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Multiple linear regression based models 
for solar collectors 

Richárd KICSINY 
Department of Mathematics,  

Institute for Mathematics and Informatics 

Abstract 

Mathematical modelling is the theoretically established tool to investigate and 
develop solar thermal collectors as environmentally friendly technological heat 
producers. In the present survey, recent multiple linear regression (MLR) based 
collector models are presented and compared with one another and with a 
physically-based model, used successfully in many applications, by means of 
measured data. The MLR-based models, called MLR model, SMLR model and 
IMLR model, prove to be rather precise with a modelling error of 4.6%, 8.0% 
and 4.1%, respectively, which means that all MLR-based models are more or 
nearly the same accurate as the well-tried physically-based model. The SMLR 
model is the most, while the IMLR model is the least easy-to-apply MLR-based 
model with the lowest and the highest computational demand, respectively. 
Nevertheless, all MLR-based models have lower computational demand than the 
physically-based model. Accordingly, the MLR-based models are suggested for 
fast but accurate collector modelling. 

Nomenclature 

A :  collector surface area, m2; 
c :  specific heat capacity of the collector fluid, J/(kgK); 
I :  global solar irradiance on the collector surface, W/m2;  
t:  time, s; 

aT :  ambient temperature of the collector, °C;  

inT :  inlet collector (fluid) temperature, °C; 

outT :  outlet collector temperature (assumed to be the same as the  

homogeneous collector temperature in case of the physically-based 
model), °C; 

LU :  overall heat loss coefficient of the collector, W/(m2K); 
v :  (constant) flow rate inside the collector, m3/s; 
V :  volume of the collector, m3; 

0 :  optical efficiency of the collector, - ; 

 :  collector fluid density, kg/m3; 
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A :  time delay before Case A or A3, s; 

B :  time delay before Case B, s; 

1 :  time of flowing inside the collector from the inlet to the outlet when the  
pump is switched on permanently, s; 

2 :  length of time between successive measurements on the collector, s. 

1. Introduction 

Mathematical modelling is the most widely used and theoretically established 
tool to investigate and develop solar thermal collectors as environmentally 
friendly technological heat producers. The two main categories of mathematical 
models for collectors are physically-based models, which represent exact 
physical laws (based on theory), and black-box models, which describe 
empirical correlations (based on experiences or measurements). 

Among the most important physically-based models, the Hottel-Whillier-Bliss 
model (Duffie and Beckman, 2006) may be the earliest, which is frequently used 
to date. This model determines the collector temperature as a function of time and 
space. Buzás et al. (1998) proposed a simpler model assuming that the collector 
temperature is homogeneous in space. This model is a linear ordinary differential 
equation (ODE) validated in (Kicsiny, 2014) and is likely the simplest physically-
based model used in the practice (see e.g. (Kumar and Rosen, 2010; Buzás and 
Kicsiny, 2014)), but can still describe the transient collector processes with an 
appropriate accuracy. This model will be called physically-based model in short 
below. 

The greatest advantage of black-box models is that it is not needed to know the 
physical laws of a collector precisely in order to create a model. Nevertheless, the 
model may be rather precise even if it is simple as in the case of (Kicsiny, 2014). 
The most frequent black-box model type is perhaps the artificial neural network 
(ANN) in the field of collectors. Generally, ANNs are accurate but rather 
troublesome to apply because of the so-called training process. The convergence 
of the algorithm indicating the end of a training session may be also time-
consuming. According to Fischer at al. (2012), a conveniently usable algorithm 
ensuring a reliable and fast determination of an appropriate ANN for a collector is 
still missing. 

