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Abstract 

There are different equations to describe relations between different classes of Love-Shida 

numbers. In this study with the use of the time-varying gravitational potential an integral 

relation was obtained which connects tidal Love-Shida numbers (h, l, k),  load numbers (h’, l’, 

k’), potential free Love-Shida numbers generated by normal ( h”, l”, k”  ) and horizontal 

(h”’, l’”  , k’’’  ) stresses. The equations obtained in frame of present study is the only one 

which 

• holds for every type of Love-Shida numbers,  

• describes a relationship not between different, but the same type of Love-Shida 

numbers,  

• does not follows from the sixth-order differential equation system of motion usually 

applied to calculate the Love-Shida numbers. 
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Introduction 

The improvement of accuracy of Earth tidal observations and increase the length of the 

monitoring period, especially in the case of gravitational tidal observations, recently allows 

high resolution separation of near-frequency waves and precise determination of their 

amplitudes (Ducarme, 2012; Calvo et al, 2014; Van Camp et al., 2016). At the same time 

interpretation of observation results requires a calibration accuracy at the 1‰   level 

(Meurers et al., 2016). This is important for the interpretation of Earth tide data, because 

of relatively poorly known amplitude ratios. The amplitude ratios obtained from 

observations carried out with gravimeters are δ2=1+h2-3/2k2, with tiltmeters γ2=1+ k2- h2, 

with strainmeters Sϕϕ2=h2-4l2 and Sλλ=h2-2l2 and with dilatometers f2=2h2-6l2[1-
Λ/(Λ+2µ)] , where Λ and µ are Lamé parameters and ϕ and λ the geographical latitude and 
longitude. On the basis of theoretical model calculations it can be assumed that k2~ 0.5h2 
and l2~0.15 h2 and at the surface of the Earth (r=a )  Λ(a)~µ(a), δ2=1+1/4 h2, γ2=1-k2, 
Sϕϕ2=1/3h2, Sλλ2=2/3 h2, f2=3/4h2. This means that deviation from the absolutely rigid, 

inelastic Earth in case of gravity Earth tides is only 15%. In case of tilt and  strain 

observations along latitude and longitude this deviations are 30%, 20% and 40% 

respectively, while for dilatational observations it is 45%. The free core nutation due to the 

dynamical effect of the liquid core is more pronounced in case of strain and dilatation 

measurements than for gravimetric and tilts observations: 



δO1- δ K1=0.021  (1.8%) 

γ O1- γ K1=-0.041  (5.8%) 

Sϕϕ O1- SϕϕK1=0.098  (33.7%) 

Sλλ O1- SλλK1=0.192  (37.5%) 

f O1- f K1=0.117  (23.7%) 

The amplitude ratios derived from observations provide linear combinations of Love and 

Shida numbers but do not provide the numbers themselves.  At the same time for study of 

many different geodetic and geophysical problems the numbers and not their combinations 

are needed. It may be therefore important to determine relationships between the Love-

Shida numbers. A similarly important task is to derive relations between the tidal and other 

types of Love-Shida numbers, the load and potential free load numbers.  

For the study of aforementioned problems the time-varying gravitational potential was 

determined in case of deformation generated by tide, tidal, load and potential free load with 

the use of the Love and Shida numbers in case of a symmetric non-rotating isotropic elastic 

model Earth. The Love-Shida numbers are determined in this case by the radial profiles of 

elastic Lamé parameters and density. Due to the mass conservation in case of elastic 

deformation the incremental mass density was inferred from the divergence of the product 

of initial mass density and the vertical displacement field.  

 

Equation of Melchior (1950) for the ratio of Love numbers hn and kn 

 

For ratio of Love numbers kn and hn Melchior (1950) obtained 

���� = ���
�	��
�� ∙ � ������������� ����������                                                        (1) 

These ratios for n=2-10 and n=20 are shown on Fig. 1. 

