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Abstract 

Since its formal introduction, density functional theory has achieved many successes on the fields 

of molecular and solid-state chemistry. According to its central theorems, the ground state of a many-

electron system is fully described by its electron density, and the exact functional minimizes the energy 

at the exact electron density. For many years of density functional development, it was assumed that the 

improvements in the energy are accompanied by the improvements in the density, and the approximations 

approach the exact functional. In a recent analysis (Medvedev et al. Science 2017, 355, 49-52.), it has 

been pointed out for fourteen first row (Be-Ne) atoms and cations with 2, 4, or 10 electrons that the 

nowadays popular flexible but physically less rigorous approximate density functionals may provide 

large errors in the calculated electron densities despite the accurate energies. Although far-reaching 

conclusions have been drawn in this work, the methodology used by the authors may need improvements. 

Most importantly, their benchmark set was biased towards small atomic cations with compressed, high 

electron densities. In our paper, we construct a molecular test set with chemically relevant densities and 

analyze the performance of several density functional approximations including the less-investigated 

double hybrids. We apply an intensive error measure for the density, its gradient, and its Laplacian and 

examine how the errors in the density propagate into the semi-local exchange-correlation energy. While 

we have confirmed the broad conclusions of Medvedev et al., our different way of analyzing the data has 

led to conclusions that differ in detail. Finally, seeking for a rationale behind the global hybrid or double 

hybrid methods from the density's point of view, we also analyze the role of the exact exchange and 

second-order perturbative correlation mixing in PBE-based global hybrid and double hybrid functional 

forms. 

Introduction 

Density functional theory is an essential tool in the electronic structure theory of molecules and 

materials, which provides accurate results at a low computational cost.1,2 According to the Hohenberg-

Kohn theorems,3 the ground-state electron density uniquely determines the potential and thus contains 

all information about the system. There exists a universal density functional, which yields the exact 

ground-state energy of the system from its exact electron density variationally. In principle, the exact 

solution is possible using the simple one-electron Kohn-Sham equations4 since the potential of the 

physical interacting system can be replaced by the potential of a fictitious non-interacting system. The 

main difficulty is that a general form for the universal functional is not known. Several approximate 

functionals were constructed taking into account known physical properties of the exact exchange-

correlation functional,5,6,7 but many were empirically fitted for databases with various chemical 

properties.8,9,10 The exchange and correlation parts are usually approximated together for systematic error 
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cancellation.7 During the development, it was assumed that functionals with better energetics reproduce 

better the exact Kohn-Sham potential and thus produce better density.11,12,13 However, density functional 

approximations are close to the exact functional if they estimate well the exact Kohn-Sham potential. 

There are several studies in the literature assessing the quality of the electron density and its 

derivatives obtained with various density functional approximations. For small molecules, Boyd et al. 

compared the electron density and its Laplacian at the bond critical point obtained from density functional 

and wave function calculations and found that three-parameter hybrid density functionals14 perform 

better than their semi-local parent functionals and much better than the local density approximation 

(LDA).15 Csonka et al.16 showed for the hydrogen molecule that the electron density can be accurately 

reproduced along the bond axis around the bond critical point by a proper mixing of the exact and semi-

local exchange in a B3P86-type functional.17,18 The corresponding exact Kohn-Sham potential (𝑣𝐾𝑆) was 

also presented, which depends on the density (𝑛), its gradient (∇𝑛), its Laplacian (∇2𝑛), and the energy 

of the (highest) occupied orbital (𝜀).19 (Note that this form is universal for two-electron spin-singlet 

systems.) 

𝑣𝐾𝑆(𝒓) = −
1

8

(∇𝑛)2

𝑛2
+
1

4

∇2𝑛

𝑛
+ 𝜀 (1) 

Furthermore, the errors of approximate Kohn-Sham potentials were analyzed in the bond critical point 

of the dissociating hydrogen molecule, where the exact Kohn-Sham potential is determined by the 

density, its Laplacian, and the energy of the (highest) occupied orbital since the gradient is zero.16 

Bochevarov and Friesner compared the electron densities of small molecules obtained from self-

consistent density functional calculations to full configuration interaction level reference densities.20 

They concluded that certain generalized gradient approximation (GGA) or three-parameter hybrid 

GGA14 functionals perform better with the empirically fitted OPTX exchange21 than with the original 

B88 exchange.17 Grabowski, Teale, et al. observed for standard local and semi-local functionals with the 

