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Abstract

In [5] we defined the hamiltonian cycle in hypergraphs in a new way. The definition
can be extended to paths and cycles as well. There are many results for hypergraphs
that uses the traditional path and cycle definition of Berge, so almost all of them
can be considered with the new definition. In the present talk, I will deal with such
results.
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1 Hamiltonian cycles

Let H be a k–uniform hypergraph on the vertex set V (H) = {v1, v2, . . . , vn}
where n > k. vn+x with x ≥ 0 denotes the same vertex as vx for simplicity
of notation. The set of the edges, k–element subsets of V , is denoted by
E(H) = {E1, E2, . . . , Em}.

In [5] we gave the following definition:

Definition 1.1 A cyclic ordering (v1, v2, . . . , vn) of the vertex set is called a
hamiltonian cycle iff for every 1 ≤ i ≤ n there exists an edge Ej of H such
that {vi, vi+1, . . . , vi+k−1} = Ej.
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Since an ordinary graph is a 2-uniform hypergraph, this definition gives
the definition of the hamiltonian cycle in ordinary graphs for k = 2. (As a
matter of fact, in the original paper the term chain was used instead of cycle,
but it seems that everyone prefers cycle.)

The first natural question was to find a Dirac type theorem for hamiltonian
cycles. For this, we need to extend the definition of degree for hypergraphs.

Definition 1.2 The degree of a fixed l–tuple of distinct vertices, {v1, . . . , vl},
in a k–uniform hypergraph is the number of edges of the hypergraph containing
all {v1, v2, . . . , vl}. It is denoted by d(k)(v1, v2, . . . , vl). Furthermore δ

(k)
l (H)

denotes minimum of d(k)(v1, v2, . . . , vl) over all l-tuples in H. (If k is clear
from the context, only δl(H) will be used.)

We conjectured that δ
(k)
k−1(H) ≥ ⌊n−k+3

2
⌋ implies the existence of the hamil-

tonian cycle, and showed that this bound cannot be lowered. From the other
side, a Dirac type theorem was proved for any k, however, the degree bound
was far from being best possible.

Theorem 1.3 ([5]) If H = (V, E) is a k-uniform hypergraph on n vertices
with

δk−1(H) >

(

1−
1

2k

)

n+ 4− k −
2

k
,

then H contains a hamiltonian cycle.

For k = 3 the above result requires roughly 5
6
n degree bound for each pair

of vertices, but it is conjectured that only 1
2
n is needed.

Now, more then a decade later, the problem is nearly settled. In [6]
Ruciński, Rödl and Szemerédi proved that the conjecture is asymptotically
true for k = 3, then in [8] the exact result was given in this case, together
with the analogous hamiltonian path result.

Theorem 1.4 ([8]) Let H = (V, E) be a 3-uniform hypergraph on n vertices
where n is sufficiently large. If δ2(H) ≥ ⌊1

2
n⌋ then H contains a hamiltonian

cycle. If δ2(H) ≥ ⌊1
2
n⌋ − 1 then H contains a hamiltonian path.

For larger k values only the asymptotically sharp bound is known.

Theorem 1.5 ([7]) Let k ≥ 3, γ > 0, and let H = be a k-uniform hypergraph
on n vertices where n is sufficiently large. If δk−1(H) ≥ (1

2
+ γ)n, then H

contains a hamiltonian cycle.

The proofs of the above results uses similar ideas that appear in the proof
of the celebrated Szemerédi Lemma, but as a result, the proof works only if
n is sufficiently large. Although this lower bound on n is not as large as in



the original Szemerédi Lemma, but is is still beyond “normal size”. So the
problem is still open for normal size hypergraphs, as well, as the exact degree
bound for larger k.

Problem 1.6 Prove that δk−1(H) ≥
⌊

n−k+3
2

⌋

implies the existence of a hamil-
tonian cycle for all k ≥ 4.

2 Extremal questions

The first natural extremal question, which already appeared in [5], asks for the
maximum number of edges in a uniform hypergraph containing no hamiltonian
cycle.

