
Software Implementation of the Recursive Discrete
Fourier Transform

Márton Kovács, Zsolt Kollár
Budapest University of Technology and Economics

Budapest, Hungary
Email: kollar@hvt.bme.hu

Abstract—The Discrete Fourier Transform is one of the funda-
mental operations in digital signal processing. This paper presents
a software based implementation of the less known Recursive
Discrete Fourier Transform on the PC x86 architecture and
Microchip PIC30 microcontroller. The results are compared with
an efficient/optimized Fast Fourier Transform implementation.
Both algorithms require complex operations with real valued
adders and multipliers, thus a complex result has to be calculated
separately for the real and imaginary parts. During the imple-
mentation a floating-point number representation is applied. The
comparison is performed based on the required resources and
computational time.

I. INTRODUCTION

The Discrete Fourier Transform (DFT) is used in many
engineering applications: it is not limited only to the field of
signal processing, but it can be widely adopted for solutions
in telecommunications, data compression and measurements
as well. Direct implementation of the DFT is computation-
ally inefficient, thus signal processing applications tend to
implement one of the various Fast Fourier Transform (FFT)
algorithms instead. The basic operation of these algorithms is
block oriented, but there are some problems which require a
continues, sample-by-sample calculation of the spectra. Such
problems can be spectral sensing for cognitive radios [1] where
accurate and continues measurements are required for the fast
response in the usage of the radio frequency or the processing
of DTMF signals using Goertzel’s algorithm [2].

The Recursive DFT (R-DFT) provides an alternative com-
putation method to acquire the DFT components of a signal,
which applies the observer-based structure [3] and recalculates
the spectral values for every new incoming sample in a sliding
manner. This paper presents a possible implementation based
on the x86, Streaming SIMD Extension (SSE) and 16-bit
architectures and compares the results with an optimized FFT.

The paper is organized as follows. First, in Section II, a short
theoretical background is given for the DFT, FFT and R-DFT
methods and a comparison of their computational complexity
is presented. Section III presents efficient implementations of
the R-DFT on the different architectures. The comparison of
the two algorithms implementation performance is given in
Section IV. Finally, the results are concluded and possible
further improvements are discussed in Section V.

II. THEORY

In this section the operation of the DFT and the R-DFT are
given. The main difference between the operation of the DFT
and the R-DFT is that the DFT operates on a block of input
samples with a length of N elements, thus it has to wait for
the entire block before it can be executed, meanwhile the R-
DFT operates as closed loop control system, thus it operates
in a sample-by-sample manner.

A. DFT and FFT

Mathematically, the ith spectral component of an N -point
DFT (Xm) can be calculated for an N -sample long discrete
signal (x[k], k = 0, 1, ..., N − 1) as

Xm =

N−1∑
k=0

x[k]e−j
2π
N km, m = 0, 1, ..., N − 1, (1)

where j =
√
−1.

The calculation of one spectral component requires N
complex multipliers and N − 1 complex adders, so the com-
putational complexity for N frequencies is O

(
N2
)
.

The FFT provides mathematically the same results as the
DFT, but it has a modified structure, which reduces the number
of elementary operations. There are many FFT algorithms like
split-radix FFT, Prime-factor FFT, Brunn’s FFT algorithm, etc.
[4]. Its computational complexity, depending on the number
of samples, can be reduced to O(N log2 N), which is signif-
icantly lower than the requirements for the DFT.

B. R-DFT

The R-DFT realizes the observer-based structure [3], which
calculates the DFT values of the incoming signal for every sin-
gle new input. The observer theory is based on the prediction-
correction scheme, where the observer is a system, which can
copy the state variables of the observed system. By suggestion
of Péceli the DFT can be also realized in an observer-scheme.
If gm[k] and cm[k] are given as

gm[k] =
1

N
e−j

2π
N km, m = 0, 1, ..., N − 1, (2)

cm[k] = ej
2π
N km, m = 0, 1, ..., N − 1, (3)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/95354497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1: Schematic structure of the observer-based R-DFT

then Xm[k] gives the DFT of the last k′ = k −N, . . . , k − 1
samples.

