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On small gaps between primes and almost prime

powers

János Pintz
∗

1. In two subsequent works, joint with D. Goldston and C. Y. Yıldırım
[GPY1, GPY2] we showed that for the sequence pn of primes

(1.1) lim inf
n→∞

pn+1 − pn
log pn

= 0,

and even

(1.2) lim inf
n→∞

pn+1 − pn

(log pn)1/2(log log pn)2
< ∞.

A crucial ingredient of the proof was the celebrated Bombieri–Vinogradov
theorem, which asserts that ϑ = 1/2 is an admissible level of distribution of
primes, that is,

(1.3)
∑

q≤Nϑ/ logCN

max
a

(a,q)=1

∣∣∣∣
∑

p≡a (mod q)
p≤N

1− liN

ϕ(q)

∣∣∣∣ ≪A
N

logAN

holds with ϑ = 1/2 for any A > 0, C > C(A). The method also yielded
[GPY1] that if ϑ > 1/2 is an admissible level of distribution of primes then
for any admissible k-element set H = {hi}ki=1 (that is, if H does not occupy
all residue classes mod p for any prime p) the set n + H := {n + hi}ki=1

contains at least two primes for infinitely many values of n if k ≥ k0(ϑ).
Consequently we have infinitely many bounded gaps between primes, more
precisely

(1.4) lim inf
n→∞

(pn+1 − pn) ≤ C(ϑ).

The strongest possible hypothesis on the uniform distribution of primes in
arithmetic progressions, the Elliott–Halberstam [EH] conjecture stating the
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admissibility of the level ϑ = 1 (with N/ logCN replaced by N1−ε for any
ε > 0), or slightly weaker, even the assumption ϑ ≥ 0.971 implies gaps of
size at most 16 infinitely often, in fact,

(1.5) k0(0.971) = 6, C(0.971) = 16.

If ϑ = 1/2 + δ is near to 1/2, that is, δ is a small positive number, one can
take for δ → 0+

(1.6) k0

(
1

2
+ δ

)
=

(
2

⌈
1

2δ

⌉
+ 1

)2

, C

(
1

2
+ δ

)
∼ 2δ−2 log

1

δ
.

This situation suggests that one might take some prime-like set P ′ just
slightly more dense than the set P of primes, that is, for any ε > 0 a set Pε

such that

(1.7) P ⊂ P ′
ε := {bn}∞n=1, π′

ε(N) := #{n ≤ N, n ∈ P ′} < π(n)(1 + ε)

which has bounded gaps infinitely often, that is,

(1.8) lim inf
n→∞

(bn+1 − bn) < ∞.

Of course adding p + 1 to the set P for infinitely many primes would
trivially satisfy the requirements but we are looking for some arithmetically
interesting set P ′

ε with some similarity to primes or prime powers. (Adding
just prime powers to P raises the number of elements just with a quantity
∼ 2N1/2/ logN which is negligible compared to π(N).) One possibility is to
add some numbers which are similar to prime powers. To avoid confusion
with almost primes we will introduce the following

Definition. For any ε ≥ 0 a natural number n is called ε-balanced if for
any prime divisors p, q of n we have

(1.9) min(p, q) ≥
(
max(p, q)

)1−ε
.

Remark. With this definition 0-balanced numbers larger than 1 are exactly
the primes and prime powers.

Let us denote the set of ε-balanced numbers by Pε, the total number of
prime divisors of n by Ω(n) and let

(1.10) Pε,r :=
{
n ∈ Pε, Ω(n) = r

}
, Pε :=

∞⋃

r=1

Pε,r.

2



(In this way we can talk about almost prime-squares (r = 2), almost prime-
cubes (r = 3) etc.)

To have an idea about the quantity

(1.11) πε,r(N) := #{N ≤ n < 2N ; n ∈ πε,r(N)}

we remark that denoting by P−(n) and P+(n) the least, resp., the greatest
prime factor of n we have obviously

(1.12) n ∈ πε,r(N) =⇒ N (1−ε)/r ≤ P−(n) ≤ P+(n) ≤ (2N)1/(r(1−ε)) .

Reversed, we have also clearly for n ∈ [N, 2N), Ω(n) = r by (1+ε/2)(1−ε) ≤
1− ε/2

(1.13) N (1−ε/2)/r ≤ P−(n) ≤ P+(n) ≤ N (1+ε/2)/r =⇒ n ∈ πε,r(N).

In order to simplify the calculation of the density of the ε-balanced num-
bers we will work with the smaller subsets of Pε,r, defined by

P∗
r,ε(N) :=

{
N ≤ n < 2N, Ω(n) = r,(1.14)

N (1−ε/2)/r ≤ P−(n) ≤ P+(n) ≤ N (1+ε/2)/r
}
.

The prime number theorem implies with easy calculations that by

a1 := (1− ε/2)/r, a2 := (1 + ε/2)/r,

I :=
[
Na1 , Na2

]
, J(u) := (N/u1 . . . ur−1, 2N/u1 . . . ur−1]

π∗
r,ε(N) : = #

{
n ∈ P∗

r,ε(N)
}
=

∑

N≤p1...pr<2N
pi∈I

1 ∼

(1.15)

∼
∫

I

. . .

∫

I

r=1∏

i=1

1

log ui

∫

I∩J(u)

1

log t
du1 . . . dur−1 dt ∼

∼ N

logN

a2∫

a1

. . .

a2∫

a1

dα1 . . . dαr−1

α1 . . . αr−1(1− α1 − · · · − αr−1)
=:

C0(r, ε)N

logN
.

