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Abstract: This paper deals with the determination of several turbulence quantities in the case of nearly 
isotropic, homogeneous grid turbulence. Grids placed in wind tunnels upstream of the test section are used to 
produce flow with roughly isotropic and homogeneous decaying turbulence for wind tunnel investigations. 
Passive grids without moving parts can produce relatively low turbulent intensity while active grids with moving 
parts are applied to create much more intense turbulence. Such flows can then be used for measurements 
which demand flow with predetermined turbulent properties, for instance validation of results of computational 
fluid dynamics (CFD) simulations. Therefore, first the characterization of the achievable turbulence has to be 
carried out. For this purpose, a kind of hot-wire measurement technique, constant-temperature anemometry, 
was applied. The time series of instantaneous velocity-component samples (in longitudinal as well as in one 
transversal direction) downstream of a novel type active grid were processed in MATLAB® script made for this 
purpose. Using the script with an appropriate number of samples of velocity components with sufficiently high 
sampling rate, the following turbulent properties can be derived: turbulence intensity in one and three 
dimensions, turbulence kinetic energy, isotropy ratio, integral time-scale, turbulence energy spectra, 
dissipation rate of turbulent kinetic energy, Kolmogorov microscales, Taylor microscale, turbulence Reynolds 
number, and Taylor-Reynolds number. 

Introduction 
Much of the flow occurring in natural and industrial processes is turbulent flow. The fine structure of such flows can be measured and 

described in laboratory tests and through numerical simulation. When using numerical data, it must be validated through comparison with 
measured data. Wind tunnels are crucial devices whose main purpose is to create flow so that various turbulence properties can be 
measured. Turbulence generating grids are used in order to create turbulence in wind tunnels; there are passive and active grid types. A 
passive grid has no moving parts, and can increase the turbulence intensity to a limited extent [1]. Much greater intensity on a wider scale 
can be achieved using an active grid [2] whose moving parts (controlled motion from external energy sources) disturb the flow. Active 
grids, however, are quite complex structures, and thus high in cost. Another alternative to these complicated and expensive grids [2,3] 
exists; the type of grid that we have developed offers a much more economical solution [4] that uses the mechanical energy of the main 
flow (moving boundary layer) to move the grid elements. Along with developing the grid, a computational procedure was also worked out 
for using the measurement data to provide the largest possible number of characteristic turbulence parameters dealt with in the literature. 
This paper introduces the main elements of the computational procedure, using the newly developed grid as an illustration and giving 
examples of the various properties calculated using the computational procedure. 

A Definition of Turbulence 
A clear and concise definition of the physical process of turbulence is essential to its study. A compilation and discussion of definitions 

can be found in [5]. Many of these definitions are vague, such as ‘a motion in which an irregular fluctuation (mixing, or eddying motion) is 
superimposed on the main stream’ [6] or ‘a fluid motion of complex and irregular character’ [7]. One definition, given in [8], is that turbulence 
is ‘a field of random chaotic vorticity’. However, the words ‘random’ and ‘chaotic’ imply that no formal mathematical solution – which would 
be necessarily deterministic – can exist. Probably the most exact brief definition of turbulence is ‘the general-solution of the Navier-Stokes 
equation’ [9]. A more general definition is suggested in [10]: ‘a system with a main cross flow containing secondary intermittent streaming, 
at some angle to the direction of the main flow and with which it interacts’. 

Evaluation of turbulence 
Defining turbulence is no simple task, as can be seen above, and the evaluation of turbulence measurements requires complex 

calculations. Here we attempt to summarize the main steps in the turbulence evaluation/post-processing. The computational procedure 
introduced here was designed for quantifying properties of turbulent flow induced by the turbulence generating grid built into a wind tunnel. 
Measurements were carried out at fixed points using constant-temperature hot-wire anemometry (CTA) and a two-dimensional probe; this 
allowed samples to be taken for each measuring point at a sampling frequency of several kHz for streamwise (u) and transverse (v) 
instantaneous velocity components. Thus, a time series of u and v components was obtained for each point.  These time series were then 
used in determining turbulence properties. Based on recommendations in the literature, measuring points were placed downstream of the 
grid at a suitable distance (starting from 10 M, where M is the mesh spacing (M=25 mm)), as this allows us to assume that due to local 
isotropy the standard deviations of the transverse velocity component are equal: vstd=wstd, where w is the z component, perpendicular to 
the main flow. This approach is applied when deriving the equations.  
The definition of turbulent kinetic energy is 

݇ ൌ
ଵ

ଶ
⋅ ሺݑ௦௧ௗ

ଶ ൅ 2 ⋅ ௦௧ௗݒ
ଶ ሻ, (1) 

where ݑ௦௧ௗ is the standard deviation of the streamwise velocity component and ݒ௦௧ௗ is the standard deviation of the transverse velocity 
component. Turbulent kinetic energy is defined as the turbulent energy per unit mass of fluid; thus, time series with larger standard 
deviations indicate flow with higher turbulent energy.  
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The turbulence intensity, which is obtained by the ratio of standard deviation of velocity and the mean velocity, is a general 
characteristic of the main flow. The streamwise turbulence intensity is widely used in the literature, defined as 