The structure of the R-DFT scheme can be seen in the
Fig. 1. It calculates an error signal e[k] from the difference
of the input and the feedback signals, which then will be
modulated with gm[k] in every mth branch and the integrators
will be updated with the modulated value. The values of the
integrators are demodulated with cm[k] and summed in order
to create the feedback signal. In case where the state variables
are perfectly estimated, the feedback is identical with the input,
thus the error signal is zero.

The complexity depends on the number of branches: After
receiving one input sample, all N resonators operate. The
first valid spectral components are therefore acquired once
N +1 input values have been received. So, the computational
complexity is O

(
N2
)
. It can be seen that the complexity is the

same as of the DFT’s, but the calculation is equally distributed
in time over the N samples. Also the spectra of the N sample
long block which is shifted by one sample can be calculated
in O (N).

The beneficial property of the R-DFT compared to other
resonator-based solutions (like Goertzel’s [2] or Jacobsen’s
solutions [5]) is that the arithmetical inaccuracy of the res-
onator’s pole does not cause divergence due to feedback
[6]. As the poles of system are located on the unit circle,
inaccuracies due to the finite numerical representation of these
values may lead to divergence or convergence to zero.

C. Comparison of the computational complexity

The theoretical comparison of the FFT and R-DFT methods
can be discussed for various scenarios.

1) Offline: First, if an offline calculation is considered for a
block of N samples, the computational complexity of the
FFT is proportional to N log2(N), while the complexity
of the R-DFT is proportional to N2. In the case of offline
calculation, all data are available in memory, so it is not
needed to wait for input signal.

2) OnlineSample by sample calculation: A second sce-
nario is where the samples are coming from an A/D
converter with a given sampling rate. In this case the
FFT algorithm has to wait for N samples to proceed
with the calculations, so the computational complexity
remains unaltered compared to the previous case. On the
other hand, for the R-DFT the feedback loop operates
after each incoming sample, so after the arrival of the
N th sample, only N operations with a latency of a
single stage is required to calculate the spectra, thus the
operations are distributed over the block.

3) Sliding manner: When continuous evaluation of DFT
is required, the FFT has to be calculated in sliding
window manner over the sampled signal for each block
repeatedly. In this case the R-DFT provides the spectral
values much faster [1] with a significantly reduced
complexity proportional to N .

The summary of the required computational complexity and
latency in the various scenarios is presented in Table I.

III. IMPLEMENTATION

The PC implementation was developed on x86 architecture
using C language and Microsoft Visual Studio 2013 develop-
ment environment. Two solutions are investigated. The first
realization uses only the x86 instructions to calculate the
floating point numbers. After that the algorithm was optimized
by SSE instruction set as follows: every single elementary
complex operation (addition and multiplication) is converted
to SSE instruction, which are calculated on 128-bits data units.
In the second solution, the algorithm is also implemented on
a Microchip PIC30 with a 16-bits architecture in C language
under MPLAB X, to reveal how many operations are executed
during DFT processing, which was not observable on PC,
because the operating system hides this information.

A. x86

Most of today’s desktop PC systems are based on the x86
architecture. In the first implementation only x86 instructions
are used, which are then optimized by SSE instructions and
these realizations are compared.

1) Direct implementation: First, the direct implementation
maps the structural elements of R-DFT - as presented in
Section II – into control statements. The algorithm contains
two nested for-loops, which is iterating for every new input
sample. This outer loop is responsible for the time domain,
and increments the discrete time-variable k. In every discrete
time slice, the spectral components are calculated in an em-
bedded for-loop. The internal loop increments the m frequency
variable for the frequency domain, modulates the error signal
with gm[k] complex value, and the integrator is updated with
the result of the modulator. Finally, all of the integrators are
demodulated with the multiplication of cm[k] and the outputs
of the demodulators are summed to generate the feedback
signal.