 

In case of n=2 

���� = 

� ∙ � ����������� ����������                                                                      (2) 

The r.h.s. of this equation is a ratio of two Stokes constants: the mass (M) and polar 

moment of inertia (C) of the Earth. Consequently the ratio of the two Love numbers can be 

determined without any hypothesis concerning the inner structure of the Earth. According 

to Jeffreys (1959)  

� �������� = �
	��	�� �1 − 	

 !1 + #���	�                          (3) 

where η(r) is the Radau function and for r=a it is  #��� =  
	% ∙ &��

'��� = 0.572 (Moritz, 1990). 

Consequently  
���� = 0.493. 

 

 



 

Relationships between different types of  Love-Shida numbers 

 

The Love-Shida numbers can be obtained with the use of the inhomogeneous motion 

equation system given by Takeuchi (1953), Molodensky (1953), Alterman et al (1959). The 

solution of this system must satisfy three boundary conditions  on the surface of the  

Earth which concern the normal stress (N(a)) , the tangential  stress  (M(a))  and the 

derivative of the  mass potential (L(a))   (Saito, 1978): 

                                                          0��� = − 	��

� ∙ 12                                           (3a) 

 

                                                         ���� = 	��
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� ∙ 13                                         (3b) 

 

                                                      4��� = �25 + 1� ∙ 16                                           (3c) 

where	12 , 13, 16  can take the value 0 or 1 and n is the order of spherical harmonic 

describing the deformation. 

 In case of Earth tides boundary conditions   12 =	13 = 0 and 16 = 1  determine the Love-

Shida numbers hn, kn and ln. In case of a normal load acting on the surface of the Earth the 

triplet of parameters 12 = 1	13 = 0 and 16 = 1 allows to determine the load Love-Shida 

numbers h’n, k’n and l’ n . If a potential free stress acting on the Earth surface (16 = 0 ) 

potential free Love-Shida numbers can be introduced (Molodensky, 1977) for normal 12 = 1		13 = 0  16 = 0  and tangential 12 = 0		13 = 1  16 = 0  stresses. The corresponding 

triplets are h’’,k”, l’’  and  h’’’, k’’’, l’’’ . The three different triplets are connected due to their physical 

meaning. The load numbers are sums of deformation due to normal  stress and gravitational effect of loading 

masses: 

																																																																	ℎ�9 = ℎ� − 	��

� ∙ ℎ�99                                                     (4a)                                                                     
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Furthermore according Molodensky (1977) the following equations can be introduced 

																																																							ℎ�999 = 5�5 + 1� ∙ ;�999                                                        (5a) 

                                                             ℎ� = 	��
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From (5b) it follows  

																																																					:�9 = :� − ℎ�                                                                  (6) 

The validity of (6) can be checked with computation of Love numbers hn, kn and load number :�9  (Table 1). A comparison of :�9  and :� − ℎ�     where the Love-Shida numbers were 

obtained with the use of boundary conditions 12 =	13 = 0;	16 = 1  and the  load number  



:�9  with  12 = 1	13 = 0 and 16 = 1   allows to conclude that the calculations carried out 

with the differential equation system of Molodensky (1953) have deviation ≤±2·10
-4

. 

 

 

Table 1. Love numbers hn, kn and load number :�9  calculated with the use of differential 

equation system of Molodensky (1953) on the basis of PREM for the degrees n=2-4. 

 

 

The gravitational potential of a deformable body generated by tidal, load and potential 

free potentials. 

 

The aim of the next part of present study is to derive a mathematical expression which is 

composed by all three components of triplets and which is equally applicable for Love-Shida, 

for load and for potential free Love numbers. For this purpose an approach was developed 

which is not based on an inhomogeneous motion equation system given by Takeuchi (1953), 

Molodensky (1953), Alterman et al (1959). 

