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Abstract. We show that for integer n ≥ 1, any subset A ⊆ Zn4 free of three-term
arithmetic progressions has size |A| ≤ 4γn, with an absolute constant γ ≈ 0.926.

1. Background and Motivation

In his influential papers [R52, R53], Roth has shown that if a set A ⊆ {1, 2, . . . , N}
does not contain three elements in an arithmetic progression, then |A| = o(N) and in-

deed, |A| = O(N/ log logN) as N grows. Since then, estimating the largest possible

size of such a set has become one of the central problems in additive combinatorics.

Roth’s original results were improved by Heath-Brown [H87], Szemerédi [S90], Bour-

gain [B99], Sanders [S12, S11], and Bloom [B], the current record due to Bloom being

|A| = O(N(log logN)4/ logN).

It is easily seen that Roth’s problem is essentially equivalent to estimating the largest

possible size of a subset of the cyclic group ZN , free of three-term arithmetic progressions.

This makes it natural to investigate other finite abelian groups.

We say that a subset A of an (additively written) abelian group G is progression-free

if there do not exist pairwise distinct a, b, c ∈ A with a+ b = 2c, and we denote by r3(G)

the largest size of a progression-free subset A ⊆ G. For abelian groups G of odd order,

Brown and Buhler [BB82] and independently Frankl, Graham, and Rödl [FGR87] proved

that r3(G) = o(|G|) as |G| grows. Meshulam [M95], following the general lines of Roth’s

argument, has shown that if G is an abelian group of odd order, then r3(G) ≤ 2|G|/ rk(G)

(where we use the standard notation rk(G) for the rank of G); in particular, r3(Znm) ≤
2mn/n. Despite many efforts, no further progress was made for over 15 years, till Bateman

and Katz in their ground-breaking paper [BK12] proved that r3(Zn3 ) = O(3n/n1+ε) with

an absolute constant ε > 0.

Abelian groups of even order were first considered in [L04] where, as a further elabo-

ration on the Roth-Meshulam proof, it is shown that r3(G) < 2|G|/ rk(2G) for any finite

abelian group G; here 2G = {2g : g ∈ G}. For the homocyclic groups of exponent 4 this
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result was improved by Sanders [S11] who proved that r3(Zn4 ) = O(4n/n(log n)ε) with an

absolute constant ε > 0. The goal of this paper is to further improve Sanders’s result, as

follows.

Let H denote the binary entropy function; that is,

H(x) = −x log2 x− (1− x) log2(1− x), x ∈ (0, 1),

where log2 x is the base-2 logarithm of x. For the rest of the paper, we set

γ := max
{1

2

(
H(0.5− ε) +H(2ε)

)
: 0 < ε < 0.25

}
≈ 0.926.

Theorem 1. If n ≥ 1 and A ⊆ Zn4 is progression-free, then |A| ≤ 4γn.

The proof of Theorem 1 is presented in the next section.

We note that the exponential reduction in Theorem 1 is the first of its kind for problems

of this sort.

Starting from Roth, the standard way to obtain quantitative estimates for r3(G) in-

volves a combination of the Fourier analysis and the density increment technique; the

only exception is [L12] where for the groups G ∼= Znq with a prime power q, the above-

mentioned Meshulam’s result is recovered using a completely elementary argument. In

contrast, in the present paper we use the polynomial method, without resorting to the

familiar Fourier analysis – density increment strategy.

For a finite abelian group G ∼= Zm1 ⊕ · · · ⊕ Zmk
with positive integer m1 | · · · | mk,

denote by rk4(G) the number of indices i ∈ [1, k] with 4 | mi. Since, writing n := rk4(G),

the group G is a union of 4−n|G| cosets of a subgroup isomorphic to Zn4 , as a direct

consequence of Theorem 1 we get the following corollary.

Corollary 1. If A is a progression-free subset of a finite abelian group G then, writing

n := rk4(G), we have |A| ≤ 4−(1−γ)n|G|.

2. Proof of Theorem 1

We recall that the degree of a multivariate polynomial is the largest sum of the ex-

ponents of all of its monomials. The polynomial is multilinear if it is linear in every

individual variable.

The proof of Theorem 1 is based on the following lemma.