Because of these problems, a simple and general but still accurate black-box 
model, which can be applied easily and fast for a wide range of solar collectors, 
has been recently worked out in (Kicsiny, 2014). The model is based on the well-
known methods of mathematical statistics, more precisely, the multiple linear 
regression (MLR). Based on the literature, MLR is a rare black-box modelling 
technique in the field of collectors despite of its simplicity. Considering the high 
precision (with a modelling error of 4.6%), simple usability and low 
computational demand of the mentioned MLR-based model (MLR model in short), 
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it was worth trying to simplify further the MLR model. Such a simplified model, 
called SMLR model (with a modelling error of 8.0%), has been worked out in 
(Kicsiny, 2015). On the other hand, it was also worth improving the MLR model 
to try to maximize the precision. Such an improved model, called IMLR model 
(with an error of 4.1%), has been worked out in (Kicsiny, 2016), where it has been 
empirically shown that the accuracy cannot be significantly improved any more if 
the regression equations are all linear in terms of the input variables. 

In the present survey, as a summary of former works, the above MLR-based 
models are presented and compared with one another and with the physically-
based model by means of measured data. 

2. Physically-based and MLR-based models 

For the Reader’s convenience, the physically-based model, and the MLR-based 
models are recalled in this section. The scheme of the studied solar collector can 
be seen in Fig. 1. 

 
Figure 1. Scheme of the solar collector 

2.1. Physically-based model 
The physically-based model is the ODE of Eq. (1). 

               tTtT
V

v
tTtT

cV

AU
tI

cV

A

dt

tdT
outinouta

Lout 


0  (1) 

2.2. MLR model 
The inputs of the MLR model are from appropriately chosen values of inT , I , 

aT  

and 
outT . The output is from appropriately chosen values of outT . The flow rate 

value v is a fixed positive constant or 0. 
Because of the boundedness of the flow rate,  1tTin  can play a role as an 

input in the MLR model if  tTout  is the output, where the positive constant 1  is a 

time delay (more precisely, the time of flowing inside the collector from the inlet 
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to the outlet when the pump is switched on permanently). Similar considerations 
hold for I  and 

aT  as well because of the bounded propagation speed of their 

effects, so former  2tI  and  2tTa
 values can play roles as inputs in forming 

the output  tTout . (The time delays of I  and aT  are assumed to be the same ( 2 ) 

for the sake of simplicity.) Naturally, appropriate former value of outT  also affects 

the value of  tTout  and participates as the initial value of the MLR model at time 

 2t  in essence. Considering the collector as a black-box, distinct sub-models as 
parts of the MLR model have been identified for significantly different operating 
conditions. For example, the collector behaves different if the pump is on (v>0) or 
off (v=0) permanently. Even, the effect of inT  is neglected in permanently switched 

off case, since there is no flow between the collector inlet and outlet. 
Considering a typical day, when the temperature increase of 

outT  is significant, 

three different, main operating cases are distinguished according to Fig. 2. 

Tout ,°C

pump
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10

time, h
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A2 A3

21

A4

A1 C1 B C2 A3

A2 A3

A4

A
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Figure 2. Outlet temperature, solar irradiance and 

pump operation on a typical day 

Case A corresponds to permanently switched off pump, more precisely, Case A 
contains the term started at the beginning of the day and finished, when the pump 
is first switched on. All the terms, which begin at a time when the pump is 
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permanently off for exactly A  time and finish at the next switch-on or at the end 

of the day, also belong to this case. ( A  is the time, which is generally enough for 

outT
 to become not fluctuating but permanently monotone, since, intentionally, 

frequent fluctuations are characteristics of Cases C1 and C2.) Case B corresponds 
to permanently switched on pump, more precisely, Case B contains all the terms, 

which begin at a time when the pump is permanently on for exactly B  time and 

finish at the next switch-off. ( B  is the time, which is generally enough for outT
 to 

become not fluctuating but permanently monotone.) Case C corresponds to 
frequent switch-ons and -offs. It can be seen that there are two further significantly 

different operating cases within Case C: outT  basically increases before the solar 

noon and basically decreases after the solar noon, so Case C is divided into Cases 
C1 and C2. 

The MLR model is composed of the linear equations (2a)-(2d), which describe 
the corresponding sub-model of each operating case. 
 