Here we have obviously for ε → 0

(1.16) C0(r, ε) ≤
(ε
r

)r−1 rr

(1− ε/2)r
=

rεr−1

(1− ε/2)r
.
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Since for ε < ε0 we have Pr,ε(N) ⊂ P∗
r,3ε(N) the above assertion shows

that the number of ε-balanced composite numbers (the counting function of
P ′
ε \ P) is negligible compared to that of the primes, since even in total

(1.17)
∞∑

r=2

C0(r, ε) < 3ε if ε < c0.

After this preparation we can formulate our result.

Theorem 1. Let r = 2 or 3, ε > 0. Then the set of ε-balanced numbers
with either one or r prime factors contains infinitely many bounded gaps,
but has (1 +O(ε))π(N) elements below N .

2. We will actually prove a stronger result.

Theorem 2. Let r = 2 or 3, ε > 0 and let H be an arbitrary k-element
admissible set of non-negative integers, k > k0(ε). Then the k-tuple n +H
contains at least two ε-balanced numbers with either one or r prime factors
for infinitely many values of n.

Proof. Similarly to the role of the Bombieri–Vinogradov theorem (1.3) in
the proof of (1.1)–(1.2) we need the analogous assertion for the ε-balanced
numbers in P∗

r,ε(N) defined in (1.14).

Theorem 3. We have for any A > 0 with C > C(A)

(2.1)
∑

q≤
√
N/ logCN

max
a

(a,q)=1

∣∣∣∣
∑

n≡a(q)
n∈P∗

r,ε(N)

1− C0(r, ε)liN

ϕ(q)

∣∣∣∣ ≪A,r
N

logAN
.

The proof runs analogously to the proof of Vaughan [Vau] of the Bombieri–
Vinogradov theorem or one may apply some form of generalized Bombieri–
Vinogradov type theorems, as that of Y. Motohashi [Mot] or Pan Cheng
Dong [Pan]. The latter asserts that for any α > 0, ε > 0 and any f(m) ≪ 1
we have
(2.2)

∑

q≤
√
N/ logCN

max
a

(a,q)=1

∣∣∣∣∣
∑

m≤N1−α

f(m)

( ∑

mp≤N
mp≡a(mod q)

1− li N
m

ϕ(q)

)∣∣∣∣∣ ≪α,A
N

logAN
.
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The work [GPY1] was based on two main lemmas describing properties

of the crucial weight function
(
H = {hi}ki=1

)

(2.3)

ΛR(n;H, l) =
1

(k + l)!

∑

d|PH(n),d≤R

µ(d) logk+l R

d
, PH(n) :=

k∏

i=1

(n+ hi).

The formulation of the main lemmas need the singular series

(2.4) S(H) =
∏(

1− νp(H)

p

)(
1− 1

p

)−k

,

where νp(H) denotes the number of residue classes occupied by Hmod p,
for any prime p. The admissible property of H means νp(H) < p for any p,
or equivalently S(H) 6= 0. The two main lemmas below are special cases of
Propositions 1 and 2 of [GPY1].

In the following let η > 0, k, l bounded, but arbitrarily large integers,
n ∼ N substitutes n ∈ [N, 2N)

(2.5) max
hi∈H

hi ≪ logN, R > N c0 , χP(n) =

{
1 if n ∈ P,

0 if n /∈ P.

Lemma 1. For R ≤
√
N/(logN)C , N → ∞, we have

(2.6)
∑

n∼N

ΛR(n;H, k + l)2 =

(
2l

l

)
N(logR)k+2l(S(H) + o(1))

(k + 2l)!
.

Lemma 2. For h ∈ H, R ≤ N1/4/(logN)C , C > C(A), N → ∞, we have
(2.7)
∑

n∼N

ΛR(n;H, k + l)2χP(n+ h) =

(
2l + 2

l + 1

)
N(logR)k+2l+1(S(H) + o(1))

(k + 2l + 1)! logN
.

In the proof of Lemma 2 actually just two properties of the primes are
used:

(i) their distribution in residue classes is on average regular as described
by the Bombieri–Vinogradov theorem;

(ii) if n + h0 ∈ P, n ∼ N , then PH(n) and PH\{h}(n) have the same
divisors below R, that is, n+ h0 has no prime divisor below R.

The first property is shared by the elements of P∗
r,ε(N) as shown by (2.1),

the only change being the factor C0(r, ε). In the cases r = 2 and r = 3 they
obviously share property (ii) as well.
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In such a way with the notation

(2.8) P(N) = [N, 2N) ∩ P, P̃r,ε(N) = P(N) ∪ P∗
r,ε(N)

we obtain in exactly the same way as Lemma 2, for the characteristic func-
tion χP̃ of the set P̃ the following

Lemma 3. For R ≤ N1/4/(logN)C , C > C(A, r, ε), r = 2 or 3, N → ∞,
we have

∑

n∼N

ΛR(n;H, l)2χP̃(n+ h0) =(2.9)

=

(
2l + 2

l + 1

)
N(logR)k+2l+1

S(H)(1 + C0(r, ε) + o(1))

(k + 2l + 1)! logN
.

In this case we have, similarly to (3.3) of [GPY1],

S : =
∑

n∼N

( k∑

i=1

χP̃(n+ hi)− 1

)
ΛR(n;H, l)2 ∼

(2.10)

∼
(
2l

l

)
N(logR)k+2l

S(H)

(k + 2l)!

(
k

k + 2l + 1
· 2l + 1

2l + 2
(1 + C0(r, ε)) − 1

)
> 0

if we choose l =
⌊√

k/2
⌋
, k > k0(r, ε), which proves Theorem 2, consequently

also Theorem 1 for r = 2, 3.
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