of birds of prey which suggests that the genetic diversity and the 

potential host species spectrum of Ljungan/Sebokele-like viruses in genus Parechovirus are 

wider than previously thought. 

 

Keywords: picornavirus, Ljungan virus, Sebokele virus, parechovirus, bird  
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1. Introduction  

Ljungan and Sebokele viruses are two members of the genus Parechovirus within the 

family Picornaviridae. The genus Parechovirus is comprised of four official species 

Parechovirus A (formerly named Human parechovirus), Parechovirus B (formerly named 

Ljungan virus), Parechovirus C (Sebokele virus) and Parechovirus D (ferret parechovirus) 

(www.picornaviridae.com, Adams et al., 2017). Human parechoviruses are important 

pathogens in humans especially in infants and young children and are associated with a wide 

spectrum and severity of diseases (Harvala et al., 2010). Ljungan and Sebokele viruses are 

thought to be rodent-borne viruses. Ljungan virus was first isolated from bank voles in 

Sweden (Niklasson & Le Duc, 1984) and it has been suggested to be the zoonotic etiological 

agent of myocarditis, type-1 diabetes mellitus and possibly other human diseases (Niklasson 

et al., 1998; Niklasson et al., 2007). Sebokele virus was originally isolated in 1972 from 

African wood mice (Digoutte and Germain, 1985; Joffret et al., 2013). Recently, Ljungan 

virus was also detected in wild birds, in gull species in Japan (Mitake et al., 2016).  

In general, picornaviruses are small, non-enveloped viruses with single-stranded, 

positive-sense, 7.2-10.1 kb-long polyadenylated genomic RNA. Picornaviral genomes have a 

common organization pattern: viral polyprotein coding single open reading frame (ORF) 

(except for the genus Dicipivirus which has two ORFs separated by an untranslated region) is 

flanked by the highly structured 5′ and 3′ untranslated regions (UTRs) (Knowles et al., 2012). 

The picornavirus genomes consist of essential secondary RNA structures functioning as a cis-

acting RNA sequences e.g. internal ribosomal entry site (IRES) (Martínez-Salas et al., 2015) 

and cis-acting replication element (cre) (Tolf et al., 2009). Generally, the viral polyprotein 

(VP) processed to form three or four capsid monomer proteins (VP0-VP3-VP1 or VP4-VP2-

VP3-VP1), and at least seven non-structural proteins: 2A-2B-2C-3A-3B-3C-3D; however, 

differences occur in picornaviruses of different genera. The numbers of the cleaved individual 
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proteins can be influenced by the presence or absence of a leader (L) protein upstream of the 

capsid proteins, the cleavage of VP0 into VP4 and VP2 or the presence of multiple 2A 

(Knowles et al., 2012). Most of the picornaviruses have only one mature 2A, although some 

picornaviruses in genera Kunsagivirus, Limnipivirus, Parechovirus (Ljungan and Sebokele 

virus), Pasivirus, Potamipivirus and Aquamavirus have two; Avihepatovirus and Avisivirus 

have three or in case of genus Megrivirus and the proposed genus “Aalivirus” up to four and 

six individual 2A proteins, respectively (http://www.picornaviridae.com), although there is 

some uncertainty regarding the actual release of all of these mature 2A peptides during the 

viral infection cycle (Johansson et al., 2003; Tseng et al., 2007, Boros et al., 2013; Boros et 

al., 2014a). The presence of aphthovirus 2A-like ‘ribosome-skipping’ motif DxExNPG
↓
P 

(where x is any amino acid) is common and present in up to 18 picornavirus genera 

(http://www.picornaviridae.com). In the members of the genus Avisivirus in birds (Boros et 

al., 2013) and genus Limnipivirus (e.g. bluegill picornavirus) (Barbknecht et al., 2014) have 

two 2A proteins, in the proposed genus “Aalivirus” in birds have four 2A proteins that end in 

an NPG
↓
P motif (Wang et al., 2014). 

Birds are well known reservoirs of numerous viral pathogens such as avian influenza 

virus, West Nile virus and Japanese encephalitis virus in humans (Reed et al., 2003). 