VWN522 and LYP23 correlation that the correlated densities (i.e., the difference between the densities 

generated by the exchange-correlation method and the corresponding exchange-only method) and the 

correlation potentials are qualitatively incorrect, although the correlation may provide some error 

cancellation with the exchange part.24 Grabowski, Fabiano, et al. also suggested the integral absolute 

density differences to measure the approximate density functional density errors radially in spherical 

atoms and along the bond axis in diatomic molecules.25 According to the analysis of Tognetti and Joubert 

on 50 small molecules,26 the electron density and its Laplacian at the bond critical point can be better 

described by the meta-GGA level TPSS functional27 than by the GGA-level PBE functional.28 However, 

the accuracy of the former can be achieved at the GGA-level by the empirically fitted HCTH functional, 

which was optimized also for some accurate exchange-correlation potentials.29,30,31 In contrast to the 

above mentioned studies, Cruz et al. showed that functionals which yield accurate energies often produce 

wrong potentials.32 Finally, Kim et al. argued that there are situations (e.g., electron affinities) when the 

density-driven error (i.e., the difference of the total energies evaluated on the approximate and the exact 

density) dominates over the functional error in the error of a variational density functional calculation.33 

Very recently, Medvedev et al. have reported that the unconstrained and highly empirical density 

functional construction with flexible functional forms can also bring farther from the exact functional as 

such functionals give accurate energies on wrong densities.34 Their flexible functional form can be easily 

overfitted, which leads to oscillations in the exchange-correlation enhancement factor. These oscillations 

can propagate into the exchange-correlation potential and thus to the density. 

Although this report met an intense response in the literature,35,36 it has been criticized how the 

authors arrived at their conclusion.37,38 In a comment,37 Kepp pointed out that the benchmark set was 

strongly biased towards small atoms and atomic cations with 1s2 or 1s22s2 electronic structure, and it is 

unclear if the description of the very compact electron densities in the atomic cations (with large dynamic 
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correlation) is chemically relevant. The test set seems to favor the hybrid functionals (e.g., PBE039) since 

the Hartree-Fock (HF) exchange gives more accurate densities for two-electron systems. In a systemwise 

comparison, Kepp found a strong linear relationship between the errors in the ionic densities and the 

errors in the ionic energy differences computed by semi-local or hybrid functionals. In their response,40 

Medvedev et al. emphasized that the atoms and atomic cations were only intended to reveal internal 

problems in the methods, the ranking of the HF method is only mediocre because of its maximum error, 

and the relationship of the ionic densities and energy differences is evident as the density and energy 

errors each scales with the nuclear charge at constant electron number. Some other issues were collected 

by Korth.38 For example, the all-electron coupled-cluster singles and doubles (CCSD) reference method 

in this benchmark might miss some core-valence correlation for systems with more than two electrons 

due to the missing triple or higher-order excitations, although higher level densities probably do not 

change the qualitative picture.38 Also note that the quantity representing the functional errors is extensive 

and not practical to compare molecular densities. 

Brorsen et al. presented a correspondence between the errors in the computed diatomic molecular 

densities near the bond critical point, and the errors in the computed molecular atomization energies for 

several semi-local and hybrid functionals (as well as one double hybrid).41 For some recent highly 

empirical hybrid functionals, the errors in densities and atomization energies were decoupled. Gould 

argued that the atomic test set of Medvedev et al.34 is biased towards the high density limit, and their 

analysis based also on the gradients and Laplacians is biased towards the core regions.42 In addition to 

the densities, he also proposed testing the calculated left Fukui functions on a test set constituted of Li, 

C, and F atoms and found that a couple of functionals (i.e., SOGGA11X,43 TPSSh,44 and B2PLYP45) can 

be good both at densities and Fukui functions. Verma and Truhlar investigated the dipole moments of 

organic and inorganic compounds and found that density functionals describe better the charge 

distribution of single-reference systems than multi-reference systems.46 In their analysis, the best 

performers were global hybrid functionals (i.e., B97-1,29 PBE0,39 TPSSh,44 and PW6B9547) with 

relatively small fraction of exact exchange and a screened hybrid functional (i.e., HSE0648). 

In this paper, we analyze several functionals from various rungs of the Jacob's ladder49 of density 

functional approximations according to their density errors and density-driven exchange-correlation 

energy errors. In our modified methodology, we use composite coupled-cluster singles, doubles, triples, 

and quadruples (CCSDTQ) reference densities, and an intensive error measure. This way, our 

conclusions will be somewhat different even for the atomic density test set (B3+, C4+, N5+, O6+, F7+, Ne8+, 

Be, B+, C2+, N3+, O4+, F5+, Ne6+, Ne) of Medvedev et al.34 Furthermore, we construct another test set from 

small molecules (H2, LiH, Li2, LiF, BH3, H2O, HF, CO, N2, F2) with densities more relevant in chemistry. 

Additionally, we also discuss if there is a rationale behind the global hybrid or double hybrid functionals 

from the density's point of view. Since many parametrizations have been suggested in the literature for 

the PBE hybrid (PBEh)39,50,51 or PBE double hybrid (PBE-DH)52,53,54 functionals, we have studied the 

ratio of exact exchange and/or the ratio of second-order perturbative (PT2) correlation in these well-

investigated forms. 