The Newtonian equation for the time dependent deformation potential is (Grafarend et al., 

1997) 

                                        ∆>�?�,t)=-@∭ �BC��D���D,E�
‖D�GD‖�	HI ���J�K                                          (7)                    

where x is a source point within the Earth, xa is the field point on the surface (r=a), ρ(x) and 

d(x,t) characterize the initial mass density and the time dependent displacement vector of 

the deformable Earth.  In (7) the continuity equation has been used 

ΔM�?, N� = −�OPQ��?���?, N�R 
what means that there is no loss of mass during the deformation. Furthermore 

ΔM�?, N� = −�OPQ��?���?, N�R = −M�?��OP��?, N� + S���M�?���?, N�  

The denominator in (7) could be expanded into the scalar surface spherical surface functions 
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 U��V� 	W�,X�J��XYG�Z�Y� , K��		W�,X�J, K�                          (8) 

In the most general case the displacement vector expressed by orthonormal vector surface 

spherical functions is 

n :� ℎ� :�9 = :� − ℎ� :�9  

2 0,3035 0,6176 -0,3141 -0,3145 

3 0,0944 0,2957 -0,2013 -0,2012 

4 0,0425 0,1781 -0,1356 -0,1354 

 

 

 



��?, N� = ∑ ∑ [��X��, N�\�X�J, K� + ]�X��, N�^�X�J, K� + N�X��, N�_�X��J, K�`�XYG�Z�Y�    

                                                                                                                                                         (9) 

On   the r.h.s. of (9) the first two terms represent the spheroidal displacements. The third 

term stands for the toroidal  displacement field s connected to  phenomena   not discussed 

in this study. Furthermore with unit vectors er, eλ, eϕ one can write 

 

\�X = a�		W�,X�J, K�                                                                                                                 (10a) 

^�X = 

!����
�b cdefgI

h
hH 		W�,X�J, K� + aI h

hI 		W�,X�J, K�i                                                   (10b) 

 

With the use of equations (7)-(10) the time dependent deformation  potential is 

∆>�?�, N� = − j
�∭ ∑ ∑ 
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The tidal displacement components could be represented as 

�H = ;����z�pq]K�G
 r{|rJ  

�I = ;����z��G
 h}~hI                                             

�� = ℎ���zG
{| 

where z is the mean gravity acceleration  and the tidal potential expressed with spherical 

surface function is 

{| = k k {�XW�X�J�, K��
�

XYG�

Z

�Y�
 

 

Consequently ��X��� = ℎ����zG
{�X and ]�X��� = ;����zG
!5�5 + 1�{�X 

Due to the radial symmetry of the Earth model used in this paper
rM rJ� = rM rK� =

0,	rℎ rJ� = rℎ rK� = 0 andr; rJ� = r; rK� = 0. Consequently (11) can be given in a simpler 

form: 



Δ>�X��, N� = −@∭ ������ U
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h� ℎ�����B {BnWBn�J, K���                                                               (12) 

With the use of orthonormality relations of the surface spherical harmonics (12) can be 

given in form: 

Δ>�X��, N� = −4�@ � ������ � 
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Using some simplifications (13) can be written as 

Δ>�X��, N� = −4�@/[z�25 + 1����
`{�XW�X�J�, K�� ∙ � ����� ��������� ���	 +��2ℎ�������
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The partial integration of the last term of (14) gives 

� �M����� ℎ���� ∙ ���	 = −�
� � M��� ��ℎ������ ���	 + ℎ�����5 + 2����
��

� �� 

Therefore (14) may be simplified: 

Δ>�X��, N� = 4�@/[z�25 + 1����
`{�XW�X�J�, K�� ∙ � ����[5�5 + 1�;�������
 +��5ℎ�������
`��                                                                                                                      (15) 

The r.h.s. of   (15) gives the potential variation generated by deformation of the Earth which 

can be written as  

                                      ∆>�X��, N� = :����	{�XW�X�J�, K��                                                      (16) 

where :���� is the Love number to describe the potential variations due to deformations. 