However, compared to the ten thousands of known bird species, rather few picornaviruses 

have been described from avian sources, often from faecal samples, and most of these have 

been identified in the last decade from domestic birds (Boros et al., 2013; Boros et al., 

2014b). Birds have the potential also to serve as powerful biomonitors and can be used to 

survey for factors that may pose both public and wildlife health concerns (Pollack et al., 

2017). 
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In this study, a novel member of the genus Parechovirus was detected and 

characterized from faecal samples of birds of prey, a picornavirus related to Ljungan and 

Sebokele viruses. 

 

2. Materials and Methods 

In June 2014, faecal samples were collected from wild birds of prey, from 11 common 

kestrels (Falco tinnunculus) and 7 red-footed falcons (F. vespertinus) from Gara 

(46°03'28.77"N 19°02'38.50"E) and Kardoskút (46°50'43.30"N 20°64'32.92"E) in Hungary, 

respectively, and stored at −80°C. Samples were collected directly from the birds during 

regular bird ringing by qualified ornithologists with valid permission (National Inspectorate 

For Environment, Nature and Water: 14/3858-9/2012). Three falcon samples (as a sample 

pool) were selected for viral metagenomics analysis. Briefly, 30 v/v% PBS-diluted specimens 

were passed through a 0.45-μm sterile filter (Millipore) and centrifuged at 6,000X g for 5 

min. Then the filtrate was treated with a mixture of DNases and RNases to digest unprotected 

nucleic acids (Phan et al., 2013). Viral-particle protected nucleic acids were extracted using 

QIAamp spin-column technique (Qiagen) and subjected to a viral metagenomic analysis using 

sequence independent random amplification (Victoria et al., 2009). Viral cDNA library was 

constructed by Nextera XT DNA Library Preparation Kit (Illumina) and then sequenced on 

MiSeq Illumina platform according to the manufacturer’s instruction, and as described 

previously (Phan et al., 2013). The acquired reads were trimmed; de-novo assembled and 

analyzed using an in-house pipeline (Phan et al., 2013). The reads and contigs greater than 

100-bp were compared to the GenBank protein database (BlastX). Virus family-level 

categorization of viral metagenomic reads was based on the best BlastX-scores (E-value ≤ 10
-

10
). For the verification of the metagenomic contigs and for the determination of the complete 

picornavirus genome direct Sanger dye-terminator sequencing was used. Picornavirus 

quantification is based on viral cDNA transcribed by reverse primer 5’-
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AACTATCTGCTCTGGAAAGGT-3’ (corresponding nucleotide (nt) positions 7716-7696 of 

the study strain) and amplified by primers (R/F: 5’-TTTCCATATCCAGCGGTT-3’/5’-

TGTGCACCTATTTGGCTT-3’ corresponding nt positions 7495-7478 and 7391-7408 of the 

study strain falcon/HA18_080/2014/HUN, respectively) designed for 3D
Pol

 region using a 

real-time PCR assay (LightCycler FastStart DNA Master SYBR Green I, Roche, Mannheim, 

Germany). For absolute quantification and the generation of a standard curve, a hundred-fold 

dilution series of silica-column (Qiagen, Hilden, Germany) purified and 

spectrophotometrically quantified single PCR amplicon of the picornavirus was used.  

Faecal specimens from kestrels and falcons were tested by RT-PCR using specific 

screening primer-pairs [R: 5'-AACTATCTGCTCTGGAAAGGT-3' corresponding nt 7716-

7696 of the study strain and F: 5'-GTGGTATGCCATCTGGTGCGCCGT-3' corresponding nt 

positions 7331-7354 of the study strain falcon/HA18_080/2014/HUN] designed for the 

conserved RNA-dependent RNA polymerase (RdRp) genome region.  

All evolutionary analysis (multiple sequence alignment, best DNA model search, 

phylogenetic analysis) was conducted in MEGA6 (Tamura et al., 2013). The nt sequences of 

the study strain and representative picornaviruses were aligned based on codons and pre-

tested using the best nt/amino acid(aa) model (ML) search. Dendrograms were constructed by 

the Maximum Likelihood (ML) method based on the General Time Reversible model with 

Gamma distribution (+G) and invariable sites (+I). 

