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a b s t r a c t

Here we have investigated the inhibitory properties of green tea catechins on the Plasmodium falciparum
hexose transporter (PfHT), the Babesia bovis hexose transporter 1 (BboHT1) and the mammalian facilita-
tive glucose transporters, GLUT1 and GLUT5, expressed in Xenopus laevis oocytes. (−)-Epicatechin-gallate
(ECG) and (−)-epigallocatechin-gallate (EGCG) inhibited d-glucose transport by GLUT1 and PfHT, and d-
fructose transport by GLUT5, with apparent Ki values between 45 and 117 �M. BboHT1 was more potently
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inhibited by the ungallated catechins (−)-epicatechin (EC) and (−)-epigallocatechin (EGC), with apparent
Ki values of 108 and 168 �M, respectively. Site-directed mutagenesis experiments provided little further
support for previously reported models of catechin binding to hexose transporters. Furthermore, P. fal-
ciparum growth inhibition by catechins was not affected by the external d-glucose concentration. Our
results provide new data on the inhibitory action of catechins against sugar transporters but were unable
to elucidate the antimalarial mechanism of action of these agents.
ocyte

The major polyphenol constituents of green tea (Camellia
inensis) are catechins, shown in Table 1 ((−)-epicatechin (EC),
−)-epicatechin-gallate (ECG), (−)-epigallocatechin (EGC) and (−)-
pigallocatechin-gallate (EGCG)). Green tea catechins have potent
ntioxidant effects that have been investigated extensively, for
xample, as neuroprotective agents [1] and as chemopreventa-
ive/chemotherapeutic agents for cancers [2] due to inhibitory
ffects on angiogenesis [3], which in turn inhibit tumour growth
nd metastasis. Green tea catechins are also anti-infectious disease
gents with antimicrobial [4] and antiviral activity [5].

Recently, green tea extract and its individual catechins have
hown antimalarial activity against asexual blood-stage parasites
6,7]. In these studies, the gallated catechins, ECG and EGCG inhib-
ted Plasmodium falciparum (strains NF54, K1 and 3D7) growth, with
C50 values (the concentration of inhibitor required to inhibit 50% of

arasite growth) between 10 and 40 �M. The ungallated catechins
ere far less potent, with IC50 values in excess of 100–300 �M. San-
ella et al. [6] were unable to determine a definitive mechanism of
ntimalarial action for catechins, although an antifolate mechanism

Abbreviations: BboHT1, Babesia bovis hexose transporter 1; EC, (−)-
picatechin; ECG, (−)-epicatechin-gallate; EGC, (−)-epigallocatechin; EGCG, (−)-
pigallocatechin-gallate; GLUT1/5, mammalian facilitative glucose transporter 1/5;
OMG, 3-O-methyl-d-glucose; PfHT, Plasmodium falciparum hexose transporter.
∗ Corresponding author. Tel.: +44 208 7255722; fax: +44 208 7253487.

E-mail address: hstaines@sgul.ac.uk (H.M. Staines).
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of action was investigated and found to be unlikely. Tasdemir et al.
[7] suggested fatty acid biosynthesis might be the target of gallated
catechins but did not validate this.

Naftalin et al. [8] reported that gallated catechins are
potent inhibitors of mammalian facilitative glucose transporter 1
(GLUT1)-mediated d-glucose transport in human erythrocytes, as
sub-micromolar concentrations produce half maximal inhibitions
when measuring zero-trans d-glucose efflux. Molecular modelling
of GLUT1 also identified residues that may act as anchoring points
for gallated catechins. These findings may also be relevant to the P.
falciparum hexose transporter, PfHT, a parasite plasma membrane-
localised protein that is the major route for parasite d-glucose
and d-fructose uptake [9,10]. PfHT has been validated as a novel
antimalarial drug target [11]. Here we hypothesised that the anti-
malarial activity of gallated catechins could be due to the inhibition
of d-glucose uptake via PfHT.