Methodology and computational details 

All the computations were performed with the MRCC quantum chemistry software.55 To avoid 

any ambiguity, a close to infinite integration grid was used in the calculations: a 420-point Log3 radial 

grid (or a 415-point Log3 grid for hydrogen atoms),56 and a 1202-point angular Lebedev grid.57 For the 

calculations, the aug-cc-pVXZ58 and aug-cc-pwCVXZ59 (X = D, T, Q, 5) basis set families were applied. 

For the atomic density test set (B3+, C4+, N5+, O6+, F7+, Ne8+, Be, B+, C2+, N3+, O4+, F5+, Ne6+, Ne) of 

Medvedev et al.,34 we computed all-electron CCSD/aug-cc-pwCV5Z for the two-electron systems and 
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composite all-electron CCSDTQ/aug-cc-pwCV5Z densities otherwise. The latter is defined by eqs 2 and 

3, where 𝑛𝑏𝑎𝑠𝑖𝑠
𝑚𝑒𝑡ℎ𝑜𝑑is the density evaluated with a particular method and basis set. 

𝑛𝑎𝑢𝑔−𝑐𝑐−𝑝𝑤𝐶𝑉5𝑍
𝑐𝑜𝑚𝑝.𝐶𝐶𝑆𝐷𝑇 = 𝑛𝑎𝑢𝑔−𝑐𝑐−𝑝𝑤𝐶𝑉5𝑍

𝐶𝐶𝑆𝐷 + 𝑛𝑎𝑢𝑔−𝑐𝑐−𝑝𝑤𝐶𝑉𝑄𝑍
𝐶𝐶𝑆𝐷𝑇 − 𝑛𝑎𝑢𝑔−𝑐𝑐−𝑝𝑤𝐶𝑉𝑄𝑍

𝐶𝐶𝑆𝐷  (2) 

𝑛𝑎𝑢𝑔−𝑐𝑐−𝑝𝑤𝐶𝑉5𝑍
𝑐𝑜𝑚𝑝.𝐶𝐶𝑆𝐷𝑇𝑄 = 𝑛𝑎𝑢𝑔−𝑐𝑐−𝑝𝑤𝐶𝑉5𝑍

𝑐𝑜𝑚𝑝.𝐶𝐶𝑆𝐷𝑇 + 𝑛𝑎𝑢𝑔−𝑐𝑐−𝑝𝑤𝐶𝑉𝑇𝑍
𝐶𝐶𝑆𝐷𝑇𝑄 − 𝑛𝑎𝑢𝑔−𝑐𝑐−𝑝𝑤𝐶𝑉𝑇𝑍

𝐶𝐶𝑆𝐷𝑇  (3) 

For our new molecular density test set (H2, LiH, Li2, LiF, BH3, H2O, HF, CO, N2, F2), we computed 

CCSD/aug-cc-pV5Z density for the H2 molecule and composite all-electron CCSDTQ/aug-cc-pwCV5Z 

densities [defined by eqs 2 and 3, but the effect of the quadruple excitations was considered with the aug-

cc-pwCVTZ(-f) basis set] for the larger molecules. In our calculations, we used experimental molecular 

geometries taken from the NIST Computational Chemistry Comparison and Benchmark Database.60 

To represent the important rungs (semi-local and non-local) of the Jacob's ladder of density 

functional approximations, we selected five GGA (i.e., SOGGA11,61 BLYP,17,23 BP86,17,18 PBE,28 

RGE262), five meta-GGA (i.e., PKZB,63 M06L,64 SCAN,65 MS0,66 TPSS27), five hybrid (i.e., M062X,67 

SOGGA11X,43 B3LYP,14 PBE0,39 TPSSh44), and five double hybrid (i.e., B2PLYP,45 B2GPPLYP,68 

PBE0-DH,52 PBE-QIDH,53 PBE0-254) functionals with either physical or empirical construction. 

Additionally, we mapped the one- (aX) and two-dimensional (aX, aC) parameter space in the PBEh (eq 

4) and PBE-DH (eq 5) forms: 

𝐸𝑋𝐶
𝑃𝐵𝐸ℎ[𝑛] = 𝑎𝑋𝐸𝑋

𝑒𝑥𝑎𝑐𝑡[𝑛] + (1 − 𝑎𝑋)𝐸𝑋
𝑃𝐵𝐸[𝑛] + 𝐸𝐶

𝑃𝐵𝐸[𝑛] (4) 

𝐸𝑋𝐶
𝑃𝐵𝐸−𝐷𝐻[𝑛] = 𝑎𝑋𝐸𝑋

𝑒𝑥𝑎𝑐𝑡[𝑛] + (1 − 𝑎𝑋)𝐸𝑋
𝑃𝐵𝐸[𝑛] + 𝑎𝐶𝐸𝐶

𝑃𝑇2[𝑛] + (1 − 𝑎𝐶)𝐸𝐶
𝑃𝐵𝐸[𝑛], (5) 

where 𝐸𝑋
𝑒𝑥𝑎𝑐𝑡 is the exact exchange energy, 𝐸𝑋

𝑃𝐵𝐸 and 𝐸𝐶
𝑃𝐵𝐸 denote the PBE exchange and correlation 

energies, respectively, and 𝐸𝐶
𝑃𝑇2 stands for the PT2 correlation energy. 

