# On small gaps between primes and almost prime powers 

János Pintz*

1. In two subsequent works, joint with D. Goldston and C. Y. Yıldırım [GPY1, GPY2] we showed that for the sequence $p_{n}$ of primes

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=0, \tag{1.1}
\end{equation*}
$$

and even

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\left(\log p_{n}\right)^{1 / 2}\left(\log \log p_{n}\right)^{2}}<\infty \tag{1.2}
\end{equation*}
$$

A crucial ingredient of the proof was the celebrated Bombieri-Vinogradov theorem, which asserts that $\vartheta=1 / 2$ is an admissible level of distribution of primes, that is,

$$
\begin{equation*}
\sum_{q \leq N^{\vartheta} / \log ^{C} N} \max _{\substack{a \\(a, q)=1}}\left|\sum_{\substack{p \equiv a(\bmod q) \\ p \leq N}} 1-\frac{l i N}{\varphi(q)}\right| \ll A \frac{N}{\log ^{A} N} \tag{1.3}
\end{equation*}
$$

holds with $\vartheta=1 / 2$ for any $A>0, C>C(A)$. The method also yielded [GPY1] that if $\vartheta>1 / 2$ is an admissible level of distribution of primes then for any admissible $k$-element set $\mathcal{H}=\left\{h_{i}\right\}_{i=1}^{k}$ (that is, if $\mathcal{H}$ does not occupy all residue classes $\bmod p$ for any prime $p)$ the set $n+\mathcal{H}:=\left\{n+h_{i}\right\}_{i=1}^{k}$ contains at least two primes for infinitely many values of $n$ if $k \geq k_{0}(\vartheta)$. Consequently we have infinitely many bounded gaps between primes, more precisely

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right) \leq C(\vartheta) . \tag{1.4}
\end{equation*}
$$

The strongest possible hypothesis on the uniform distribution of primes in arithmetic progressions, the Elliott-Halberstam [EH] conjecture stating the

[^0]admissibility of the level $\vartheta=1$ (with $N / \log ^{C} N$ replaced by $N^{1-\varepsilon}$ for any $\varepsilon>0$ ), or slightly weaker, even the assumption $\vartheta \geq 0.971$ implies gaps of size at most 16 infinitely often, in fact,
\[

$$
\begin{equation*}
k_{0}(0.971)=6, \quad C(0.971)=16 . \tag{1.5}
\end{equation*}
$$

\]

If $\vartheta=1 / 2+\delta$ is near to $1 / 2$, that is, $\delta$ is a small positive number, one can take for $\delta \rightarrow 0^{+}$

$$
\begin{equation*}
k_{0}\left(\frac{1}{2}+\delta\right)=\left(2\left\lceil\frac{1}{2 \delta}\right\rceil+1\right)^{2}, \quad C\left(\frac{1}{2}+\delta\right) \sim 2 \delta^{-2} \log \frac{1}{\delta} \tag{1.6}
\end{equation*}
$$

This situation suggests that one might take some prime-like set $\mathcal{P}^{\prime}$ just slightly more dense than the set $\mathcal{P}$ of primes, that is, for any $\varepsilon>0$ a set $\mathcal{P}_{\varepsilon}$ such that

$$
\begin{equation*}
\mathcal{P} \subset \mathcal{P}_{\varepsilon}^{\prime}:=\left\{b_{n}\right\}_{n=1}^{\infty}, \quad \pi_{\varepsilon}^{\prime}(N):=\#\left\{n \leq N, n \in \mathcal{P}^{\prime}\right\}<\pi(n)(1+\varepsilon) \tag{1.7}
\end{equation*}
$$

which has bounded gaps infinitely often, that is,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(b_{n+1}-b_{n}\right)<\infty \tag{1.8}
\end{equation*}
$$

