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Summary

Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here,

we demonstrate that maternal high fat diet (HFD)-feeding during lactation predisposes the

offspring for obesity and impaired glucose homeostasis in mice, which is associated with an

impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide

expression of anorexigenic proopiomelanocortin-(POMC) and orexigenic agoui-related peptide

(AgRP)-neurons, electrophysiological properties of POMC-neurons and posttranslational

processing of POMC remain unaffected in response to maternal HFD-feeding during lactation, the

formation of POMC- and AgRP-projections to hypothalamic target sites is severely impaired.

Abrogating insulin action in POMC-neurons of the offspring prevents altered POMC-projections

to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic

parasympathetic innervation and impaired glucose-stimulated insulin-secretion in response to

maternal overnutrition. These experiments reveal a critical timing, when altered maternal

metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections and

that abnormal insulin signaling contributes to this effect.
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Introduction

The sustained global rise in the prevalence of obesity and type 2 diabetes mellitus (T2DM)

over the last decades increasingly affects young adults and children (Ludwig and Ebbeling,

2001; Sabin and Shield, 2008). Thus, 15-40 % of pregnancies are complicated by maternal

obesity and 3-10 % by maternal diabetes (Anna et al., 2008; Yu et al., 2013). Several human

epidemiological studies have demonstrated that maternal obesity, and maternal diabetes and

hyperglycemia, even independent of an elevated body mass index or genetic background,

predispose the offspring to the development of metabolic disorders (Clausen et al., 2008;

Deierlein et al., 2011; Pedersen, 1971). To date, little is known about the cellular and

molecular mechanisms underlying this phenomenon known as “metabolic programming”.

Nonetheless, a broad range of studies has demonstrated that an abnormal hormonal milieu

during development triggers persistent changes in the function of hypothalamic

neurocircuits, which physiologically regulate energy and glucose metabolism (Plagemann,

2012; Sullivan and Grove, 2010). The hypothalamus integrates hormonal and nutritional

signals from the periphery of the organism and conveys them into neuroendocrine and/or

autonomic responses (Belgardt and Bruning, 2010; Marino et al., 2011; Vogt and Bruning,

2013). Key players in this neuronal network are the anorexigenic POMC and the orexigenic

AgRP/neuropeptide Y (NPY)-coexpressing neurons (Gropp et al., 2005; Luquet et al.,

2005). These functionally antagonistic neuronal populations reside in the arcuate nucleus of

the hypothalamus (ARH) and mediate their effects via second order neurons mainly located

in other key parts of the hypothalamus, such as the PVH, the dorsomedial nucleus of the

hypothalamus (DMH) and the lateral hypothalamic area (LH) (Konner et al., 2009).

In contrast to humans, development of these hypothalamic neurocircuits in rodents is not

completed at birth, but continues until the third week of postnatal life: Whereas neuronal cell

numbers are determined in-utero, formation of functional neuronal networks with the

ontogeny of axonal projections and synaptic connections, occurs postnatally during the

lactation phase (Bouret et al., 2004a; Grayson et al., 2006; Koutcherov et al., 2003).

Importantly, as a result of impaired maternal health, exposure to an altered developmental

environment during both of these stages, results in gross changes of these hypothalamic

neurocircuits, including differential neuropeptide gene expression, altered hypothalamic

neuronal cell numbers, as well as impaired formation of hypothalamic axonal projections

(Plagemann, 2012; Sullivan and Grove, 2010). However, differences in study design, in

particular in severity, duration and onset of abnormal environmental cues (Kim et al., 2011;

Plagemann, 2012) has made it challenging to clearly define i. the exact timing requirements

of metabolic insults to affect the metabolic fate of the offspring and ii. the specific molecular

mechanisms underlying these persistent cellular changes. Thus, we aimed to establish a

mouse model of metabolic programming that would allow us to identify the most sensitive

period of hypothalamic neurocircuit development in response to maternal HFD-feeding.