Possible polyprotein cleavage sites were predicted using the aa sequence alignment of 

Ljungan viruses (AF327921, EU854568), ferret parechovirus (KF006989), Sebokele virus 

(NC_021482) and the study strain and the NetPicoRNA program (Blom et al., 1996). The 

secondary structures of 5’UTR and cre were predicted (but not confirmed by biochemical 

probing) using the Mfold program (Zuker, 2003) and a 2D model was drawn using Corel 

Draw Graphics Suite ver. 12. 
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The complete nt and aa sequences of falcon picornavirus, 

falcon/HA18_080/2014/HUN and partial 3D/3’UTR sequences of the related viruses have 

been submitted to GenBank under accession numbers KY645497-KY645499. 

3. Results and Discussion 

A total of 4,811 sequence reads (singletons and contigs) showing similarity to viruses 

were obtained (BLASTx cut-off E score ≤ 10
-10

) after de novo assembly of the initial reads 

from the sample pool. Detected sequences were from viruses of family Parvoviridae 

(N=2,128), Microviridae (N=390), Picobirnaviridae (N=287), Iridoviridae (N=91), 

Circoviridae (N=49), Astroviridae (N=43), Picornaviridae (N=37) and other (N=96) or 

unclassified (N=1,690) virus families. The 37 picornaviral sequence reads were related to 

VP1 and 3D regions of Ljungan and Sebokele viruses. To characterize the complete genome 

of the picornavirus different sets of specific primers were designed on the basis of the 

metagenomic sequence reads and amplicons were sequenced directly by Sanger sequencing. 

5’/3’ RACE method was used to obtain the 5′ and 3′ genome ends (Boros et al., 2011). The 

complete genome of picornavirus strain falcon/HA18_080/2014/HUN (KY645497) is 7964 nt 

long including a 867-nt 5′end and a 101-nt 3′end (excluding the poly(A)-tail) (Figure 1). The 

base composition of the genome was found to be 27% A, 22.7% G, 19.6% C and 30.7% U. 

The G+C content of the entire genome is 42.3%. Falcon/HA18_080/2014/HUN was predicted 

to have a picornavirus genome organization pattern: VPg-5′UTR
IRES-II

[P1(VP0-VP3-VP1)-

P2(2A1
NPGP

-2A2
NPGP

-2A3
H-Box/NC

-2B-2C)-P3(3A-3B
VPg

-3C
Pro

-3D
Pol

)-3′UTR. The coding 

region is 6996-nt long and it encodes a 2331-aa long polyprotein.  

Analysis of untranslated regions (5’UTR and 3’UTR) and cis-acting replication element (cre) 

 The predicted length of the 5’UTR of falcon/HA18_080/2014/HUN was 867-nt-long. 

The predicted initiation codon was mapped at nt positions 868-870, which is in an optimal 

Kozak context (AaaA868UGG) (Figure 2a). A non-in-frame AUG(G) nts was also present 
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100nt upstream (at nt positions 768-770) of the initiation codon. A pyrimidine-rich tract was 

found at nt positions 740-748 (Figure 2a). Using BlastN (GenBank), up to 79% nt sequence 

similarity was found between the 3′ end of the falcon/HA18_080/2014/HUN 5′UTR region 

(from nt 427 to nt 779) and the core domains I-J-K-L of internal ribosomal entry site (IRES) 

of members of the genera Hunnivirus and Parechovirus, especially to the rat hunnivirus 

(KJ950971). Based upon these data and the predicted secondary RNA structure of the 5′UTR, 

falcon/HA18_080/2014/HUN had a potential type-II IRES (Figure 2a). This type of IRES 

comprised of five major core domains from H to L and conserved nt motifs (GNRA tetraloop, 

C-rich, A-bulge etc.) which were also recognizable in the study strain (Figure 2a). The A-

bulge and the discontinuous sequence element in domain J, conserved in all cardio- and 

aphthoviruses and critical for the interaction with the host translation initiator factor eIF4G 

(Bassili et al., 2004; Saleh et al., 2001), is present in falcon/HA18_080/2014/HUN (Figure 

2a). Interestingly, and additional potential domain was also found between the domains H and 

I. The apical 21 nts in domain D of falcon/HA18_080/2014/HUN was completely identical to 

the corresponding domain of ovine and bovine hunniviruses, mosaviruses and Ljungan virus 4 

(Figure 2a) (Reuter et al., 2012; Reuter et al., 2014). The 3’UTR is 101nt long and similar nt 

sequences were not found in GenBank. 