Of course adding $p+1$ to the set $\mathcal{P}$ for infinitely many primes would trivially satisfy the requirements but we are looking for some arithmetically interesting set $\mathcal{P}_{\varepsilon}^{\prime}$ with some similarity to primes or prime powers. (Adding just prime powers to $\mathcal{P}$ raises the number of elements just with a quantity $\sim 2 N^{1 / 2} / \log N$ which is negligible compared to $\pi(N)$.) One possibility is to add some numbers which are similar to prime powers. To avoid confusion with almost primes we will introduce the following

Definition. For any $\varepsilon \geq 0$ a natural number $n$ is called $\varepsilon$-balanced if for any prime divisors $p, q$ of $n$ we have

$$
\begin{equation*}
\min (p, q) \geq(\max (p, q))^{1-\varepsilon} . \tag{1.9}
\end{equation*}
$$

Remark. With this definition 0-balanced numbers larger than 1 are exactly the primes and prime powers.

Let us denote the set of $\varepsilon$-balanced numbers by $\mathcal{P}_{\varepsilon}$, the total number of prime divisors of $n$ by $\Omega(n)$ and let

$$
\begin{equation*}
\mathcal{P}_{\varepsilon, r}:=\left\{n \in \mathcal{P}_{\varepsilon}, \Omega(n)=r\right\}, \quad \mathcal{P}_{\varepsilon}:=\bigcup_{r=1}^{\infty} \mathcal{P}_{\varepsilon, r} . \tag{1.10}
\end{equation*}
$$

(In this way we can talk about almost prime-squares $(r=2)$, almost primecubes ( $r=3$ ) etc.)

To have an idea about the quantity

$$
\begin{equation*}
\pi_{\varepsilon, r}(N):=\#\left\{N \leq n<2 N ; n \in \pi_{\varepsilon, r}(N)\right\} \tag{1.11}
\end{equation*}
$$

we remark that denoting by $P^{-}(n)$ and $P^{+}(n)$ the least, resp., the greatest prime factor of $n$ we have obviously

$$
\begin{equation*}
n \in \pi_{\varepsilon, r}(N) \Longrightarrow N^{(1-\varepsilon) / r} \leq P^{-}(n) \leq P^{+}(n) \leq(2 N)^{1 /(r(1-\varepsilon))} \tag{1.12}
\end{equation*}
$$

Reversed, we have also clearly for $n \in[N, 2 N), \Omega(n)=r$ by $(1+\varepsilon / 2)(1-\varepsilon) \leq$ $1-\varepsilon / 2$

$$
\begin{equation*}
N^{(1-\varepsilon / 2) / r} \leq P^{-}(n) \leq P^{+}(n) \leq N^{(1+\varepsilon / 2) / r} \Longrightarrow n \in \pi_{\varepsilon, r}(N) \tag{1.13}
\end{equation*}
$$

In order to simplify the calculation of the density of the $\varepsilon$-balanced numbers we will work with the smaller subsets of $\mathcal{P}_{\varepsilon, r}$, defined by

$$
\begin{align*}
& \mathcal{P}_{r, \varepsilon}^{*}(N):=\{N \leq n<2 N, \Omega(n)=r  \tag{1.14}\\
&\left.N^{(1-\varepsilon / 2) / r} \leq P^{-}(n) \leq P^{+}(n) \leq N^{(1+\varepsilon / 2) / r}\right\}
\end{align*}
$$

The prime number theorem implies with easy calculations that by

$$
\begin{gathered}
a_{1}:=(1-\varepsilon / 2) / r, \quad a_{2}:=(1+\varepsilon / 2) / r \\
I:=\left[N^{a_{1}}, N^{a_{2}}\right], \quad J(\mathbf{u}):=\left(N / u_{1} \ldots u_{r-1}, 2 N / u_{1} \ldots u_{r-1}\right]
\end{gathered}
$$