To assess the performance of the various density functional approximations, we propose here a 

normed integral absolute deviation (NIAD) of the density functional (DF) and coupled-cluster (CC) 

densities and density derivatives (𝑝 = 𝑛 for the density, 𝑝 = |𝛻𝑛| for its gradient, and 𝑝 = 𝛻2𝑛 for its 

Laplacian) similar to the integral absolute deviation (IAD) applied earlier by Grabowski, Fabiano, et al. 

radially in spherical atoms and along the bond axis in diatomic molecules:25 

𝑁𝐼𝐴𝐷[𝑝] =
1

𝑁
∫|𝑝𝐷𝐹(𝒓) − 𝑝𝐶𝐶(𝒓)| 𝑑

3𝒓
𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙
→      

1

𝑁
∫|4𝜋𝑟2𝑝𝐷𝐹(𝑟) − 4𝜋𝑟

2𝑝𝐶𝐶(𝑟)| 𝑑𝑟, (6) 

where N is the number of electrons. This error measure is uniformly-distributed over all the electrons in 

space, which can be clearly demonstrated for spherically symmetric atoms, where the integration is over 

the radial density errors (for examples, see Figures S1-3 in the supporting information). In other words, 

the radial density near the nucleus is weighted equally to the radial density far from the nucleus. Another 

advantage of this error measure is that it can also be applied to non-spherical molecular systems. We 

chose the density errors per electron because we can directly compare this way the density errors for 

different atoms as opposed to the density errors per atom, which depends on the number of electrons in 

the atom. We retain this choice also for the molecules because we can compare the atomic and molecular 

density errors to each other, in contrast to the density errors per bond, which cannot be applied for atoms. 

In contrast to the suggestion of Gould42 that the inclusion of the gradient and Laplacian would bias the 

analysis towards the core regions, we also consider these quantities since the importance of the gradient 

and Laplacian can be supported by the universal formula for the exact Kohn-Sham potential of the two-

electron spin-singlet systems (see eq 1). Moreover, the Laplacian may be particularly important in 

molecules as the Laplacian appears even at the bond critical point in the potential of the two-electron 

spin-singlet molecules like H2. 

In thermochemical benchmarks, the calculated energies are usually said to be accurate if the errors 

in energy differences are lower than some threshold, for example, 1 kcal mol-1. The choice of such 

absolute threshold is, however, not so convenient to assess whether the calculated densities are accurate 

or not. For this reason, we need to set up a relative scale for the magnitude of the errors. A natural choice 
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5 

is to compare the errors in the semi-local or non-local density functional densities to the errors in the 

LDA (namely the SVWN5)69,22 densities. Note that the “average functional” as suggested by Medvedev 

et al.34 depends on the functionals considered in the benchmark. Another natural choice would be the 

Hartree method with completely missing exchange and correlation. A further choice would be the HF 

method, but it is not a particularly suitable reference for density functional methods due to the fully exact 

treatment of the exchange and the completely missing electron correlation. Our test calculations show 

that comparing the errors to the LDA and Hartree density errors leads to the same ranking of the methods 

(see the Supporting Information). 

For each descriptor p, we define the relative average normed error (RANE) as a dimensionless 

error measure. 

𝑅𝐴𝑁𝐸[𝑝] =
∑ 𝑁𝐼𝐴𝐷𝑠𝑦𝑠𝑡𝑒𝑚

𝑚𝑒𝑡ℎ𝑜𝑑
𝑠𝑦𝑠𝑡𝑒𝑚 [𝑝]/𝒩𝑠𝑦𝑠

∑ 𝑁𝐼𝐴𝐷𝑠𝑦𝑠𝑡𝑒𝑚
𝐿𝐷𝐴

𝑠𝑦𝑠𝑡𝑒𝑚 [𝑝]/𝒩𝑠𝑦𝑠
, (7) 

where the sum runs over the systems of the test set, 𝑁𝐼𝐴𝐷𝑠𝑦𝑠𝑡𝑒𝑚
𝑚𝑒𝑡ℎ𝑜𝑑 is the NIAD defined by eq 6 calculated 

for the corresponding system with the given method, and 𝒩𝑠𝑦𝑠 is the number of systems in the test set. 

The overall RANE is the average of the RANEs for the three descriptors. 