All modulators and demodulators cover complex multipli-
cation operations. The values of gm[k] and cm[k] can be



TABLE I: Computational complexity and latency for the various scenarios

FFT R-DFT
Scenario Complexity Latency Complexity Latency

Offline N log2 N N log2 N · tcFFT N2 N2 · tcRDFT

Online: Block manner N log2 N N · ts +N log2 N · tcFFT N2 N · ts +N2 · tcRDFT

Online: Sliding manner N log2 N ts +N log2 N · tcFFT N ts +N · tcRDFT

computed offline and saved into an array, so the modulators
have to assign only the index of the pre-calculated operands.
The algorithm operates on 64 bit double precision data units
using the processors’s floating point arithmetical unit.

2) SSE optimization: The second realization using the SSE,
is a Single Instruction Multiple Data (SIMD) instruction set
extension of the x86 architecture, which was developed by
Intel in 1999 and the company’s later processors processors
support several version of SSE since Pentium III. The first
version of instruction set offers 70 new instructions that can
be used to calculate single precision values more efficient. The
SSE2 already supports double precision calculations and SSE3
has operations supporting complex arithmetics [7].

SIMD means that the same instruction is executed on
multiple data. SSE instructions perform their operations on 128
bit data units, which can be defined in various ways according
to the applied data type. In this paper the decomposition to
2-element double vectors is applied.

This scenario uses the same program structure as the direct
implementation, but it is optimized for complex additions and
complex multiplications. The operations are using both x86
and SSE instructions. This solution is optimal in that sense
that the execution is performed on 128 bit data units instead
of 64 bit, which means that two double values can be stored
in one register. Using the SSE operation ADDPD which adds
two registers vertically, the complex addition can be performed
with one ADDPD instead of two FADD instructions. Since
both instruction’s latency is 3 cycles, we are expecting to halve
the duration of execution here.

The optimized complex multiplication works on the same
data types as the non optimized version, but it is not enough to
modify only the FMUL instruction to MULPD as for addition,
because it can not be evaluated vertically for vectors. The
structure of the calculation has to be redistributed, the resulting
optimized source code is as follows:

inline void sse_complex_mul(__m128d *result, __m128d *x,
__m128d *y)

{
__m128d aa = _mm_movedup_pd(*x);
__m128d bb = _mm_movedup_pd(_mm_shuffle_pd(*x, *x, 1));
__m128d cd = *y;
__m128d dc = _mm_shuffle_pd(cd, cd, 1);

*result = _mm_addsub_pd(_mm_mul_pd(aa, cd),
_mm_mul_pd(bb, dc));

}

The direct implementation of the multiplication contains
4 FMUL (5 cycles latency) and 2 FADD (3 cycles latency)
operations, which results in a total latency of 26 cycles. In this

case the MULPD instruction has a latency of 5 cycles as well.
ADDSUBPD, MOVDDUP and SHUFPD need 1 cycle to be
completed. Summarized, the complex multiplication takes 17
clock cycles, as result a maximal time reduction to 65% may
be achieved. These estimations are rather optimistic, which do
not take into account the load/store operations, and presumes
that all data are available in the registers.

B. Pic30

On the x86 architecture, with the usage of an operating
system only the execution time of the algorithm can be
measured. Therefore the R-DFT is also implemented on a
Microchip PIC30 16-bit architecture to compare the number
of the executed instructions for each variant of algorithm,
which define exactly its entire execution time. In the full
paper the results of the R-DFT implementation on a 16-bit
microcontroller architecture will be evaluated and the required
resources and computational cycles will be discussed. The
results will be presented in the final paper.

IV. IMPLEMENTATION RESULTS

The comparison presented in this section covers two run
cases. First, the two previously introduced x86 implementation
of the R-DFT are compared with each other, after that, the R-
DFT and FFT implementations are analyzed and investigated.

In Figure 2 the execution time of the direct implemented
and the SSE optimized algorithm of R-DFT depending on the
signal length is shown, where N = 512, the sample rate is
considered to be 100 kS/s and the analyzed signal lengths
are between 1-10 seconds. The measurement show an average
of about 64% time reduction in case of SSE runs, which is in
the expected and pre-calculated 50-65% range. It can be also
seen that execution time for both of the two implementation
is linearly dependent on the length of the input signal.