$$
\begin{align*}
\pi_{r, \varepsilon}^{*}(N): & =\#\left\{n \in \mathcal{P}_{r, \varepsilon}^{*}(N)\right\}=\sum_{\substack{N \leq p_{1} \ldots p_{r}<2 N \\
p_{i} \in I}} 1 \sim  \tag{1.15}\\
& \sim \int_{I} \ldots \int_{I} \prod_{i=1}^{r=1} \frac{1}{\log u_{i}} \int_{I \cap J(\mathbf{u})} \frac{1}{\log t} d u_{1} \ldots d u_{r-1} d t \sim \\
& \sim \frac{N}{\log N} \int_{a_{1}}^{a_{2}} \ldots \int_{a_{1}}^{a_{2}} \frac{d \alpha_{1} \ldots d \alpha_{r-1}}{\alpha_{1} \ldots \alpha_{r-1}\left(1-\alpha_{1}-\cdots-\alpha_{r-1}\right)}=: \frac{C_{0}(r, \varepsilon) N}{\log N}
\end{align*}
$$

Here we have obviously for $\varepsilon \rightarrow 0$

$$
\begin{equation*}
C_{0}(r, \varepsilon) \leq\left(\frac{\varepsilon}{r}\right)^{r-1} \frac{r^{r}}{(1-\varepsilon / 2)^{r}}=\frac{r \varepsilon^{r-1}}{(1-\varepsilon / 2)^{r}} \tag{1.16}
\end{equation*}
$$

Since for $\varepsilon<\varepsilon_{0}$ we have $\mathcal{P}_{r, \varepsilon}(N) \subset \mathcal{P}_{r, 3 \varepsilon}^{*}(N)$ the above assertion shows that the number of $\varepsilon$-balanced composite numbers (the counting function of $\left.\mathcal{P}_{\varepsilon}^{\prime} \backslash \mathcal{P}\right)$ is negligible compared to that of the primes, since even in total

$$
\begin{equation*}
\sum_{r=2}^{\infty} C_{0}(r, \varepsilon)<3 \varepsilon \text { if } \varepsilon<c_{0} \tag{1.17}
\end{equation*}
$$

After this preparation we can formulate our result.
Theorem 1. Let $r=2$ or $3, \varepsilon>0$. Then the set of $\varepsilon$-balanced numbers with either one or $r$ prime factors contains infinitely many bounded gaps, but has $(1+O(\varepsilon)) \pi(N)$ elements below $N$.
2. We will actually prove a stronger result.

Theorem 2. Let $r=2$ or $3, \varepsilon>0$ and let $\mathcal{H}$ be an arbitrary $k$-element admissible set of non-negative integers, $k>k_{0}(\varepsilon)$. Then the $k$-tuple $n+\mathcal{H}$ contains at least two $\varepsilon$-balanced numbers with either one or $r$ prime factors for infinitely many values of $n$.

Proof. Similarly to the role of the Bombieri-Vinogradov theorem (1.3) in the proof of (1.1)-(1.2) we need the analogous assertion for the $\varepsilon$-balanced numbers in $\mathcal{P}_{r, \varepsilon}^{*}(N)$ defined in (1.14).

Theorem 3. We have for any $A>0$ with $C>C(A)$

$$
\begin{equation*}
\left.\sum_{\substack{a \\ q \leq \sqrt{N} / \log ^{C_{N}}(a, q)=1}} \max _{\substack{n=a(q) \\ n \in \mathcal{P}_{r, \varepsilon}^{*}(N)}} 1-\frac{C_{0}(r, \varepsilon) l i N}{\varphi(q)} \right\rvert\,<_{A, r} \frac{N}{\log ^{A} N} . \tag{2.1}
\end{equation*}
$$