The cis-acting replication element (cre) is a short stem-loop structure including an 

internal or a terminal loop with three unpaired adenine (A) nucleotides. This structure is 

critical for picornaviral replication by its implication in the uridylylation of the viral VPg 

peptide (Paul et al., 2000) and has been located in different genome regions in picornaviruses. 

Sequence analysis revealed that the potential cre is located between nt positions 5777 and 

5826 in falcon/HA18_080/2014/HUN (Figure 2b). This cre structure and the genome position 

in 3B
VPg

 region are similar to those proposed for Ljungan viruses (Al-Sunaidi et al., 2007; 

Tolf et al., 2009). 
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Analysis of the polyprotein 

The possible cleavage sites of the polyprotein of falcon/HA18_080/2014/HUN were 

mapped based on (i) the aa alignment with the selected strains of the closest relatives Ljungan 

viruses (AF327920-AF327922, LC133331, AF538689, EU854568), Sebokele virus 

(NC_021482), ferret picornavirus (KF006989) and (ii) NetPicoRNA predictions. Except the 

border of the VP1/2A (junction of P1/P2) the polyprotein cleavage sites of 

falcon/HA18_080/2014/HUN were strongly supported (Figure 1). The prediction of cleavage 

site of VP1/2A presented a special challenge. During the polyprotein analysis two 

autocleavage motifs (‘ribosome-skipping’ sites) DxExNP
↓
G831and 908/P were located at the 

presumed VP1/2A site (Figure 1). Based on the previously published cleavage site prediction 

(Johansson et al., 2003; Zhu et al., 2015) for Ljungan viruses (which viruses have only one 

NPG
↓
P motif), our hypothetically mapped VP1/2A cleavage site is located at the first 

DxExNP
↓
G831 motif. In this case, two 2A are present in falcon/HA18_080/2014/HUN. 

However, the presence of another potential cleavage site (E776/A, which motif is also 

presented at presumed cleavage site of 3B/3C of falcon/HA18_080/2014/HUN and located at 

the same aa position in the alignment as found in Ljungan and Sebokele viruses) upstream 

from the first NPG
↓
P motif could not be ruled out (Figure 1). In this case the number of 

presumed 2As would increase to three in falcon/HA18_080/2014/HUN (Figure 1).  

The complete P1 (2493nt/831aa or in the case of three 2A 2328nt/776aa), P2 

(2055nt/685aa or in the case of three 2A 2220nt/740aa) and P3 (2448nt/815aa) regions show 

62%, 57% and 61% aa identity to the corresponding proteins of the closest relatives, Ljungan 

virus M1146 (AF538689), respectively. 

The analysis of the P1 region alignments did not support the presence of L protein or 

the cleavage of VP0 into VP4 and VP2, therefore the falcon/HA18_080/2014/HUN virions 

are probably built up from only three capsid monomers (VP0-VP3-VP1) (Figure 1). Two 
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presumed myristoylation motifs (GxxxT/S, x=variable; G3qnkT and G10allS) were found at 

the N-terminal of VP0 (Figure 1). The integrin-binding RGD motif typical in some types of 

human parechoviruses was not found in the VP1. The VP0 (260aa), VP3 (249aa) and VP1 

(322aa or in the case of three 2A 267aa) of falcon/HA18_080/2014/HUN have 68%, 66% and 

50% aa identity to the corresponding proteins of Ljungan virus (EU854568), as the closest 

match in GenBank, respectively. 