The effect of the green tea catechins, EC, ECG, EGC and EGCG, on
d-glucose transport via PfHT, GLUT1 and the Babesia bovis hexose
transporter 1 (BboHT1; [12]) and d-fructose transport via GLUT5
was assayed in Xenopus laevis oocytes expressing each of the hexose
transporters, using methods described previously [12]. The com-
pounds were tested initially at a concentration of 0.5 mM (data

not shown). In experiments performed at room temperature dur-
ing the initial linear phase of uptake (10–20 min, depending on the
expressed transporter), the transport ofd-glucose (38 �M) via PfHT
and GLUT1 and d-fructose (100 �M) via GLUT5 were inhibited to a
significantly greater extent (P < 0.001; ANOVA with Tukey’s post-

https://core.ac.uk/display/9535247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/01666851
mailto:hstaines@sgul.ac.uk
dx.doi.org/10.1016/j.molbiopara.2009.06.008
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Table 1
Effect of catechins on PfHT, GLUT1, GLUT5 and BboHT1-mediated hexose transport (Ki values) and parasite growth (IC50 values).

Compound Structure Ki (�M)a IC50 (�M)a

PfHT GLUT1 GLUT5 BboHT1

EC >500 ∼500 >500 108 ± 52 nt

ECG 45 ± 10 68 ± 18 117 ± 54 >500 32 ± 1

EGC >500 >500 >500 168 ± 83 nt

EGCG 90 ± 24 105 ± 18 113 ± 48 >500 17 ± 3

t
t
s
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w
t
f
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E
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m
v
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t
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f
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a Values are given as means ± SEM (n ≥ 3); nt, not tested.

est) by catechins containing a gallate group (i.e. ECG and EGCG)
han by ungallated catechins (i.e. EC and EGC). In contrast, the oppo-
ite was observed for the effect of catechins on d-glucose uptake
ia BboHT1 (i.e. EC and EGC were significantly (P < 0.001; ANOVA
ith Tukey’s post-test) more effective than ECG and EGCG). The

wo most effective catechins against each transporter were tested
urther over a range of concentrations. Ki values for each inhibitor

ere determined and presented in Table 1. Ki values for ECG and
GCG in the case of PfHT, GLUT1 and GLUT5 and Ki values for EC
nd EGC in the case of BboHT1 were similar (P = 0.13, 0.24, 0.96 and
.42, respectively; unpaired, two-tailed, Student’s t-test).

Given that d-glucose is metabolised after uptake into X. laevis
ocytes, the effect of ECG was also tested on the uptake of 3-O-
ethyl-d-glucose (3OMG; a non-metabolised d-glucose analogue)

ia PfHT, which has similar Km values [9] for the transport of both
-glucose (1.0 mM) and 3OMG (1.3 mM). The Ki value derived for
he effect of ECG on the transport of 3OMG (17 �M) via PfHT was
8 ± 3 �M (mean ± SEM; n = 3). This was not significantly different

rom the Ki value derived for the effect of ECG on d-glucose trans-
ort via PfHT (P = 0.07; unpaired, two-tailed, Student’s t-test). The
elatively low Ki value for ECG inhibition of 3OMG transport clearly
emonstrates that catechins inhibit sugar transport via PfHT rather
han having an intracellular metabolic effect.
Our results show that the transport of d-glucose via GLUT1 is
more susceptible to inhibition by gallated than ungallated cate-
chins, consistent with the findings of Naftalin et al. [8]. However,
the Ki values for the effect of gallated catechins on d-glucose trans-
port via GLUT1 presented here are two orders of magnitude higher
than those published previously (45 versus 0.14 �M for ECG and 89
versus 0.97 �M for EGCG, respectively). There may be many rea-
sons for these differences but they are most likely to be due to (i)
the different microenvironments of erythrocytes compared with X.
laevis oocytes, resulting in different ligand activities at the mem-
brane surface and/or (ii) the method of measuring transport (zero
trans efflux versus influx).

Furthermore, d-glucose transport by PfHT and d-fructose trans-
port by GLUT5 are blocked by gallated catechins with similar kinetic
constants to those reported here for d-glucose transport via GLUT1.
This suggests that gallated catechins may well interact with each of
these diverse hexose transporters in a similar manner. A contrasting
observation though, is that d-glucose transport by BboHT1 is more