The proof runs analogously to the proof of Vaughan [Vau] of the BombieriVinogradov theorem or one may apply some form of generalized BombieriVinogradov type theorems, as that of Y. Motohashi [Mot] or Pan Cheng Dong [Pan]. The latter asserts that for any $\alpha>0, \varepsilon>0$ and any $f(m) \ll 1$ we have

$$
\begin{equation*}
\sum_{q \leq \sqrt{N} / \log ^{C_{N}}} \max _{(a, q)=1}\left|\sum_{m \leq N^{1-\alpha}} f(m)\left(\sum_{\substack{m p \leq N \\ m p \equiv a(\bmod q)}} 1-\frac{l i \frac{N}{m}}{\varphi(q)}\right)\right|<_{\alpha, A} \frac{N}{\log ^{A} N} . \tag{2.2}
\end{equation*}
$$

The work [GPY1] was based on two main lemmas describing properties of the crucial weight function $\left(\mathcal{H}=\left\{h_{i}\right\}_{i=1}^{k}\right)$

$$
\begin{equation*}
\Lambda_{R}(n ; \mathcal{H}, l)=\frac{1}{(k+l)!} \sum_{d \mid P_{\mathcal{H}}(n), d \leq R} \mu(d) \log ^{k+l} \frac{R}{d}, \quad P_{\mathcal{H}}(n):=\prod_{i=1}^{k}\left(n+h_{i}\right) \tag{2.3}
\end{equation*}
$$

The formulation of the main lemmas need the singular series

$$
\begin{equation*}
\mathfrak{S}(\mathcal{H})=\prod\left(1-\frac{\nu_{p}(\mathcal{H})}{p}\right)\left(1-\frac{1}{p}\right)^{-k} \tag{2.4}
\end{equation*}
$$

where $\nu_{p}(\mathcal{H})$ denotes the number of residue classes occupied by $\mathcal{H} \bmod p$, for any prime $p$. The admissible property of $\mathcal{H}$ means $\nu_{p}(\mathcal{H})<p$ for any $p$, or equivalently $\mathfrak{S}(\mathcal{H}) \neq 0$. The two main lemmas below are special cases of Propositions 1 and 2 of [GPY1].

In the following let $\eta>0, k, l$ bounded, but arbitrarily large integers, $n \sim N$ substitutes $n \in[N, 2 N)$

$$
\max _{h_{i} \in \mathcal{H}} h_{i} \ll \log N, \quad R>N^{c_{0}}, \quad \chi_{\mathcal{P}}(n)= \begin{cases}1 & \text { if } n \in \mathcal{P}  \tag{2.5}\\ 0 & \text { if } n \notin \mathcal{P}\end{cases}
$$

Lemma 1. For $R \leq \sqrt{N} /(\log N)^{C}, N \rightarrow \infty$, we have

$$
\begin{equation*}
\sum_{n \sim N} \Lambda_{R}(n ; \mathcal{H}, k+l)^{2}=\binom{2 l}{l} \frac{N(\log R)^{k+2 l}(\mathfrak{S}(\mathcal{H})+o(1))}{(k+2 l)!} \tag{2.6}
\end{equation*}
$$

Lemma 2. For $h \in \mathcal{H}, R \leq N^{1 / 4} /(\log N)^{C}, C>C(A), N \rightarrow \infty$, we have

$$
\begin{equation*}
\sum_{n \sim N} \Lambda_{R}(n ; \mathcal{H}, k+l)^{2} \chi_{\mathcal{P}}(n+h)=\binom{2 l+2}{l+1} \frac{N(\log R)^{k+2 l+1}(\mathfrak{S}(\mathcal{H})+o(1))}{(k+2 l+1)!\log N} \tag{2.7}
\end{equation*}
$$

In the proof of Lemma 2 actually just two properties of the primes are used:
(i) their distribution in residue classes is on average regular as described by the Bombieri-Vinogradov theorem;
(ii) if $n+h_{0} \in \mathcal{P}, n \sim N$, then $\mathcal{P}_{\mathcal{H}}(n)$ and $\mathcal{P}_{\mathcal{H} \backslash\{h\}}(n)$ have the same divisors below $R$, that is, $n+h_{0}$ has no prime divisor below $R$.