The predicted 2A1 is 55aa long if this region is not an extension of the C-terminal end 

of VP1 protein. This protein has 40% aa identity to the corresponding protein of Sebokele 

virus (NC_021482). The 2A2 is 77aa-long and it has 35% aa identity (between aa positions 22 

and 72 of 2A2) to cytochrome P450 CYP1C1 (family1, subfamily C polypeptide 1 – 

DQ007044) of zebrafish, Danio rerio. The 135aa-long 2A3 of falcon/HA18_080/2014/HUN 

possesses the highest (77%) aa sequence identity to the corresponding 2A of Ljungan virus 

(EU854568), contains H-box/NC regions (Figure 1), therefore it appears to belong to the 

parechovirus-like 2A proteins (Hughes and Stanway, 2000). The 142-aa-long 2B protein has 

71% aa identity to the corresponding protein of Ljungan virus (AF327921). The 2C protein of 

falcon/HA18_080/2014/HUN possesses the highly conserved GxxGXGKS (X=uncharged, 

x=variable) motif for NTP binding sites with modification (sepGqG1330KS) and the DDLxQ 

motif (x=variable; with modification (D1373DagQ) for putative helicase activity (Figure 1). 

The 2C and 3A proteins have 64% and 44% aa identity to 2C and 3A proteins of Sebokele 

virus (NC_021482). The 28-aa-long 3B protein (small viral protein genome-linked or VPg) 

has Y1640 residue at the third aa position and has 63% aa sequence identity to the VPg of 

Ljungan virus 145SL (FJ384560). The conservative catalytic triad (H, I, C) of the 3C viral 

cysteine-active-centre protease was also seen in the falcon/HA18_080/2014/HUN and the 

active site cysteine in the motif GxCG (x=variable, GMC1817G) was also present (Figure 1). 

The highly conserved motifs (e.g. KDELR, GxxPSG, YGDD and FLKR, x=variable) of the 
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3D
Pol

 (RNA-dependent-RNA-polymerase) were also presented in the study sequence (Figure 

1). The 3C and 3D proteins of the falcon/HA18_080/2014/HUN have 64%-64% aa identity to 

the corresponding proteins of Ljungan virus (AF538689). 

The phylogenetic trees based on the P1, 2C and 3CD nt sequence of 

falcon/HA18_080/2014/HUN and representative members of picornaviruses could indicate 

that the study strain is a member of the parechovirus lineage containing ferret picornavirus, 

Ljungan virus, Sebokele virus and human parechoviruses (Figure 3A-C). 

Falcon/HA18_080/2014/HUN-like picornaviral RNA was detected in total of 1 (9%) 

of the 11 and 2 (28.6%) of the 7 faecal samples from common kestrels and red-footed falcons, 

respectively (the distance between the two sampling areas is 135km away). All amplicons 

were confirmed by direct nucleotide sequencing and submitted to GenBank under accession 

numbers KY645497-KY645499. These 3 picornaviral sequences from birds of prey showed 

94-98% nt sequence identity to each other in the amplified partial 3D
Pol

/3’UTR regions. The 

result of the qPCR quantification reveals the presence of 4.77x10
6
 (standard deviation ±5.42 

x10
5
) genomic copies/ml in original faeces in falcon sample HA18_080.  

 

This study reports the identification and complete genome characterization of a novel 

parechovirus related to Ljungan and Sebokele viruses from a wild bird. Based upon the 

sequence- and phylogenetic analyses falcon/HA18_080/2014/HUN had the highest aa identity 

to the Ljungan viruses in species Parechovirus B. However, while the four known Ljungan 

virus genotypes (genotypes 1-4) had only 11-21% aa difference between each other, the 

falcon/HA18_080/2014/HUN ORF1 polyprotein had a 41% difference to the Ljungan viruses 

(and 43% to Sebokele virus). The aa difference between Ljungan viruses (species 

Parechovirus B) and Sebokele virus (species Parechovirus C) is 38-39% on the ORF1 

polyprotein. These data suggests that falcon/HA18_080/2014/HUN may represent a novel 

parechovirus species in genus Parechovirus. 
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The known geographic distribution of Ljungan virus is limited. It has been detected in 

Northern Europe (Sweden, Denmark, Finland), Italy, UK, the United States (Pounder et al., 

2015), Germany, Thailand (Kallies, 2010) and in Japan (Mitake et al., 2016). Until now, 

Ljungan virus genome sequence has been found in bank voles (Myodes glareolus) (Niklasson 

et al., 1998; Johansson et al., 2002; Pounder et al., 2015), montane vole (Microtus montanus) 

(Johansson et al., 2003), red-backed vole (Myodes gapperi) (Tolf et al., 2009), yellow-necked 

mice (Apodemus flavicollis) (Hauffe et al., 2010), Eurasian red squirrels (Sciurus vulgaris) 