In addition to the density errors, we show here the density-driven exchange-correlation energy 

errors per particle in the PBE exchange-correlation energy evaluated on the various approximate densities 

(for the sake of simplicity, we abbreviate this quantity as DDXC): 

𝐷𝐷𝑋𝐶 =
𝐸𝑋𝐶
𝑃𝐵𝐸[𝑛𝐷𝐹]−𝐸𝑋𝐶

𝑃𝐵𝐸[𝑛𝐶𝐶]

𝑁
, (8) 

where 𝑛𝐷𝐹 and 𝑛𝐶𝐶  stand for the densities evaluated with the DF approximation and the reference CC 

method, respectively. Please do not confuse this quantity with the density-driven error defined by Kim 

et al. for total energies.33 For a given test set, we show here the mean, mean absolute, and standard 

deviation DDXC. We assume that the DDXC does not depend much on the choice of the semi-local 

density functional approximation since the density-driven errors agree well in the non-empirical PBE 

and BLYP exchange-correlation energies (see Figure S4). These density-driven exchange-correlation 

energy errors also correlate with the ones in the semi-empirical SOGGA11 exchange-correlation 

energies, albeit the density-driven error in the SOGGA11 exchange-correlation energy significantly 

differs from the density-driven errors in the PBE or BLYP exchange-correlation energies on the 

SOGGA11 densities. This may indicate the opportunity for some internal error cancellation in this 

empirical method, but it does not follow directly from our results since we did not study here either the 

functional error (i.e., the difference between the total energy obtained by evaluating the approximate 

functional at the exact electron density and exact total energy) or the density-driven total energy error. 

Results and discussion 

Our methodology in the analysis of the atomic (B3+, C4+, N5+, O6+, F7+, Ne8+, Be, B+, C2+, N3+, 

O4+, F5+, Ne6+, Ne) density errors leads to somewhat different conclusions than those obtained by 

Medvedev et al.34 In their analysis, the empirical M06L meta-GGA functional seemed to produce atomic 

densities similar to the LDA method. The PBE0 global hybrid GGA functional showed better 

performance on atomic densities than the TPSS meta-GGA and TPSSh global hybrid meta-GGA 

functionals. Contrarily, our comparison (Figure 1a) shows that the M06L functional produces clearly 

better atomic densities than the LDA method. The TPSS and TPSSh methods provide clearly better 

atomic densities than the PBE0 method. The observed differences can originate from several sources. (i) 

As an error measure, we apply here the normed (not size-extensive) integral absolute deviations instead 

of the size-extensive root mean square deviations on a radial grid. (ii) Our comparison relies on the 

average errors instead of the maximal errors (or on their combination). (iii) We normalize the errors to 
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the LDA errors instead of the “average functional” errors. (iv) Our composite CCSDTQ reference 

densities are more accurate for the many-electron systems than the CCSD reference densities. 

The average CCSD errors are small for the atomic test set (see Figure 1a), and thus using the 

composite CCSDTQ densities as reference instead of the CCSD densities34 does not lead to qualitative 

changes (see also Figure S5). Normalization of the semi-local and non-local density functional errors to 

the LDA errors does not significantly change the picture either (see Figure S5) compared to the 

normalization to the “average functional” errors34 because the improvements in the semi-local or non-

local density functional errors upon the LDA errors seem to be more or less simultaneous for the three 

descriptors (see also Figure 1a). According to our analysis, the RANEs and the size extensive relative 

average errors (RAEs), both relative to LDA, correlate relatively well (see Figure S5), although this can 

be a minor source of the observed differences. For example, the different ranking of the TPSS and PBE0 

methods comes from the application of an intensive error measure instead of an extensive one (cf. the 

NIADs of these methods in Table S1). The overall relative maximum error (RME) is 1.34 for the TPSS 

method, which originates from the density and the Ne system, as well as 1.12 for the PBE0 method, 

which originates from the Laplacian and the Ne6+ system. While the overall relative maximum 

normalized error (RMNE) is 0.95 for the TPSS method, which originates from the density and the Be 

system, as well as 0.98 for the PBE0 method, which originates from the Laplacian and the Ne8+ system. 

Considering the RANEs instead of the relative maximum normed errors (RMNEs), highly influences the 

relative order of the methods (see Figure S5). Thus, using average errors instead of maximum ones seems 

to be the major source of the observed differences. Notice that ranking the methods according to their 

maximum errors would put too much weight on the Laplacian and on the highly-charged systems in the 

comparison (see Figure S6). Considering either the RME or RMNE error measures, 9 methods out of 25 

are judged by their Laplacian errors. Moreover, considering the RME error measure, 7 methods out of 

25 are judged by the Laplacian errors on the Ne6+ system. While considering the RMNE error measure, 

8 methods out of 25 are judged by the Laplacian errors on the Ne8+ system. On the other side, ranking 

the methods according to their overall RANE errors puts equal weight on the density, gradient, and 

Laplacian, as well as on the individual systems, even though a large part of the atomic test set (6 out of 

14) includes two-electron systems. 