Connection of   (15) and (16) leads to a relation between the Love-Shida numbers: 

            :���� = 4�@5/[z�25 + 1����
` ∙ � −�������
[5�5 + 1�;���� + ℎ����`����        (17) 

With the use of relative system of units: the unit of distance is a, the unit of the gravity the 

mean gravity acceleration z and the unit of the density is the mean density of the Earth 

(ρmean=5514kg/m
3
). In this system	@ = 3 4� �, and (17) will be 

                                    	:���� = �
	��
� M��� ∙ ���
�� [�5 + 1�;���� + ℎ����`                            (18) 

And consequently for n=2,3,4 
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                                               :���� = �
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Conclusions 



The importance of equations (18) - (21) is that they are only relations which do not follow 

from the differential equation of motion usually used to calculate the Love-Shida numbers 

and consist the complete triplet hn, kn and ln of the same type. They were obtained without 

any considerations concerning the boundary conditions (3) and therefore they are valid both 

for tidal, load and potential free Love-Shida numbers.  

With the use of (19) k2(a)=0.3031 which is close to value in Table 1 (0.3035).  

On the r.h.s. of equations (18) - (21) the first term describes the horizontal and the second 

the vertical displacements. Their contribution to the value of Love number  k is almost equal to 

0.148 and 0.146 respectively in the case of n=2. In case of the load numbers this ratio is different and 

significantly decreases with increasing n: 0,589 in case of n=2  and 0.097 for  n=10.  

Acknowledgement 

We thank the Guest Editor David Crossley and an anonymous reviewer colleague for their 

helpful comments.  

The research described in this paper was completed during research stay of P. Varga 

(01.03.2016-31.05.2016) supported by the Alexander Humboldt Foundation at the 

Department of Geodesy and Geoinformatics, Stuttgart University. P. Varga thanks Professor 

Nico Sneeuw for the excellent research conditions provided by him.  

Financial support from the Hungarian Scientific Research Found OTKA (Project K125008) is 

acknowledged. 

References 

Alterman, Z., Jarosch, H.,& Pekeris, C.L. (1959) Oscillations of the Earth, Proceedings of 

the Royal Society London A, 252, 80-95. 

Calvo, M., Hinderer, J., Rosat, S., Legros, H., Boy, J.-P., Ducarme, B.,& Zürn, W. ( 2014) 

Time stability of spring and superconducting gravimeters ¨, through the analysis of very 

long gravity records, Journal of Geodynamics 

Ducarme, B., 2012. Determination of the main lunar waves generated by the third 

degree tidal potential and validity of the corresponding body tides models, Journal of 

Geodesy, 86, 1, 65–75. 

Grafarend, E., Engels, J., & Varga, P. ( 1997) The spacetime gravitational field of a 

deformable body. Journal of Geodesy, 72,  ll-30. 

Jeffreys H. (1959) The Earth its origin, history and physical constitution, Cambridge, 

University Press 

Melchior, P.J. (1950) Sur l’influence de la loi de répartition des densités á l’intérieur de la 

Terre dans les variations Luni-Solaires de lagravité en un point, Geophysica Pura et 

Applicata, 16, 3-4, 105-112. 



Meurers., B., Van Camp M., Francis O.,&  Pálinkáš V. (2016) Temporal variation of tidal 

parameters in superconducting gravimeter time-series, Geophysical Journal 

International, 205, 1, 284-300.  

Molodensky, M. S. (1953) Elastic tides, free nutations and some questions concerning the 

inner structure of the Earth, Trudi Geofizitseskogo Instituta Akademii Nauk of the USSR, , 

19 (146), 3-42. 

Molodensky, S.M. (1977) On the relation between the Love numbers and the load 

coefficients, Fizika Zemli, 3, 3-7. 

Moritz, H. (1990) The figure of the Earth: theoretical geodesy and the Earth’s interior, 

Wichmann, Karlsruhe. 

 Takeuchi, H. (1953) On the Earth tide of the compressible Earth of variable density and 

elasticity, Transactions American Geophysical Union, 31 (5), 651-689. 

Saito, M. (1978) Relationship between tidal and load numbers, Journal of Physics of the 

Earth, 26, 13-16 

Van Camp, M., Meurers, B., de Viron, O. & Forbriger, Th. (2016) Optimized strategy for 

the calibration of superconducting gravimeters at the one per mille level, Journal of 

Geodesy., 90, 1, 91–99 

 

Figure 1.  Ratios kn/hn for n=2-10 and 20 

kn/hn 
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