(Romeo et al., 2014), laboratory rats (Rattus norvegicus) (Kallies et al 2010) and other 

rodents (Kallies, 2010). However, very recently, Ljungan virus has also been detected in wild 

birds, in gull (Larus sp.) as a host species from Japan, indicating the possibility of Ljungan 

virus infection and replication in birds (Mitake et al., 2016). This opens a new possibility of 

further natural host species of these viruses. It represents an interesting scientific direction, 

and may underline the possible importance of the Ljungan viruses, that several scientific 

studies have reported that the Ljungan virus is associated with serious diseases including 

diabetes mellitus, myocarditis, encephalitis, intrauterine fetal death in rodents, and based on 

this results maybe in humans (Niklasson, 2011; Zheng et al., 2015). Recent results of a 

seroepidemiological study also suggested a human-to-human transmission of Ljungan and - 

much more importantly - Ljungan-like viruses in Finland (Jääskeläinen et al., 2015). In this 

context, the knowledge of the distribution of these viruses among wild and domestic animals 

is crucial to assess their potential transmission and importance as human pathogens. In 

addition, the novel Ljungan-like genome sequence from different location and host help to 

better understand the evolutionary and epidemiological properties of these potential zoonotic 

viruses. Finally, the wider genetic diversity of Ljungan-like viruses suggests that the 

sensitivity of the presently used molecular methods including PCRs (Mantke et al., 2007) is 

sub-optimal resulting an underreporting the incidence of these viruses.  
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In spite of the potential importance of Ljungan viruses there are only a total of 14 

published Ljungan virus strains available in the GenBank and only two studies reported 

results on viral nucleic acid quantification. In experimentally infected laboratory mice 10
6
-

10
10

 RNA copies per gram of Ljungan virus were detected in different tissue samples (in 

increasing order: kidney, liver, lung, pancreas, heart and brain) when clinical signs of 

encephalitis appeared (Mantke et al., 2007). In another field study, Ljungan virus was 

detected in the liver in bank vole and yellow-necked mice with copy numbers per gram tissue 

ranging from 10 to 5x10
4 

(Hauffe et al., 2010). There is no report on quantification of Ljungan 

virus in faeces; however, we found a relatively high faecal viral load (4.77x10
6
 copies per ml 

viral RNA concentration) of falcon/HA18_080/2014/HUN in the analyzed falcon sample – 

compared to other known stool-associated viruses in faeces. This represents a potential 

indication of possible, although not confirmed, viral replication in the avian host.  

The avian host origin is also supported by the genome characteristics of 

falcon/HA18_080/2014/HUN. While the type-IV IRES is predominant, the type-II IRES – as 

a potential IRES in falcon/HA18_080/2014/HUN - is also common among avian 

picornaviruses (Boros et al., 2014b). The other characteristic feature of avian picornaviruses is 

the multiple 2A proteins encoded by the genome (Boros et al., 2014b). In addition, the 

members of the picornaviruses with multiple 2A proteins with ‘ribosome-skipping’ sites 

(DxExNPG
↓
P) are grouped in one particular phylogenetic lineage (Boros et al., 2014b). In this 

lineage – which also contains the Ljungan and Sebokele viruses - there are two picornavirus 

genera which encode two NPG
↓
Ps: bluegill picornavirus 1, carp picornavirus 1 and fathead 

minnow picornavirus 1 in genus Limnipivirus (Barbknecht et al., 2014) and the bird origin 

turkey and chicken avisiviruses in genus Avisivirus (Boros et al., 2013). In this phylogenetic 

lineage, the duck picornavirus of the proposed bird-origin genus “Aalivirus” is predicted to 

possess six 2A proteins, four of which have NPG
↓
P motifs (Wang et al., 2014). The affiliation 
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of the first NPG
↓
P in picornavirus genomes with multiple NPG

↓
P motifs, and in consequence 

of the border of the VP1/2A, is an open question (Boros et al, 2013; Barbknecht et al., 2014, 

Wang et al. 2014). The presence of an NPG
↓
P motif at the C-terminal end of a capsid protein 

VP1 was experimentally demonstrated in Ljungan virus (Johansson et al., 2003). Without 

experimental results we cannot rule out the possibility of the presence of an unusual VP1/2A 

cleavage site upstream from the first NPG
↓
P motif and therefore the release of up to three 

different 2A polypeptides in falcon/HA18_080/2014/HUN. However, it is also possible that 

the first 2A motif is actually a part of VP1 that does not trimmed off by 3C
Pro

. Either way, the 

falcon/HA18_080/2014/HUN with two NPG
↓
P polyprotein motifs and more than one 2A 

proteins represents an interesting genetic and evolutionary variant among the known 

parechoviruses. 