Case A: 

         AoutAoutaAaAIout ctTctTctIctT  2,2,2,mod,   (2a) 

Case B:  

 
       

  BoutBout

aBaBIinBinout

ctTc

tTctIctTctT





2,

2,2,1,mod,




 (2b) 

Case C1: 

  
       

  121,

21,21,11,mod,

CoutCout

aCaCIinCinout

ctTc

tTctIctTctT








  (2c) 

Case C2: 

  
       

  222,

22,22,12,mod,

CoutCout

aCaCIinCinout

ctTc

tTctIctTctT








  (2d) 

AIc ,
, 

Aac ,
, 

Aoutc ,
, 

Ac , 
Binc ,

, 
BIc ,

, 
Bac ,

, 
Boutc ,

, 
Bc , 1,Cinc , 

1,CIc , 1,Cac , 1,Coutc , 1Cc , 

2,Cinc , 2,CIc , 2,Cac , 2,Coutc , 2Cc  are constant parameters. According to the 

definition of 2 , the measurements take place at times ,...3,2,,0 222 t The 

modelled value of outT  (that is 
mod,outT ) is determined at times ,...3,2, 222 t  



Institute for Mathematics and Informatics 

40 

from the measured values of  2tI ,  2tTa ,  2tTout  and  1tTin  based 

on Eqs. (2a)-(2d). See (Kicsiny, 2014) for more details. 

2.3. SMLR model 
The MLR model is simplified to the SMLR model in the way of merging Cases 
A, B, C1 and C2. Thus there is only one operating case with one mathematical 
relation (see Eq. (3)) here. 

            ctTctTctIctTctT outoutaaIininout  2221mod,    (3) 

inc , Ic , 
ac , outc  and c  are constant parameters. See (Kicsiny, 2015) for more 

details. 

2.4. IMLR model 
The IMLR model is similar to the MLR model. The main differences are the 
following (see also Fig. 2): 

1. The (largest) operating case Case A is divided into four sub-cases, Cases A1, 
A2, A3 and A4, as follows: Case A1 consists of the time period from the beginning 
of the day to the time when the solar irradiance is first greater than 10 W/m2. This 
case practically belongs to the term of no irradiance in the first half of the day. 
Case A2 consists of the time period from the end of Case A1 to the time when the 
solar irradiance is first greater than 100 W/m2. Usually, this time is followed by a 
very intensive increase in the irradiance, so this is apparently the time of sunrise, 
when the irradiance changes from (mostly) diffuse to (mostly) direct. Case A3 
consists of the time periods besides Cases A1, A2 and A4 (see below) within Case 
A. Case A4 contains the last three hours of the day. In essence, the term after Case 
C2 corresponds to the free cooling of the collector from a relatively high 
temperature. Based on experiments, this section cannot be modelled well with a 
single relation, so it should be divided into sub-sections. Empirically, the problem 
can be solved well with only two sub-parts if the last three hours are separated. 

2. The coefficients of the zeroth-order members (cf. Ac , Bc , 1Cc  and 2Cc  in 

Eqs. (2a)-(2d) in the MLR model) are set zero in Eqs. (4a)-(4g) below. This set is 
in line with the physical phenomenon that the collector (outlet) temperature must 
be zero if all the inputs inT , I , aT  and the previous collector temperature are 

zero. Based on experiments, this natural constraint results in a bit lower precision 
in the identification but higher precision in the validation, that is the modelling 
error decreases. 

The linear equations (4a)-(4g) correspond to the operating cases of the IMLR 
model. 

Case A1: 

       21,21,mod,   tTctTctT outAoutaAaout  (4a) 
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Case A2: 

         22,22,22,mod,   tTctTctIctT outAoutaAaAIout   (4b) 

Case A3: 

         23,23,23,mod,   tTctTctIctT outAoutaAaAIout  (4c) 

Case A4: 

       24,24,mod,   tTctTctT outAoutaAaout   (4d) 

Case B: 

  
       

 2,

2,2,1,mod,








tTc

tTctIctTctT

outBout

aBaBIinBinout  (4e) 

Case C1: 

  
       

 21,

21,21,11,mod,








tTc

tTctIctTctT

outCout

aCaCIinCinout  (4f) 

Case C2: 

  
       

 22,

22,22,12,mod,








tTc

tTctIctTctT

outCout

aCaCIinCinout  (4g) 

1,Aac , 1,Aoutc , 2,AIc , 2,Aac , 2,Aoutc , 3,AIc , 3,Aac , 3,Aoutc , 4,Aac , 4,Aoutc , Binc , , 

BIc , , Bac , , Boutc , , 1,Cinc , 1,CIc , 1,Cac , 1,Coutc , 2,Cinc , 2,CIc , 2,Cac , 2,Coutc  are 

constant parameters. 1  and 2  are the same as in the MLR model. See (Kicsiny, 
2016) for more details. 