Lemma 1. Suppose that n ≥ 1 and d ≥ 0 are integers, P is a multilinear polynomial

in n variables of total degree at most d over a field F, and A ⊆ Fn is a set with |A| >
2
∑

0≤i≤d/2
(
n
i

)
. If P (a− b) = 0 for all a, b ∈ A with a 6= b, then also P (0) = 0.
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Proof. Let m :=
∑

0≤i≤d/2
(
n
i

)
, and let K = {K1, . . . , Km} be the collection of all sets

K ⊆ [n] with |K| ≤ d/2. Writing for brevity

xI :=
∏
i∈I

xi, x = (x1, . . . , xn) ∈ Fn, I ⊆ [n],

there exist coefficients CI,J ∈ F (I, J ⊆ [n]) depending only on the polynomial P , such

that for all x, y ∈ Fn we have

P (x− y) =
∑

I,J⊆[n]
I∩J=∅
|I|+|J |≤d

CI,J x
IyJ

=
∑
I∈K

xI
∑

J⊆[n]\I
|J |≤d−|I|

CI,J y
J +

∑
J∈K

( ∑
I⊆[n]\J

d/2<|I|≤d−|J |

CI,J x
I

)
yJ .

The right-hand side can be interpreted as the scalar product of the vectors u(x), v(y) ∈
F2m defined by

ui(x) = xKi , um+i(x) =
∑

I⊆[n]\Ki

d/2<|I|≤d−|Ki|

CI,Ki
xI

and

vi(y) =
∑

J⊆[n]\Ki

|J |≤d−|Ki|

CKi,J y
J , vm+i(y) = yKi

for all 1 ≤ i ≤ m. Consequently, if we had P (a− b) = 0 for all a, b ∈ A with a 6= b, while

P (0) 6= 0, this would imply that the vectors u(a) and v(b) are orthogonal if and only if

a 6= b. As a result, the vectors u(a) would be linearly independent (an equality of the

sort
∑

a∈A λau(a) = 0 with the coefficients λa ∈ F after a scalar multiplication by v(b)

yields λb = 0, for any b ∈ A). Finally, the linear independence of {u(a) : a ∈ A} ⊆ F2m

implies |A| ≤ 2m, contrary to the assumptions of the lemma. �

Remark. It is easy to extend the lemma relaxing the multilinearity assumption to the

assumption that P has bounded degree in each individual variable. Specifically, denoting

by fδ(n, d) the number of monomials xi11 . . . x
in
n with 0 ≤ i1, . . . , in ≤ δ and i1+· · ·+in ≤ d,

if P has all individual degrees not exceeding δ, and the total degree not exceeding d, then

|A| > 2fδ(n, bd/2c) along with P (a− b) = 0 (a, b ∈ A, a 6= b) imply P (0) = 0. Moreover,

taking δ = d, or δ = |F| − 1 for F finite, one can drop the individual degree assumption

altogether.
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We will use the estimate ∑
0≤i≤z

(
n

i

)
< 2nH(z/n) (1)

valid for all integer n ≥ 1 and real 0 < z ≤ n/2; see, for instance, [McWS77, Ch. 10, §11,

Lemma 8].

Recall, that for integer n ≥ d ≥ 0, the sum
∑d

i=0

(
n
i

)
is the dimension of the vector

space of all multilinear polynomials in n variables of total degree at most d over the

two-element field F2. In particular, the dimension of the vector space of all multilinear

polynomials in n variables over F2 is equal to the dimension of the vector space of all F2-

valued functions on Fn2 , and it follows that any non-zero multilinear polynomial represents

a non-zero function. These basic facts are used in the proof of Proposition 1 below.

For integer n ≥ 1, denote by Fn the subgroup of the group Zn4 generated by its

involutions; thus, Fn is both the image and the kernel of the doubling endomorphism of

Zn4 defined by g 7→ 2g (g ∈ Zn4 ), and we have Fn ∼= Zn2 .

Proposition 1. Suppose that n ≥ 1 and A ⊆ Zn4 is progression-free. Then for every

0 < ε < 0.25, the number of Fn-cosets containing at least 2nH(0.5−ε)+1 elements of A is

less than 2nH(2ε).