For graphs the extremal case is a complete graph on (n− 1) vertices com-
pleted by a vertex of degree one. It is trivial to prove that this graph does not
contain a hamiltonian cycle, but it is not straightforward to prove that this is
the extremal case.

For hypergraphs, even determining the extremal case looks more difficult.
An easy double-counting argument gives an upper bound, we count how many
hamiltonian cycles are destroyed if an edge is deleted from the complete hy-
pergraph. With Frankl in [2] we improved this upper bound by extending
the counting argument. We count how many subhypergraphs are there in
the complete hypergraph, that contain a hamiltonian cycle, and at least 2
edges need to be removed to destroy all hamiltonian cycles in this subgraph.
Determining the minimum number of edges in such hypergraphs leads to the
following improvement of the upper bound.

Theorem 2.1 ([2]) If H is a k–uniform hypergraph on n vertices satisfying

|E(H)| ≥

(

n

r

)(

1−
4k

(4k − 1)n

)

then H contains a hamiltonian (k − 1)-cycle.

In the general case the best construction is due to Tuza [9]. Using Steiner
systems he constructed hypergraphs with no hamiltonian cycles and

|E(H(n, k))| =

(

n− 1

k

)

+ (1− o(1))

(

n− 2

k − 2

)

.

Recently, Glebov, Persons and Weps settled the 3-uniform case.

Theorem 2.2 ([3]) There exists an n0 such that for any n ≥ n0 the maxi-
mum number of edges in a k-uniform hypergraph containing no hamiltonian
(k − 1)-cycle is

(

n−1
3

)

+ n− 1 if 3|n− 1, and
(

n−1
3

)

+ n− 2 otherwise.



The exact value is still unknown for k ≥ 4.

3 Shorter paths

In [4] we try to generalize result of Gallai for hypergraphs.

Theorem 3.1 (Erdős-Gallai[1]) Let G be a graph on n vertices containing
no path of length k. Then e(G) ≤ 1

2
(k−1)n. Equality holds iff G is the disjoint

union of complete graphs on k vertices.

We can get quite exact results regarding hypergraphs avoiding (k−1)-tight
paths.

Theorem 3.2 ([4]) Let H be an extremal k-uniform hypergraph containing
no (k − 1)-tight path of length s. Then

(1 + o(1))
s− 1

k

(

n

k − 1

)

≤ |e(H)| ≤ (s− 1)

(

n

k − 1

)

However, if we use a different definition, then we can obtain sharper results.

Definition 3.3 Fix k ≥ 2 and t, 1 ≤ t ≤ k − 1. A Berge path of length s

in a hypergraph is a collection of s hyperedges h1, . . . , hs and s + 1 vertices
v1, . . . , vs+1 such that for each 1 ≤ i ≤ s we have vi, vi+1 ∈ hi.

A t-tight Berge-path of length s in a k-uniform hypergraph is a Berge-path
on s+ 1 vertices {v1, v2, . . . , vs+1} and s hyperedges {h1, h2, . . . , hs} such that
consecutive hyperedges intersect in at least t points.

So one the difference between the two definitions is that the consecutive
edges must intersect in exactly t vertices or at least t vertices. The other
difference is that in this definition a path must contain a different edge for
each vi, vi+1 along the path, which is not required in the previous definition.
Note that if t = 1, k = 2 then both definitions gives the same as the usual
definition for graphs.

Theorem 3.4 ([4]) Fix k ≥ 2 and t, 1 ≤ t ≤ k− 1. Fix s large. Let H be an
extremal k-uniform hypergraph on n vertices containing no t-tight Berge-path
of length s. Then

(1 + o(1))

(

n

t

)(

s

k

)

(

s

t

) ≤ e(H) ≤

(

n

t

)(

s

k

)

(

s

t

) .

Using this result in [3] the authors give an asymptotically tight bound
for the maximum number of edges in a hypergraph that doesn’t contain a



(k − 1)-cycle.

In [4] more open problems are raised.
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