௨ܶ ൌ
௨ೞ೟೏
௨೘

⋅ 100%, (2) 

where ݑ௠ is the time-mean value of the streamwise velocity component. 
When the turbulence intensity is based on all three velocity components, then the denominator by definition contains the average 

velocity of the main stream (mean velocity), since the time-mean of the velocity components perpendicular to the main stream vanishes. 
Hence the turbulence intensity is obtained as 

௨ܶ,௩,௪ ൌ
ටభ
య
⋅൫௨ೞ೟೏

మ ାଶ⋅௩ೞ೟೏
మ ൯

௨೘
⋅ 100%. (3) 

The integral time scale ITS can be calculated from the autocorrelation function of the velocity component in the direction of the main 
stream as 

ܵܶܫ ൌ ׬ ݐ݀	ୟୡݑ
௧ሺ௨౗ౙୀ଴ሻ

௧ୀ଴
, (4) 

where ݑୟୡ is the autocorrelation value of the velocity component in the direction of the main flow. The integration should be started from 
t=0 and should be continued until the autocorrelation function uac(t) becomes zero. 

The integral length scale ILS is a value characteristic to the largest size of vortices in the flow. For wind tunnel measurements, this 
value can be approximated as the inner diameter of the wind tunnel. The value of ILS can be determined with the ITS and the average 
main flow velocity um as 

ܵܮܫ ൌ ܵܶܫ ⋅  ௠. (5)ݑ

The wide range of vortices in turbulent flows can be distinguished from each other by their characteristic sizes. The time series of 
velocity components in the direction of and perpendicular to the main stream can be converted into a frequency domain by Fourier 
transform, which can then be converted into power spectral density functions (PSDu(f), PSDv(f)). This function gives the characteristic 
energy spectrum of the turbulent flow as functions of frequencies f present in the flow. In the literature, however, researchers prefer to 
give the energy spectrum as a function of wave number κ. The wave number is proportional to the number of vortices of given size in unit 
length, and is calculated as 

ߢ ൌ
ଶగ

௨೘
⋅ ݂. (6) 

The energy distribution of eddies of different sizes present in the turbulent flow gives useful information about the turbulence. That 
is why the energy spectrum E is an especially important characteristic of turbulence and can be calculated using the power spectral density 
function: 

ሻߢ௜ሺܧ ൌ
௨೘
ଶగ
⋅  ௜ሺ݂ሻ, where i={u,v}. (7)ܦܵܲܪ

The three-dimensional energy spectrum function E3D(κ) using the isotropy assumption can be calculated as 

ሻߢଷ஽ሺܧ ൌ ሻߢ௨ሺܧ ൅ ሻߢ௩ሺܧ ൅  ሻ. (8)ߢ௩ሺܧ

The dissipation rate of the turbulent kinetic energy ε is also an important feature of turbulence because the Kolmogorov scales 
(characterizing the smallest dissipative eddies in the flow) can be determined by ε, among others. The dissipation rate can be determined 
using the energy spectrum as 

ߝ ൌ 2 ⋅ ߥ ⋅ ׬ ሺܧଷ஽ሺߢሻ ⋅ ߢଶሻ݀ߢ
ஶ

଴
. (9) 

The dissipation rate is used for the determination of Kolmogorov length scale η, which is characteristic of the size of the smallest 
eddies in the flow, and is defined as 

ߟ ൌ ቀ
ఔయ

ఌ
ቁ
ଵ/ସ

, (10) 

where ߥ is the kinematic viscosity of fluid. It can be seen in this equation that η is a universal quantity. This length scale depends only on 
the viscosity and the dissipation rate. The value of η for laboratory wind tunnel measurements with sufficiently high turbulence Reynolds 
numbers is between 10-4 and 10-3 m. 

When the Reynolds number is large enough, an inertial subrange Ein(κ) can be observed in the turbulent energy spectrum E3D(κ). 
The larger eddies break up into smaller eddies, and the inertial forces dominate over dissipative forces, meaning that dissipative forces 
can be neglected. This domain (ILS-1<<κ<<η-1) is characterized by the exponent of (-5/3) in the energy spectrum curve. Based on [11] this 
domain can be approximated as 

ሻߢ௜௡ሺܧ ൎ ܣ ⋅ ߝ
మ
య ⋅ ିߢ

ఱ
య,	 (11) 

where A=1.5 is a universal constant.  
Making quantities dimensionless allows us to compare various types of measured data. Non-dimensional quantities are used in the 

case of energy spectra, too. Wave length non-dimensionalised by the Kolmogorov length scale is given as 

∗ߢ ൌ ߢ ⋅  (12) .ߟ
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The energy spectrum function is made dimensionless using the quantity ሺߥହ	ߝሻ
భ
ర :

ଷ஽ܧ
∗ ൌ

ாయವ

ሺఔఱ⋅ఌሻ
భ
ర
	. (13) 

Figure 1 shows an example for the dimensionless energy spectrum. The dots in the figure are hypothetical and the curve is based 
on Eqs. (11) and (13) and shows a good fit for the data points. 