The first property is shared by the elements of $\mathcal{P}_{r, \varepsilon}^{*}(N)$ as shown by (2.1), the only change being the factor $C_{0}(r, \varepsilon)$. In the cases $r=2$ and $r=3$ they obviously share property (ii) as well.

In such a way with the notation

$$
\begin{equation*}
\mathcal{P}(N)=[N, 2 N) \cap \mathcal{P}, \quad \widetilde{\mathcal{P}}_{r, \varepsilon}(N)=\mathcal{P}(N) \cup \mathcal{P}_{r, \varepsilon}^{*}(N) \tag{2.8}
\end{equation*}
$$

we obtain in exactly the same way as Lemma 2, for the characteristic function $\chi_{\widetilde{\mathcal{P}}}$ of the set $\widetilde{\mathcal{P}}$ the following

Lemma 3. For $R \leq N^{1 / 4} /(\log N)^{C}, C>C(A, r, \varepsilon), r=2$ or $3, N \rightarrow \infty$, we have

$$
\begin{align*}
& \sum_{n \sim N} \Lambda_{R}(n ; \mathcal{H}, l)^{2} \chi_{\widetilde{\mathcal{P}}}\left(n+h_{0}\right)=  \tag{2.9}\\
& =\binom{2 l+2}{l+1} \frac{N(\log R)^{k+2 l+1} \mathfrak{S}(\mathcal{H})\left(1+C_{0}(r, \varepsilon)+o(1)\right)}{(k+2 l+1)!\log N} .
\end{align*}
$$

In this case we have, similarly to (3.3) of [GPY1],

$$
\begin{align*}
S: & =\sum_{n \sim N}\left(\sum_{i=1}^{k} \chi_{\widetilde{\mathcal{P}}}\left(n+h_{i}\right)-1\right) \Lambda_{R}(n ; \mathcal{H}, l)^{2} \sim  \tag{2.10}\\
& \sim\binom{2 l}{l} \frac{N(\log R)^{k+2 l} \mathfrak{S}(\mathcal{H})}{(k+2 l)!}\left(\frac{k}{k+2 l+1} \cdot \frac{2 l+1}{2 l+2}\left(1+C_{0}(r, \varepsilon)\right)-1\right)>0
\end{align*}
$$

if we choose $l=\lfloor\sqrt{k} / 2\rfloor, k>k_{0}(r, \varepsilon)$, which proves Theorem 2, consequently also Theorem 1 for $r=2,3$.

## References

[EH] P. D. T. A. Elliott, H. Halberstam, A conjecture in prime number theory, Symposia Mathematica 4 INDAM, Rome, 59-72, Academic Press, London, 1968/69.
[GPY1] D. A. Goldston, J. Pintz, C. Y. Yıldırım, Primes in tuples I, Ann. of Math. (2) $\mathbf{1 7 0}$ (2009), no. 2, 819-862.
[GPY2] D. A. Goldston, J. Pintz, C. Y. Yıldırım, Primes in Tuples II, Acta Math. 204 (2010), 1-47.
[Mot] Y. Motohashi, An induction principle for the generalization of Bombieri's prime number theorem, Proc. Japan Acad. 52 (1976), 273275.
[Pan] Cheng-Dong Pan, A New Mean Value Theorem and Its Applications, Recent progress in analytic number theory, Vol. 1 (Durham, 1979), 275287, Academic Press, London-New York, 1981.
[Pin] J. Pintz, Are there arbitrarily long arithmetic progressions in the sequence of twin primes?, preprint, arXiv:1002.2899
[Vau] R. C. Vaughan, An Elementary Method in Prime Number Theory, Recent progress in analytic number theory, Vol. 1 (Durham, 1979), 341348, Academic Press, London-New York, 1981.

János Pintz
Rényi Mathematical Institute of the Hungarian Academy of Sciences
Budapest
Reáltanoda u. 13-15
H-1053 Hungary
E-mail: pintz@renyi.hu


[^0]:    *Supported by OTKA Grants K72731, K67676 and ERC-AdG. 228005.

