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PROGRESSION-FREE SETS IN Zj
ARE EXPONENTIALLY SMALL

ERNIE CROOT, VSEVOLOD F. LEV, AND PETER PAL PACH'

ABSTRACT. We show that for integer n > 1, any subset A C Z} free of three-term
arithmetic progressions has size |A| < 47" with an absolute constant v = 0.926.

1. BACKGROUND AND MOTIVATION

In his influential papers [R52, R53], Roth has shown that if a set A C {1,2,... N}
does not contain three elements in an arithmetic progression, then |A| = o(NN) and in-
deed, |A] = O(N/loglog N) as N grows. Since then, estimating the largest possible
size of such a set has become one of the central problems in additive combinatorics.
Roth’s original results were improved by Heath-Brown [H87], Szemerédi [S90], Bour-
gain [B99], Sanders [S12, S11], and Bloom [B], the current record due to Bloom being
|A| = O(N (loglog N)*/log N).

It is easily seen that Roth’s problem is essentially equivalent to estimating the largest
possible size of a subset of the cyclic group Zy, free of three-term arithmetic progressions.
This makes it natural to investigate other finite abelian groups.

We say that a subset A of an (additively written) abelian group G is progression-free
if there do not exist pairwise distinct a, b, c € A with a+ b = 2¢, and we denote by r3(G)
the largest size of a progression-free subset A C G. For abelian groups G of odd order,
Brown and Buhler [BB82] and independently Frankl, Graham, and Rédl [FGR87] proved
that r3(G) = o(|G|) as |G| grows. Meshulam [M95], following the general lines of Roth’s
argument, has shown that if G is an abelian group of odd order, then r3(G) < 2|G|/ rk(G)
(where we use the standard notation rk(G) for the rank of G); in particular, r3(Z?,) <
2m" /n. Despite many efforts, no further progress was made for over 15 years, till Bateman
and Katz in their ground-breaking paper [BK12] proved that r3(Z3) = O(3"/n'*¢) with
an absolute constant ¢ > 0.

Abelian groups of even order were first considered in [L04] where, as a further elabo-
ration on the Roth-Meshulam proof, it is shown that r3(G) < 2|G|/rk(2G) for any finite
abelian group G; here 2G = {2¢: g € G}. For the homocyclic groups of exponent 4 this
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result was improved by Sanders [S11] who proved that r3(Z}) = O(4" /n(logn)®) with an
absolute constant € > 0. The goal of this paper is to further improve Sanders’s result, as
follows.

Let H denote the binary entropy function; that is,

H(z) = —xlogyx — (1 — x)logy(1 —z), x€(0,1),

where log, = is the base-2 logarithm of z. For the rest of the paper, we set
1
y = max {é(H(Oﬁ — )+ H(22)): 0<e< 0.25} ~ 0.926.
Theorem 1. Ifn > 1 and A C Z} is progression-free, then |A| < 4.

The proof of Theorem 1 is presented in the next section.

We note that the exponential reduction in Theorem 1 is the first of its kind for problems
of this sort.

Starting from Roth, the standard way to obtain quantitative estimates for r3(G) in-
volves a combination of the Fourier analysis and the density increment technique; the
only exception is [L12] where for the groups G = Zj with a prime power ¢, the above-
mentioned Meshulam’s result is recovered using a completely elementary argument. In
contrast, in the present paper we use the polynomial method, without resorting to the
familiar Fourier analysis — density increment strategy.

For a finite abelian group G = Z,,, ® - -+ ® Z,, with positive integer my | - -+ | my,
denote by rk4(G) the number of indices ¢ € [1, k| with 4 | m;. Since, writing n := rky(G),
the group G is a union of 47"|G| cosets of a subgroup isomorphic to Zj, as a direct
consequence of Theorem 1 we get the following corollary.

Corollary 1. If A is a progression-free subset of a finite abelian group G then, writing
n = rky(G), we have |A| < 4~1=9"|G).

2. PROOF OF THEOREM 1

We recall that the degree of a multivariate polynomial is the largest sum of the ex-
ponents of all of its monomials. The polynomial is multilinear if it is linear in every
individual variable.

The proof of Theorem 1 is based on the following lemma.

Lemma 1. Suppose that n > 1 and d > 0 are integers, P is a multilinear polynomial
in n variables of total degree at most d over a field F, and A C F™ is a set with |A| >
22 o<icds ("). If P(a —b) =0 for all a,b € A with a # b, then also P(0) = 0.
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Proof. Let m = 7,4/ ("), and let K = {K,..., Ky} be the collection of all sets
K C [n] with | K| < d/2. Writing for brevity

zl = Hmi, x=(x1,...,2,) €F" I C[n],
i€l
there exist coefficients C; ; € F (I, J C [n]) depending only on the polynomial P, such
that for all x,y € F™ we have

I,JCIn]
INJ=go
|+[J|<d
:Zl’[ Z C[,JyJ‘i‘Z( Z C[7J$I>yj.
ek I JEK \  IC[n]\J
J|<d—|1| d/2<[I|<d|J]

The right-hand side can be interpreted as the scalar product of the vectors u(x),v(y) €
2™ defined by

K, I
ui(r) = ™, Upgi(T) = E Cri,x
ICIn\K;
d/2<|I|<d—|K;]

and

vy = D Cxuy’s vmnly) =y~

JCn]\K;

[J|<d—| K]
for all 1 <i < m. Consequently, if we had P(a —b) = 0 for all a,b € A with a # b, while
P(0) # 0, this would imply that the vectors u(a) and v(b) are orthogonal if and only if
a # b. As a result, the vectors u(a) would be linearly independent (an equality of the
sort > .4 Aatt(a) = 0 with the coefficients A\, € [ after a scalar multiplication by v(b)
yields A\, = 0, for any b € A). Finally, the linear independence of {u(a): a € A} C F*™
implies |A| < 2m, contrary to the assumptions of the lemma. O