susceptible to ungallated catechins. This reversed pharmacologi-
cal profile has not been observed for any other hexose transporter
or, in general, other processes that are targets for catechins (e.g.
bacterial type II fatty acid synthase [4]). This raises the possibil-
ity that BboHT1 has a novel architecture that may ultimately aid
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Fig. 1. Sequence alignments of helix VIII from apicomplexan and mammalian hex-
ose transporters and effect of catechins (0.5 mM) on hexose transport by wild-type
(closed bars) and mutant hexose transporters (open bars). (A) The Clustal W program
was used to generate the alignment. Bold residues were substituted in site-directed
mutagenesis experiments. Note: NT are putative anchoring residues of GLUT1 with
gallated catechins [8]. GLUT2, mammalian facilitated glucose transporter 2; GLUT4,
mammalian facilitated glucose transporter 4; PvHT, Plasmodium vivax hexose trans-
porter; PkHT, P. knowlesi hexose transporter; PyHT, P. yoelii hexose transporter, TgGT1,
Toxoplasma gondii glucose transporter 1; THT1, T. brucei hexose transporter 1. (B)
Wild-type PfHT versus N341L PfHT, (C) wild-type GLUT1 versus N317L GLUT1 and (D)
wild-type BboHT1 versus L323N BboHT1. Uptake of [14C] d-glucose by PfHT, GLUT1
and BboHT1 was measured. All values were first corrected for the uptake into water-
injected controls and are presented as a percentage of paired control experiments
performed in the absence of any inhibitor. Data are averaged from three experiments,
each on oocytes from a different toad, and are shown as means ± SEM. *Significantly
K. Slavic et al. / Molecular & Bioche

ur understanding of the interaction between catechins and hex-
se transporters, serving as a negative control for gallated catechin
inding.

Using a 3D structural model of GLUT1, Naftalin et al. [8] identified
utative residues involved in the binding of EGCG (Asn 29, Thr 30,
rg 126, Ser 285, Asn 288, Asn 317 and Thr 318). Sequence align-
ent identified Arg 126 as the only residue conserved in GLUT1,

fHT and BboHT1. Additionally, the residue corresponding to Asn
17 in GLUT1 is conserved in PfHT, while the residues correspond-
ng to Asn 29 and Thr 30 in GLUT1 are conserved in BboHT1.
iven the different catechin susceptibility profile of BboHT1 com-
ared with GLUT1 and PfHT, helix VIII sequences, which contain
esidues corresponding to Asn 317 in GLUT1, for a range of hex-
se transporters (mammalian, apicomplexan and kinetoplastidae)
ere aligned (Fig. 1A). In the case of Thr 318, there is little con-

ervation between analogous residues. However, Asn 317 is highly
onserved between transporters with the exception of the Try-
anosoma brucei hexose transporter 1 (THT1), which also contains
polar residue at this position (Thr 351), and BboHT1, which is the
nly transporter aligned here that contains a hydrophobic residue,
eu 323, at this position.

To test (i) if the Asn residue in helix VIII of GLUT1 and PfHT is
mportant for gallated catechin binding and (ii) if alteration of this
esidue can explain the altered pharmacology observed in BboHT1
reported above), site-directed mutagenesis was used to introduce
n Asn → Leu mutation in GLUT1 and PfHT and a Leu → Asn muta-
ion in BboHT1. The effect of catechins ond-glucose uptake was then
ested, using the mutant transporters expressed in X. laevis oocytes,
nd compared with data produced using the wild-type transporters
Fig. 1B–D).

In all cases, mutation reduced each transporter’s assayed func-
ionality (reducing uptake by at least 60%, when compared with
ild-type controls, although these values are not corrected for

rotein expression), which made determination of catechin inhi-
ition difficult and thus only the effect of a 0.5 mM concentration
f each catechin was determined. Mueckler and Makepeace [13]
eported that mutation of Asn 317 to a Cys residue in GLUT1 also
educed transport activity, where uptake data were normalised for
ransporter membrane expression. The mutant transporters pre-
erved the same pharmacological catechin profile as wild-type
ransporters, with one exception: the mutant version of BboHT1
as affected significantly less (P < 0.001; ANOVA with Tukey’s post-

est) by EC when compared with wild-type BboHT1. The previously
eported PfHT mutant Q169N [9] also had no effect on the action of
atechins on d-glucose transport (data not shown).