Since most of the semi-local and non-local density functionals simultaneously improve the atomic 

densities, gradients, and Laplacians, the inclusion of the Laplacian in our comparison does not distort our 

analysis much. The errors for the empirical SOGGA11, M06L, SOGGA11X, and M062X functionals 

are higher in the Laplacians than in the densities or gradients; however, the overall errors are only 

moderately larger than the errors in the densities and gradients. Contrarily, the RGE2 method gives 

somewhat larger errors for the densities and smaller errors for the gradients and Laplacians than the 

similar PBE method. Moreover, the HF method shows an uneven performance with quite erroneous 

densities but with good gradients and Laplacians, although its overall performance for atomic densities 

and density derivatives is similar to the best meta-GGA or hybrid functionals (i.e., TPSS and TPSSh). 

Interestingly, more exact exchange leads to more accurate density Laplacians (cf. BLYP, PBE, and TPSS 

with their global hybrid versions: B3LYP, PBE0, and TPSSh), even though the exact exchange mixing 

does not necessarily improve the densities if the semi-local part is reparametrized in the hybrid version 

(cf. M06L and M062X). The correlation influences equally all the three density descriptors (cf. BLYP 

and BP86). The B2GPPLYP double hybrid with 65% of exact exchange and 36% of PT2 correlation 

provides better atomic densities than the B2PLYP double hybrid with 53% of exact exchange and 27% 

of PT2 correlation. Similarly, the accuracy of the PBE-based double hybrid atomic densities increases 

with the amount of exact exchange and PT2 correlation (PBE0-DH with 50% of exact exchange and 

12.5% of PT2 correlation < PBE-QIDH with ~69% of exact exchange and ~33% of PT2 correlation < 

PBE0-2 with ~79% of exact exchange and 50% of PT2 correlation). The PBE0-DH functional performs 
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similar to the B2PLYP functional with similar exact exchange and PT2 correlation ratios. The PBE-

QIDH functional is somewhat better for atomic densities than the B2GPPLYP functional with similar 

exact exchange and PT2 correlation ratios. Among the examined double hybrids, the PBE0-2 shows the 

best accuracy. The Møller-Plesset second-order perturbation theory (MP2) method gives slightly better 

atomic densities, but it performs worse than the CCSD method on the very compact cations because of 

the poor description of the relatively large dynamic correlation in these systems. Concerning the densities 

obtained with higher-order CC methods, the triple excitations have only a very small effect, while the 

quadruple excitations have practically no contribution. 

For the molecular densities (H2, LiH, Li2, LiF, BH3, H2O, HF, CO, N2, F2), the average NIAD 

density errors are somewhat larger than the corresponding average NIAD errors for atoms but the average 

NIAD gradient and Laplacian errors are significantly smaller (see Tables S1 and S2). The overall (three-

descriptor) improvement in the NIAD errors is larger for the semi-local functionals than for the LDA 

method. However, the relative order of the density functional methods only slightly changes (Figure 1b). 

The SCAN meta-GGA functional performs better than the MS0 and TPSS functionals. The SOGGA11X 

global hybrid functional provides better molecular densities than the B3LYP method. The PBE0-DH 

global double hybrid functional is better than the B2PLYP method. The correlation becomes more 

important in the many-electron molecules. This can be followed as the HF method tends to give worse 

molecular densities, although its overall density errors are still comparable to the ones obtained with the 

best GGA methods. The best double hybrid method (PBE0-2) yields similar molecular densities to the 

MP2 method. The CCSD method works only slightly better for molecular densities. The CCSDT 

densities are almost identical to CCSDTQ densities again. In contrast to the atomic density test set, there 

is a stronger correlation between the average and maximum density errors, which shows that our 

molecular density test set is well-balanced. 

For the different functionals, the density-driven error in the PBE (or other semi-local) exchange-

correlation energy does not always follow the same order we have previously observed for the density 

errors (Figure 2a). One possible explanation is that the locally positive or negative errors in the exchange-

correlation energy per particle cancel each other in the exchange-correlation energy integral. Also notice 

that the PBE exchange-correlation energy does not depend on the density Laplacian. For example, the 

density-driven error in the PBE exchange-correlation energy for the atoms is significantly smaller on the 

BP86 densities than on the RGE2 densities, where the overall density error is smaller only because of the 

Laplacian (see Figure 1a). Similarly, the density-driven error in the PBE exchange-correlation energy is 

smaller on the M06L densities than on the SCAN densities. The density-driven exchange-correlation 

energy error is more systematic on the densities calculated with the best semi-local or non-local methods 

than on the HF densities. As well as the MP2 atomic densities look only slightly better concerning the 

density-driven exchange-correlation energy error than the best hybrid or double hybrid atomic densities. 

(The correspondence between the atomic density errors and density-driven exchange-correlation energy 

errors can be followed in Figure S7.) 