Based on these calculated quantities 
some further quantities describing 
turbulence can be determined. Based on 
[12] the definition of the length scale LS for
larger vortices in the flow is

ܵܮ ൌ
௞య/మ

ఌ
. (14) 

Using the definition of LS the Taylor 
microscale λg can also be determined. This 
intermediate scale is characteristic for 
vortices larger than those described by the 
Kolmogorov length scale. The dynamics of 
these vortices is strongly influenced by the 
fluid viscosity. The Taylor microscale ߣ௚ 
can be calculated as 

௚ߣ ൌ √10 ⋅ ߟ
మ
య ⋅ ܵܮ

భ
య. (15) 

The turbulence Reynolds number ReL 
can be defined as the product of the square 
root of turbulent kinetic energy k and length 
scale LS divided by kinematic viscosity ߥ. 
Taking also into account  
Eq. (14) ReL can be written as 

ܴ݁௅ ൌ
௞
భ
మ∙௅ௌ

ఔ
ൌ

௞మ

ఌ∙ఎ
 .  (16) 

Taylor-Reynolds number Reλ is a 
dimensionless quantity used in the Taylor 
microscale. In grid turbulence this is 
probably the most important quantity to 
judge whether the fully developed 
turbulence stage has been reached or not. 
The magnitude of this quantity is related to
the width of the inertial subrange in the
energy spectrum. The larger the value of 
Reλ the wider the wave number spectrum 

in the inertial subrange. The aim of this investigation is to reach fully developed turbulence, which is when the gradient of the physical 
quantities (except for that of the pressure) vanishes in the flow. The Taylor-Reynolds number can be calculated as 

ܴ ఒ݁ ൌ ቀ
ଶ଴

ଷ
⋅ ܴ݁௅ቁ

ଵ/ଶ
. (17) 

Hence it can be seen that the Taylor-Reynolds number is proportional with the square root of the turbulence Reynolds number. 

Results 
To carry out the computations a computer code was developed for the software package MATLAB. Based on this code we are able 

to evaluate a variety of turbulence parameters of the flow generated by a turbulence generator. As an example, the variation of the Taylor-
Reynolds number along the centerline of the wind tunnel downstream of the grid is shown in Fig. 2. Measurements were carried out 
downstream of the grid at 10, 15, 20, 25 and 28 times of the mesh spacing M (=25 mm) for mean flow velocities um= 3, 4, 5 and 6 m/s. 

It can be seen in the figure that Reλ is practically zero for um=3 m/s. It seems that at this velocity value the grid cannot obtain enough 
energy from the main flow to ensure fluttering. At the higher mean flow values investigated, the tapes of the grid were fluttering. Naturally 
the intensity of fluttering and turbulence intensity increase with um, resulting in up to a two-order-of-magnitude increase in Reλ. The Reλ 
values belonging to the higher velocity values (fluttering cases) decrease in the flow direction downstream of the grid. This is most likely 
due to the decrease in turbulent kinetic energy and its dissipation rate and also due to the change in the Kolmogorov length scale  
(Eq. (17)). 

Fig. 1 A typical wavenumber spectrum observed in the ocean, plotted on a log-log 
scale. The unit of E* is arbitrary, and the dots represent hypothetical data [11]. 
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Fig. 2 Variation of the Taylor-Reynolds number along the centerline of the wind tunnel at different mean velocity values 

Conclusion 
The task of a turbulence generator is to create turbulent main flow of given properties for use in wind tunnel measurements. In order 

to assess the different types of turbulence generators, it is important to determine the characteristic parameters for the fine structure of 
the generated flow. The computational procedure that we have developed – using the CTA measuring technique to obtain u and v velocity 
components for each measuring point – allows us to calculate a number of important characteristics of turbulence at each measuring 
point. As a result of the measurements and calculations, even the spatial distribution of the turbulence properties becomes possible. The 
method is very complex, yielding numerous relevant values. Using these values both the properties of the turbulent flow field and those 
of the turbulence generator generating the flow field can be analyzed. A MATLAB® script was prepared to carry out the calculations. The 
method was used successfully for the investigation and comparison of different turbulence generators. As an example the variation of the 
Taylor-Reynolds number for an active turbulence generator developed by the authors [4] has been shown along the centerline of the wind 
tunnel at different mean velocity values. The study determined the limits of application of the grid and also the spatial distribution of 
turbulence parameters generated by the grid.  
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