The seven residues identified by Naftalin et al. [8] are predicted
o reside on the rim of the external hexose binding site of GLUT1
note that two of the residues, Thr 30 and Asn 317, were shown
n mutagenesis experiments to be of significance in the GLUT1
xofacial binding site [14]), which would suggest a competitive
echanism of inhibition. Of these seven residues, three analogous

esidues in PfHT are conserved, corresponding to GLUT1 residues
rg 126, Asn 288 and Asn 317. However, mutation of the latter in
LUT1 and PfHT did not alter the gross effects of catechins on d-
lucose transport. Although these mutations may have resulted in
ifferential effects of gallated catechins at lower concentrations
experiments which were not performed because the mutations
sed here reduced measurable transporter activity), the data do
ot imply a primary role for Asn 317 and its analogous residues in
GCG binding.

Strobel et al. [15] produced a model for GLUT4 and performed

ocking studies with gallic acid, EC and ECG, with only the latter
eaching a favourable energetic minimum. In the model, ECG was
ound possibly to interact with Gln 295 and Leu 296 of the QLS

otif in transmembrane helix VII (a region which interacts with
he C1 position of d-glucose and which is involved with substrate
different from wild-type (P < 0.001).

filtering in mammalian orthologues [16]). This suggests gallated
catechins competitively inhibit d-glucose transport at the extra-
cellular substrate binding site. However, while the data presented
here do not rule out competitive inhibition, they are not consistent

with a specific need for the interaction of gallated catechins with
the QLS motif, as PfHT does not contain the motif but is inhibited
by gallated catechins.
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The surprising result described here is the reversed catechin
harmacological profile of BboHT1 compared with GLUT1, GLUT5
nd PfHT. BboHT1 was also the only transporter that was signif-
cantly affected by mutation. In this case, the L323N mutation
ncreased the amino acid conservation of BboHT1 to that of PfHT
nd GLUT1 and reduced the effect of EC (but not EGC), leaving the
ctions of ECG and EGCG unaltered. Further mutational studies in
his region may help to elucidate the significance of this observa-
ion.

Table 1 shows IC50 values for the effect of ECG and EGCG on P. fal-
iparum (3D7) growth in vitro (12 mM d-glucose) over 48 h, using
ethods described previously [11]. Furthermore, given that cate-

hins are competitive inhibitors ofd-glucose transport mediated by
LUT1 [8], the relationship between external d-glucose concentra-

ion and IC50 values was examined. For each catechin, altering the
xternal d-glucose concentration from 12 mM down to 4 mM had
o significant effect on parasite growth inhibition (P > 0.4; unpaired,
wo-tailed Student’s t-test). The effect of catechins was also tested
n Babesia divergens (strain Rouen 1987) growth as described [17].
t a concentration of 200 �M, EC, ECG, EGC and EGCG inhibited par-
site growth by 66 ± 14, 91 ± 6, 30 ± 10, and 71 ± 2%, respectively
mean ± SEM; n = 3).

While gallated catechins were found to inhibit P. falciparum
rowth (with similar IC50 values to those reported previously [6,7]),
hanging the growth medium d-glucose concentration failed to
lter the antimalarial effect of gallated catechins. If the inhibitory
echanism of ECG and EGCG is, indeed, competitive, this is not

onsistent with data reported for compound 3361 (a specific and
ompetitive inhibitor of d-glucose transport via PfHT), which was
sed to validate PfHT as a drug target [11]. In addition, ECG was

ound to be the most effective inhibitor of B. divergens growth
killing over 90% of parasites at 200 �M) and, while it is not possi-
le to state how closely the hexose transporter of B. bovis compares
ith that of B. divergens, it is worth noting that ECG was not a

ery effective inhibitor of BboHT1 and that compound 3361, a
ood inhibitor BboHT1, did not kill B. bovis parasites in culture
12]. Therefore, there is little information to suggest that the anti-

alarial effect of catechins results from the inhibition of hexose
ransporters.

In summary, we have shown that catechins are able to inhibit
diverse selection of phylogenetically distant facilitative hexose

ransporters and that, in keeping with previous reports, gallated
atechins are more effective inhibitors than ungallated catechins.
he exception to this rule is for catechin inhibition of BboHT1,
hexose transporter from B. bovis that is more susceptible to

ngallated catechins. Bioinformatical and site-directed mutage-

esis approaches provided little further evidence in support of
reviously proposed models of catechin binding with hexose trans-
orters and, in the case of the QLS motif and Asn 317, ruled out
rimary roles. Finally, while catechins possess antimalarial activity,
ur data suggest that hexose transport is not their primary target.
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