Remark. 1t is easy to extend the lemma relaxing the multilinearity assumption to the
assumption that P has bounded degree in each individual variable. Specifically, denoting
by f5(n, d) the number of monomials %' ... z% with 0 < iy, ...,i, < §and i+ - -+i, < d,
if P has all individual degrees not exceeding 9, and the total degree not exceeding d, then
|A| > 2f5(n, |d/2]) along with P(a—b) =0 (a,b € A, a # b) imply P(0) = 0. Moreover,
taking 6 = d, or 6 = |F| — 1 for [F finite, one can drop the individual degree assumption
altogether.
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We will use the estimate

M\ ~ onH(z/n) 1
valid for all integer n > 1 and real 0 < z < n/2; see, for instance, [McWS77, Ch. 10, §11,
Lemma 8§].

Recall, that for integer n > d > 0, the sum Z?:o (’Z) is the dimension of the vector
space of all multilinear polynomials in n variables of total degree at most d over the
two-element field Fy. In particular, the dimension of the vector space of all multilinear
polynomials in n variables over Fy is equal to the dimension of the vector space of all [F,-
valued functions on F%, and it follows that any non-zero multilinear polynomial represents
a non-zero function. These basic facts are used in the proof of Proposition 1 below.

For integer n > 1, denote by F, the subgroup of the group Z} generated by its
involutions; thus, F}, is both the image and the kernel of the doubling endomorphism of

Z} defined by g — 2¢g (g € Z}), and we have F, = Z}.

Proposition 1. Suppose that n > 1 and A C Z} 1is progression-free. Then for every

0 < e < 0.25, the number of F,-cosets containing at least 2" 05—+ clements of A is

less than 27H(2)

Proof. Let R be the set of all those F,-cosets containing at least 2"#(0-5=9)+1 elements of
A, and for each coset R € R let Ag := AN R; thus, Uger Ar € A (where the union is
disjoint), and

|Ap| > 2mH05=a41 R e R, (2)
For a subset S C Z}, write
2.8 :={s+s":(s,§")eSxS, s #£5"} and 2xS5:={2s:s€ S5}
The assumption that A is progression-free implies that the sets
B :=Uger(2-Ar) CF, and C:=Ugr(2*R)CF,

are disjoint: this follows by observing that if 2r € 2 - A with some r € R, then for each
a € r+F, we have 2a = 2r € 2- A. Furthermore, the sets 2x R are in fact pairwise distinct
singletons (for 2ry = 2ry is equivalent to r — o € F,, and thus to ry + F,, = ro + F},),
whence |C| = |R|.

Let d = n — [2en] so that, in view of (2) and (1),

n n O—E
2 ) (i)<2H<05 1 <|Agl, ReR. (3)

0<i<d/2
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Denoting by C' the complement of C' in F,, and assuming, contrary to what we want to
prove, that |R| > 27729 from (1) we get

d [2en]—1

n n —
> =2"— ) > QnH2) > on IR =2" — |C| =|C].
2 (@) 2 <Z) 2 R Tl =1C]

(This is the computation where the assumption e < 0.25 is used.) Consequently, iden-
tifying F,, with the additive group of the vector space I}, and accordingly considering
B and C as subsets of Fy, we conclude that the dimension of the vector space of all
multilinear n-variate polynomials over the field [y exceeds the dimension of the vector
space of all Fo-valued functions on C. Thus, the evaluation map, associating with every
polynomial the corresponding function, is degenerate. As a result, there exists a non-zero
multilinear polynomial P € Fy[zy, ..., z,] of total degree deg P < d such that P vanishes
on C. In particular, P vanishes on B C C, and therefore on each set 2- Ag, for all R € R.
Fixing arbitrarily an element r € R, the polynomial P(2r + z) thus vanishes whenever
x € 2-(Ar —r). Hence, also P(2r) = 0 by Lemma 1 (which is applicable in view of (3));
that is, P also vanishes on each singleton set 2 x Ay, for all R € R. It follows that P
vanishes on C. However, P was chosen to vanish on C. Therefore, P vanishes on all of
F%, and it follows that P is the zero polynomial. This is a contradiction showing that
IR| < 27(2) "and thus completing the proof. O

Proof of Theorem 1. For x > 0, let N(z) denote the number of F,,-cosets containing at

least  elements of A; thus N(x) =0 for x > 2", and we can write
2n+1

A = /0 N(z) da. (4)

Trivially, we have N(z) < 2" for all z > 0, so that
onH(1/4)+1

/ N(z)dr < 2HI/O+DnFL o9 ygom, (5)
0

On the other hand, the substitution o = 2"705=)+1 gives
2n+1

1/4
/ N(l‘) dr = n/ 2nH(0.5—6)+1N(QTLH(O.S—E)—FI) log
onH(1/4)+1 0

and applying Proposition 1, the integral in the right-hand side can be estimated as

1/ 054¢ 1/
271/ 2n(H(O.5fs)+H(2€)) log o E de < 3%/ 2%(H(0.5*€)+H(2€)) de < n - 4™, (7>
0 . 0

05+¢

de, (6)

—€
From (4)—(7) we get |A| < (n +2) -4, and to conclude the proof we use the tensor
power trick: for integer & > 1, the set A x --- x A C Zk" is progression-free and therefore

|AF < (kn +2) - 47"
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by what we have just shown. This readily implies the result. O
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