The FFT and R-DFT use different concepts for computation.
As with the FFT, a fixed N -size block is always defined which
has to be filled with data first (and the program waits so long),
while the R-DFT performs its operations for each new input
sample. Therefore the algorithm of FFT has to be run using
a sliding window on the input, which means that it has to
push each next input value into the window, removing the
oldest stored value at the same time. For the comparison we
used the FFTW as an efficient implementation for the FFT.
It is a C subroutine library for computing the DFT in one
or more dimensions, of arbitrary input size, and of both real
and complex data. FFTW is free software, which provide the
FFT library of choice for most applications [8]. FFTW is used
on one hand to compare the applied resources, rapidness of



Fig. 2: Execution time of the direct and the optimized version
of the R-DFT implementation at N = 512

Fig. 3: Execution time of FFTW (FFT) and R-DFT in function
of N

algorithms, on the other hand to verify the accuracy of output
values.

Figure 3 shows the execution time of the FFT and the R-
DFT on 1 second input signal, which sample rate is 100 kS/s,
depending on its spectral resolution in the range N = 64−530.
The measurement indicate that the R-DFT is almost always
faster then FFT if a sliding DFT calculated for each new
sample is required. The other notable result, shown in Fig. 3,
is that the execution time of FFT has a large deviation from
its expected values, but it has a growing trend in function of
N . By contrast, the execution time of R-DFT seems linearly
proportional to N . The reason of this effect derive from the
algorithmic specialty, because if N is a prime or it has a large
(larger then 11) prime divisor, than the ”divide and conquer”
principle can not be applied, while the number of R-DFT’s
adders and multipliers is proportional to N .

V. CONCLUSION

This paper presents possible implementations of the less-
known R-DFT on different architectures, the optimization
possibilities of the algorithm are investigated. The results show
that the R-DFT is capable to calculate the spectral components
of input signal significantly faster in a sliding manner than the
point-by-point usage of the FFT.

In the future work the implantation of the R-DFT algorithm
on graphics processing unit (GPU) and field-programmable
gate array (FPGA) is to be considered; the hardware im-
plementation should further improve the presented software
implementations.

ACKNOWLEDGMENT

This work was supported by the János Bolyai Research
Fellowship of the Hungarian Academy of Sciences.

REFERENCES

[1] L. Varga, Zs. Kollár, and P. Horváth, “Recursive Discrete Fourier Trans-
form based SMT receivers for cognitive radio applications,” in 2012
19th International Conference on Systems, Signals and Image Processing
IWSSIP, Apr. 2012, pp. 130–133.

[2] N. Bhavanam and V. Midasala, “DTMF tone generation and detection
using goertzel algorithm with MATLAB,” in Proceedings of International
Conference on Innovation in Electronics and Communications Engineer-
ing (ICIECE-2013), Aug. 2013, pp. 47–52.

[3] G. Péceli, “A common structure for recursive discrete transforms,” IEEE
Transactions on Circuits and Systems, vol. 33, no. 10, pp. 1035–1036,
Oct. 1986, DOI: 10.1109/TCS.1986.1085844.

[4] C. Van Loan, Computational Frameworks for the Fast Fourier Transform.
Society for Industrial and Applied Mathematics, 1992.

[5] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE Signal Pro-
cessing Magazine, vol. 20, no. 2, pp. 74–80, Mar. 2003, DOI:
10.1109/MSP.2003.1184347.

[6] B. Csuka, I. Kollár, Zs. Kollár, and M. Kovács, “Comparison of sig-
nal processing methods for calculating point-by-point discrete fourier
transforms,” in 2016 26th International Conference Radioelektronika
(RADIOELEKTRONIKA), April 2016, pp. 217–221.

[7] Intel 64 and IA-32 Architectures Software De-
velopers Manual, Intel Corporation, 2016, URL:
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-instruction-set-reference-manual-
325383.pdf.

[8] FFTW, “FFTW (Fast Fourier Transform library),” http://www.fftw.org/,
2017.