For the molecules, the density-driven errors in the PBE exchange-correlation energy (Figure 2b) 

are generally smaller than the errors we have observed for atoms. The meta-GGA densities lead to smaller 

density-driven exchange-correlation energy errors than the GGA densities (cf. PBE with TPSS). This 

difference also remains among the hybrid functionals, where the density-driven exchange-correlation 

energy error is smaller on the global hybrid meta-GGA densities than on the global hybrid GGA densities 

(cf. PBE0 with TPSSh). The molecular densities obtained by the best semi-local or non-local density 

functionals are better again than the molecular HF densities according to their density-driven exchange-

correlation energy errors. Furthermore, the density-driven error in the PBE exchange-correlation energy 

is slightly smaller on the PBE0-2 densities than on the MP2 densities. Considering both the molecular 

density errors and density-driven errors in the semi-local exchange-correlation energies (see Figure S8), 
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the best performers among their kind in the order of increasing accuracy are the PBE GGA functional, 

the TPSS and SCAN meta-GGA functionals, the TPSSh hybrid functional, and the PBE0-2 double hybrid 

functional. Notice that all these methods have non-empirical origin, which supports the main conclusion 

of Medvedev et al.34 

Seeking for an optimal exact exchange mixing in the PBE hybrid form, we changed (from 0% to 

100% by 5%) the ratio of exact exchange. On the atomic densities, the optimal exact exchange mixing 

ratios were found at ~40% for the density, at ~80% for the gradient, at ~85% for the Laplacian, and at 

~80% for the three descriptors since the error in the Laplacian of the density is very sensitive to the ratio 

of exact exchange (Figure 3a). However, such high fraction of exact exchange only seems to be optimal 

because the very compact two- and four-electron systems are overrepresented in the test set. Note that 

for the neon atom, which has a chemically more relevant electronic structure, the lowest absolute errors 

can be obtained at ~35% of exact exchange for the density and the gradient, at ~75% for the Laplacian, 

and at ~35% for the three descriptors. Similarly, for molecules, we have found the minimal mean absolute 

error at ~35% of exact exchange for the density and gradient, at ~65% for the Laplacian, and at ~45% 

for the three descriptors (Figure 3b). 

For the atoms, the mean absolute DDXC in the PBE exchange-correlation energy is the lowest at 

high ratios of exact exchange (90%), although this error is the most systematic at ~25% of exact exchange 

mixing in the PBEh form (Figure 4a). The preference towards the full exact exchange originates again 

from the overrepresented very compact systems in the test set. For the neon atom, the mean absolute 

DDXC in the PBE exchange-correlation energy is the lowest at ~40% of exact exchange mixing. For the 

molecules, the minimal density-driven exchange-correlation energy error appears at ~40% as well, where 

the errors are also quite systematic (Figure 4b). At this ratio of exact exchange, the density-driven error 

in the PBE exchange-correlation energy is significantly lower on the PBEh densities than on the HF 

densities. Considering both the overall (three-descriptor) density error and the density-driven error in the 

PBE (or other semi-local) exchange-correlation energy, a fair compromise might be made around 40% 

of exact exchange mixing in the PBEh form for the chemically relevant densities (e.g., the neon atom or 

the molecules considered here). Notice that this is close to the global hybrid PBE38 method.51 

Also seeking for an optimal PT2 correlation mixing in the PBE double hybrid form, we varied 

the ratio of PT2 correlation (from 0% to 100% by 5%) at several ratios of exact exchange. Regarding the 

densities of the very compact atomic systems, the MP2 method seems to be the global minimum in the 

two-dimensional parameter space (Figure 5a). Interestingly, the PT2 correlation mixing corresponding 

to the one-dimensional minimum for a fixed 80% of exact exchange shifts to ~55% for the molecular 

densities (Figure 5b). The global optimum seems to be around 95% of exact exchange and 80% of PT2 

correlation. 

For the very compressed atomic systems, the lowest density-driven error in the PBE exchange-

correlation energy seems to be around the MP2 method again (Figure 6a). For a fixed 80% of exact 

exchange, a minimum appears at 55% of PT2 correlation mixing in the one-dimensional parameter space. 

For the molecules, the global minimum of the density-driven exchange-correlation energy error seems 

to be at 90% of exact exchange and 70% of PT2 correlation (Figure 6b). For a fixed 80% of exact 

exchange mixing, there is a minimum in the one-dimensional parameter space at ~55% of PT2 

correlation. The PT2 correlation ratio corresponding to the minimum for a fixed exact exchange ratio 

increases nearly linearly with the ratio of the exact exchange. Considering both the overall (three-

descriptor) density errors and the density-driven errors in the PBE (or other semi-local) exchange-

correlation energy, the global optimum seems to be at 90-95% of exact exchange and 70-80% of PT2 

correlation. Furthermore, there is a one-dimensional minimum for a fixed 80% of exact exchange at 

~55% of PT2 correlation for the examined molecules (with not too compact densities). Notice that the 

PBE-DH method with these mixing factors is not so far from the PBE0-2 method. 
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Conclusions 

According to the core theorem of density functional theory, the electron density, similar to the 

many-body wave function, contains all the information about the examined system. This property enables 

the error in the computed electron density to measure the proximity of a given density functional 

approximation to the exact functional. In the development of density functional approximations, it was 

assumed that the electron density improves together with the energetics. Recently, Medvedev et al.34 

have argued that some modern density functional approximations with many empirical parameters and a 

very flexible functional form started producing worse electron densities despite their improved accuracy 

on energetics. 