In the light of the possible association of Ljungan virus replication in bird (Mitake et 

al., 2016), one might hypothesize that the Ljungan and Ljungan-like viruses were adapted to 

infect birds as a result of the long lasting (predator/food prey) relationship between rodent 

hosts and carnivorous or omnivorous wild birds. Further systematic studies are needed to 

investigate the host species spectrum and switch, incidence and genetic diversity of Ljungan-

like viruses in different bird species. 
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Figure legends 

 

Figure 1. Schematic genome organization of falcon/HA18_080/2014/HUN (KY645497). P1 

(VP0-VP3-VP1) represents viral structural proteins and P2-P3 represent nonstructural 

proteins. Nucleotide (upper number) and amino acid (lower number) lengths are indicated in 

each gene box. Conserved picornaviral amino acid motifs and predicted P4/P4’ cleavage sites 

are indicated at the above of genome map. Question mark indicates the uncertain border of the 

P1/P2. Amino acid sequence alignment of 2A protein part of two Ljungan viruses, Sebokele 

virus, ferret parechovirus and falcon/HA18_080/2014/HUN between the C-terminal end of 

the VP1 and the N-terminal end of the 2B protein is indicated. 

 

Figure 2. a) Predicted RNA secondary structure of falcon picornavirus (KY645497) 5’UTR 

including the internal ribosomal entry site (IRES) using the Mfold program. The complete 

structure of the 5′UTR including the domains from A to L and the type-II IRES has been 

annotated as previously proposed for hunniviruses (Reuter et al., 2012) and human 

parechoviruses (Ghazi et al., 1998) (schematic figure in frame). The central five IRES 

domains are labelled from H to L to maintain the continuity of the current nomenclature. The 

positions of conserved type-II IRES motifs, the highly identical nucleotides to hunniviruses 

and human parechoviruses in IRES domains H, I, J and L, the pyrimidine-rich region at the 3′ 

end and the predicted polyprotein AUG start codon are indicated by shaded boxes. In domain 

D, continuous black line shows the position of the identical 21 nucleotides between falcon 

picornavirus, hunniviruses (HM153767 and JQ941880) and Ljungan virus 4 (EU854568). b) 

Secondary RNA structure predicted for a putative falcon picornavirus cre in the VPg-

encoding gene (3B). The AAA sequence, which is conserved in picornavirus cre, is indicated 

by shaded box. 
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Figure 3. Phylogenetic analysis of a novel Ljungan/Sebokele-like picornavirus strain 

falcon/HA18_080/2014/HUN (KY645497 in bold) and representative picornaviruses based 

on the complete P1, 2C and 3CD nucleotide sequences. The strain Calnek vaccine strain 

(AJ225173, AEV-1, genus Tremovirus) was used as an outgroup in each phylogenetic tree. 

The multiple alignment of nucleotide sequences, finding the best DNA model search and the 

molecular phylogenetic analysis were conducted in MEGA6. The evolutionary history was 

inferred using the Maximum Likelihood method based on the General Time Reversible model 

with discrete Gamma distribution (+G), allowing evolutionarily invariable sites (+I). Using all 

sites in the multiple alignments the bootstrap values were determined with 1000 replicates. 

The tree was drawn to scale with branch lengths measured in the number of substitutions per 

site. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Highlights 

 

Ljungan-Sebokele-like picornavirus was detected in wild birds of prey. 

High faecal viral RNA load was measured by qPCR. 

The complete parechovirus genome was characterized. 

The viral genome has a type II-like IRES related to hunnivirus IRES. 

The viral genome predicted to encode three 2A proteins; two of them end with NPG
↓
P. 

It represents a novel parechovirus species in genus Parechovirus. 
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