Proof. Let R be the set of all those Fn-cosets containing at least 2nH(0.5−ε)+1 elements of

A, and for each coset R ∈ R let AR := A ∩ R; thus, ∪R∈RAR ⊆ A (where the union is

disjoint), and

|AR| ≥ 2nH(0.5−ε)+1, R ∈ R. (2)

For a subset S ⊆ Zn4 , write

2 · S := {s′ + s′′ : (s′, s′′) ∈ S × S, s′ 6= s′′} and 2 ∗ S := {2s : s ∈ S}.

The assumption that A is progression-free implies that the sets

B := ∪R∈R(2 · AR) ⊆ Fn and C := ∪R∈R(2 ∗R) ⊆ Fn

are disjoint: this follows by observing that if 2r ∈ 2 · A with some r ∈ R, then for each

a ∈ r+Fn we have 2a = 2r ∈ 2·A. Furthermore, the sets 2∗R are in fact pairwise distinct

singletons (for 2r1 = 2r2 is equivalent to r1 − r2 ∈ Fn and thus to r1 + Fn = r2 + Fn),

whence |C| = |R|.
Let d = n− d2εne so that, in view of (2) and (1),

2
∑

0≤i≤d/2

(
n

i

)
< 2nH(0.5−ε)+1 ≤ |AR|, R ∈ R. (3)
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Denoting by C the complement of C in Fn, and assuming, contrary to what we want to

prove, that |R| ≥ 2nH(2ε), from (1) we get

d∑
i=0

(
n

i

)
= 2n −

d2εne−1∑
i=0

(
n

i

)
> 2n − 2nH(2ε) ≥ 2n − |R| = 2n − |C| = |C|.

(This is the computation where the assumption ε < 0.25 is used.) Consequently, iden-

tifying Fn with the additive group of the vector space Fn2 , and accordingly considering

B and C as subsets of Fn2 , we conclude that the dimension of the vector space of all

multilinear n-variate polynomials over the field F2 exceeds the dimension of the vector

space of all F2-valued functions on C. Thus, the evaluation map, associating with every

polynomial the corresponding function, is degenerate. As a result, there exists a non-zero

multilinear polynomial P ∈ F2[x1, . . . , xn] of total degree degP ≤ d such that P vanishes

on C. In particular, P vanishes on B ⊆ C, and therefore on each set 2 ·AR, for all R ∈ R.

Fixing arbitrarily an element r ∈ R, the polynomial P (2r + x) thus vanishes whenever

x ∈ 2 · (AR− r). Hence, also P (2r) = 0 by Lemma 1 (which is applicable in view of (3));

that is, P also vanishes on each singleton set 2 ∗ AR, for all R ∈ R. It follows that P

vanishes on C. However, P was chosen to vanish on C. Therefore, P vanishes on all of

Fn2 , and it follows that P is the zero polynomial. This is a contradiction showing that

|R| < 2nH(2ε), and thus completing the proof. �

Proof of Theorem 1. For x ≥ 0, let N(x) denote the number of Fn-cosets containing at

least x elements of A; thus N(x) = 0 for x > 2n, and we can write

|A| =
∫ 2n+1

0

N(x) dx. (4)

Trivially, we have N(x) ≤ 2n for all x ≥ 0, so that∫ 2nH(1/4)+1

0

N(x) dx ≤ 2(H(1/4)+1)n+1 < 2 · 4γn. (5)

On the other hand, the substitution x = 2nH(0.5−ε)+1 gives∫ 2n+1

2nH(1/4)+1

N(x) dx = n

∫ 1/4

0

2nH(0.5−ε)+1N(2nH(0.5−ε)+1) log
0.5 + ε

0.5− ε
dε, (6)

and applying Proposition 1, the integral in the right-hand side can be estimated as

2n

∫ 1/4

0

2n(H(0.5−ε)+H(2ε)) log
0.5 + ε

0.5− ε
dε < 3n

∫ 1/4

0

2n(H(0.5−ε)+H(2ε)) dε < n · 4γn. (7)

From (4)–(7) we get |A| < (n + 2) · 4γn, and to conclude the proof we use the tensor

power trick: for integer k ≥ 1, the set A×· · ·×A ⊆ Zkn4 is progression-free and therefore

|A|k < (kn+ 2) · 4γkn



6 ERNIE CROOT, VSEVOLOD F. LEV, AND PÉTER PÁL PACH

by what we have just shown. This readily implies the result. �
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