3. Comparison 

The below results of the models used in this comparison are from (Kicsiny, 
2014; 2015 and 2016). The identification and the validation of the models are 
based on the same days. The used real flat plate collector field of 33.3 m2 
(Farkas et al., 2000) at the Szent István University (SZIU) in Gödöllő, Hungary 
(SZIU collector in short) is also the same. outT , inT , I , aT  and v are measured 
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once in every minute at the SZIU collector. The measured value of outT  serves 

only for identification and comparison purposes, the measured value )0(outT  is 

fed into the models as initial condition. 

Identification 

Four measured days (2nd July 2012, 24th June 2012, 28th June 2012 and 8th June 
2012) have been selected for the identification in such a way that they cover a 
wide range of possible operating conditions of a selected season (summer). The 
constant LU  is identified in case of the physically-based model in such a way that 
the time average of the absolute difference between the modelled and measured 
outlet temperatures that is the average of absolute error is minimal with respect to 
the whole identification period. The constants 

AIc ,
, 

Aac ,
, 

Aoutc ,
, 

Ac , 
Binc ,

, 
BIc ,

, 
Bac ,

, 

Boutc ,
, 

Bc , 1,Cinc , 
1,CIc , 1,Cac , 1,Coutc , 1Cc , 2,Cinc , 2,CIc , 2,Cac , 2,Coutc , 2Cc  are 

identified in the MLR model, the constants inc , Ic , 
ac , outc , c  are identified in the 

SMLR model and the constants 1,Aac , 1,Aoutc , 2,AIc , 2,Aac , 2,Aoutc , 3,AIc , 3,Aac , 

3,Aoutc , 4,Aac , 4,Aoutc , Binc , , BIc , , Bac , , Boutc , , 1,Cinc , 1,CIc , 1,Cac , 1,Coutc , 2,Cinc , 

2,CIc , 2,Cac , 2,Coutc  are identified in the IMLR model. Independent standard 

MLR routines have been applied based on the measured data of each separate 
operating case for the identification of the three MLR-based models. The standard 
MLR routine (based on least squares method) is well-known and available in most 
statistical and spreadsheet programs (SPSS, Excel, etc.). 

Table 1 contains the average of error (time average of the difference between 
the modelled and measured outlet temperatures) and the average of absolute 
error (time average of the absolute difference between the modelled and 
measured outlet temperatures) values for two days (2nd July 2012, 28th June 
2012) of the identification of all models. The average of absolute error values 
are presented in proportion to the difference between the daily maximal and 
minimal measured outlet temperature values as well, in %. The mean of these 
values with respect to all of the four days of the identification is also presented 
in Table 1 (7.8 % for the physically-based, 4.7 % for the MLR, 6.6 % for the 
SMLR and 3.2 % for the IMLR model). 

Validation 

In the validation, all identified models are applied with the corresponding 
measured inputs of the remaining two summer months. The outlet temperature is 
modelled in the validation (not measured, as in the identification). The modelled 
days are from 3rd July to 31st August 2012, which are 56 days according to minor 
technical interruptions. 
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Table 1 contains the average of error and the average of absolute error values 
for two days (3rd August 2012, 5th August 2012) of the validation of all models. 
The average of absolute error values are presented in proportion to the difference 
between the daily maximal and minimal measured outlet temperature values as 
well, in %. The mean of these values with respect to all of the 56 days of the 
validation is also presented in Table 1 (7.8 % for the physically-based, 4.6 % for 
the MLR, 8.0 % for the SMLR and 4.1 % for the IMLR model). 