In this paper, we have assessed the performance of several density functional methods from 

various rungs of the Jacob's ladder of the density functional approximations. Our analysis uses a different 

methodology for the calculation of the density errors, in which the quantity measuring the accuracy of 

various methods is based on their average performance and is not size-extensive. Moreover, it can 

directly be applied to the comparison of non-centrosymmetric molecular densities. We have also 

constructed a small molecular test set. Notice that in the atomic test set of Medvedev et al.,34 the 

chemically less relevant very compact atomic electron densities are overrepresented. Although their main 

message still holds, using an intensive error measure instead of an extensive one, aggregating the errors 

for different systems and descriptors by averaging instead of taking the maximum values, and applying 

a more balanced molecular test set lead to somewhat different conclusions about the performance of 

certain density functional approximations. For example, the meta-GGA level TPSS functional produces 

clearly better densities than the global hybrid PBE0 functional, and the empirically constructed M06L 

functional gives clearly better densities than the LDA method. We have also shown that better densities 

can be obtained with particular global double hybrid methods. For instance, the PBE0-2 double hybrid 

approaches the accuracy of the MP2 method for atomic densities and outperforms it for molecular ones. 

In this work, we have also compared the density functional approximations with respect to the 

density-driven error in the semi-local exchange-correlation energy. According to our results, the density-

driven exchange-correlation energy errors do not always follow the same order that has been previously 

observed for the density errors. This is partially because the semi-local exchange-correlation energy 

functional we have used to indicate the density-driven exchange-correlation energy errors does not 

depend explicitly on the density Laplacian. Furthermore, the density-driven error in the semi-local 

exchange-correlation energy can occasionally integrate to almost zero. The density-driven exchange-

correlation energy errors are smaller on meta-GGA densities than on GGA densities. The quality of the 

parent semi-local functional also greatly influences the density-driven exchange-correlation energy 

errors on the global hybrid or double hybrid densities. The density-driven errors in the semi-local 

exchange-correlation energies are much smaller on the densities calculated with the best semi-local or 

non-local density functionals than on the HF densities. This tendency significantly intensifies on 

molecular densities. 

Considering both the density errors and the density-driven errors in the semi-local exchange-

correlation energies, the best performers among their kind in the order of increasing accuracy are the 

PBE, the TPSS or SCAN, the TPSSh, and the PBE0-2 methods, all with non-empirical origin. In the PBE 

global hybrid form, a fair compromise can be made at ~40% of exact exchange mixing, which is close 

to the PBE38 method. In the studied range, the global optimum in the PBE global double hybrid form 

appears at 90-95% of exact exchange and 70-80% of PT2 correlation, even though a one-dimensional 

minimum has been found for a fixed 80% of exact exchange at 55% of PT2 correlation mixing, which is 

not so far from the successful PBE0-2 global double hybrid method. Finally, we believe that our 

methodology can help developing more reliable hybrid or double hybrid functionals that approach more 
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the exact functional than the ones fitted to chemical energetics. 

Additional information 

We make the computed molecular reference densities available at 

https://drive.google.com/open?id=0B4I8Qk8TWhVvS0xYVFN3OGxIaEU. 
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Figures 
a) 

 
b) 

 
Figure 1 Relative average normed errors (RANE) for the atoms (a) and molecules (b) calculated with 

various methods compared to the local density approximation (LDA)  
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a) 

 
b) 

 
Figure 2 Density-driven error per particle in the PBE exchange-correlation energy (DDXC) evaluated 

on densities calculated with various methods for the atomic (a) and molecular (b) test sets. (The error 

bars show the standard deviation for the errors.)  
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a) 

 
b) 

 
Figure 3 Dependence of the relative average normed errors (RANE) for the atoms (a) and molecules (b) 

on the exact exchange mixing in the PBEh functional compared to the local density approximation (LDA) 
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a) 

 
b) 

 
Figure 4 Dependence of the density-driven error per particle in the PBE exchange-correlation energy 

(DDXC) of the atoms (a) and molecules (b) on the exact exchange mixing in the PBEh densities (ME: 

mean error; MAE: mean absolute error; SD: standard deviation of the errors) 
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a) 

 
b) 

 
Figure 5 Dependence of the overall (three-descriptor) relative average normed error (RANE) on the 

second-order perturbative correlation mixing in the PBE-DH functional relative to the local density 

approximation for various exact exchange mixing ratios (displayed in the key) for the atomic (a) and 

molecular (b) test sets 
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a) 

 
b) 

 
Figure 6 Dependence of the density-driven error per particle in the PBE exchange-correlation energy 

(DDXC) of the atoms (a) and molecules (b) on the second-order perturbative correlation mixing in the 

PBE-DH densities for various exact exchange mixing ratios (displayed in the key) 
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