Table 1. Average of error and average of absolute error 
values with the models 

 

 
Physically-

based model 
MLR 
model 

SMLR 
model 

IMLR 
model 

Average of 
error 

-1.86 °C -0.47 °C 1.43 °C -0.53 °C 
2nd July 

(smooth operation) Average of 
absolute error 

4.33 °C; 

7.0% 

2.79 °C;

4.6% 

3.88 °C; 

6.3% 

1.64 °C; 

2.7% 

Average of 
error 

-1.26 °C -0.23 °C -2.87 °C -0.80 °C 
28th June 

(intermittent operation) Average of 
absolute error 

4.35 °C; 

7.5% 

3.01 °C;

5.2% 

3.39 °C; 

5.8% 

1.84 °C; 

3.2% 

Id
en

ti
fi

ca
ti

on
 

Mean % value for the 
whole identification 

(four days) 

Average of 
absolute error 

7.8% 4.7% 6.6% 3.2% 

Average of 
error 

-1.38 °C -1.31 °C -0.12 °C -1.18 °C 
3rd August 

(smooth operation) Average of 
absolute error 

4.70 °C; 

7.4% 

2.85 °C;

4.5% 

3.71 °C; 

5.8% 

1.92 °C; 

3.0% 

Average of 
error 

-2.57 °C -1.58 °C -1.00 °C -1.90 °C 
5th August 

(intermittent operation) Average of 
absolute error 

4.66 °C; 

8.0% 

3.07 °C;

5.2% 

3.95 °C; 

6.7% 

2.30 °C; 

3.9% 

V
al

id
at

io
n 

Mean % value for the 
whole validation 

(3rd July – 31st August) 

Average of 
absolute error 

7.8% 4.6% 8.0% 4.1% 

 
 
As examples of the comparison, Figs. 3, 4 show the modelled and measured 

outlet temperatures in case of the physically-based and MLR models and in case 
of the MLR and IMLR models, respectively, for the same day of the validation. 
The operating state (on/off) of the pump is also shown in the figures. 
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Figure 3. Modelled 

mod,outT  and measured measoutT ,  collector temperatures 

on 3rd August 2012 in case of the physically-based and MLR models 

0 5 10 15 20 24

20

30

40

50

60

70

80

MLR model

time, h

O
u

tle
t 

te
m

p
e

ra
tu

re
, 

°C

 

 

Tout,mod
Tout,meas

0 5 10 15 20 24
0

1

time, h

p
u

m
p

o
n

/o
ff

0 5 10 15 20 24

20

30

40

50

60

70

80

IMLR model

time, h

O
u

tle
t 

te
m

p
e

ra
tu

re
, 

°C

 

 

Tout,mod
Tout,meas

0 5 10 15 20 24
0

1

time, h

p
u

m
p

o
n

/o
ff

 
Figure 4. Modelled 

mod,outT  and measured measoutT ,  collector temperatures on 3rd 

August 2012 in case of the MLR and IMLR models 
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Based on Eqs. (1), (2a)-(2d), (3) and (4a)-(4g), it is not difficult to see that the 
SMLR model is the most, while the IMLR model is the least easy-to-apply MLR 
model with the lowest and the highest computational demand, respectively. 
Nevertheless, all MLR-based models with simple linear algebraic equations have 
lower computational demand than the physically-based model realized with an 
ODE. 

Conclusion 

In the present survey, three recent MLR-based models, called MLR model, 
SMLR model and IMLR model, have been presented and compared with one 
another and with a well-tried physically-based model by means of measured 
data. According to the results, all the MLR, SMLR and IMLR models have 
proved to be rather precise with a modelling error of 4.6%, 8.0% and 4.1%, 
respectively, which means that all MLR-based models are more or nearly the 
same accurate as the physically-based model with an error of 7.8%. 

The SMLR model is the most, while the IMLR model is the least easy-to-apply 
MLR model with the lowest and the highest computational demand, respectively. 
Nevertheless, all the MLR-based models applying simple linear algebraic 
equations have lower computational demand than the physically-based model 
realized with an ODE. Accordingly, the MLR-based models can be suggested for 
fast but accurate collector modelling. 
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