Importantly, we further employed this model to delineate the distinct role of neuron-specific

insulin signaling in mediating the lifelong predisposition for metabolic disorders in offspring

of obese and/or hyperglycemic mothers (Horvath and Bruning, 2006).
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Results

Critical timing of maternal high fat feeding on metabolic programming in the offspring

To determine the most vulnerable time frame of hypothalamic neurocircuit development in

response to maternal HFD-feeding, we fed female C57Bl/6 virgin mice either a control

normal chow diet (NCD) or a HFD for 8 weeks prior to gestation (Figure S1). HFD-feeding

for the period of 7 weeks resulted in moderately increased body weight (Figure 1A),

elevated fasting blood glucose concentrations (Figure 1B) and an approximately 7-fold-

increase in the homeostatic model assessment indices of insulin resistance (HOMA-IR)

(Figure 1C), indicating that pre-gestational HFD-feeding causes insulin resistance. During

gestation, the mice were maintained on the same diet that they received during the pre-

gestational period. At the day of birth (DOB), litter size was adapted to 6-7 pups per mother

to assure the same quantitative nutritional availability for each litter, since small litter size

increases the propensity for metabolic diseases in the offspring during adulthood (Habbout

et al., 2013). At DOB, half of the NCD-fed mothers were exposed to a HFD (i.e. NCD/NCD

and NCD/HFD), and half of the mothers fed a HFD pre-gestationally and during gestation

were exposed to a NCD during the period of lactation (i.e. HFD/NCD and HFD/HFD).

Interestingly, HFD-exposure during lactation, independent of the prenatal maternal diet,

resulted in a slight elevation of serum insulin concentrations in the mothers (Figure 1D), and

in increased serum insulin levels in the offspring at 3 weeks of age (Figure 1E). After

weaning, all offspring were fed a NCD until the age of 8 weeks, after which each group of

offspring was divided into groups either exposed to a NCD or a HFD for the following 12

weeks, resulting in a total of 8 different groups of offspring that differed in the prenatal

maternal diet, the postnatal maternal diet and in the diet of the offspring after 8 weeks of age

(Figure S1).

Maternal HFD-feeding exclusively during lactation predisposes the offspring for metabolic
disorders

We first subjected all groups of offspring to a metabolic characterization. When male

offspring were fed a NCD, only mice whose mothers were fed a HFD during lactation

(NCD/HFD) displayed significantly increased body weight throughout their adult life

compared to all other groups (Figure 2A). Consistently, NCD/HFD mice showed elevated

body fat content (Figure 2B), increased perigonadal fat pad weight (Figure 2C) and elevated

serum leptin levels (Figure 2D) compared to NCD/NCD mice. Moreover, NCD/HFD mice

showed enhanced insulin resistance (Figure 2E) and glucose intolerance (Figure 2F) when

compared to any other group of offspring. Notably, although most metabolic abnormalities

were only seen in male NCD/HFD mice when exposed to a NCD, female offspring from

NCD/HFD mothers displayed a similar obese phenotype, only when challenged with a HFD

after 8 weeks of age (Figure S2). Taken together, exposure of mothers to a HFD exclusively

during the lactation phase exerts the strongest effects on alterations in energy and glucose

homeostasis in both male and female offspring.

Effects of maternal HFD-feeding during lactation on hypothalamic neurocircuits

Next, we focused on comparing NCD/NCD and NCD/HFD male offspring to define the

molecular mechanism(s) underlying the obese and glucose-intolerant phenotype of
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NCD/HFD mice. First, we determined mRNA expression of hypothalamic neuropeptides

critically involved in the regulation of energy and glucose homeostasis. Although there was

no difference in the expression of ARH neuropeptide genes, i.e. Pomc, Agrp and Npy

(Figure 3A), mRNA expression of one of their anorexigenic downstream targets

thyrotropine-releasing hormone (Trh), which is predominantly but not exclusively expressed

in the PVH (Segerson et al., 1987), was significantly lower in NCD/HFD offspring (Figure

3B). These experiments indicated that in the absence of alterations of Pomc and Agrp-

expression in the ARH, expression of one of the melanocortin-effector pathways is

impaired. To determine whether hypothalamic inflammation contributed to the impairment

of the melanocortin circuitry, we analyzed mRNA expression of classical inflammatory

markers in the hypothalamus. However, we could not detect differences in the hypothalamic

expression of any of the genes analyzed between NCD/NCD and NCD/HFD offspring

(Figure S3). Next, we analyzed the effect of postnatal maternal HFD-feeding on the cell

number of ARH neurons by employing our postnatal feeding paradigm to female C57Bl/6

mice crossed to male transgenic mice expressing the enhanced green fluorescent protein

(eGFP) under the transcriptional control of the POMC promoter (POMCeGFP) (Cowley et

al., 2001); and further to females carrying a floxed Rosa26-tdTomato allele encoding red

fluorescent protein (The Jackson Laboratories) crossed to male mice expressing Cre

recombinase under the transcriptional control of the AgRP promoter (Tong et al., 2008) to

generate AgRPtdTomato mice. Consistent with unaltered Pomc- and Agrp/Npy expression,

there was no difference in the number of eGFP-positive POMC, or tdTomato-positive AgRP

neurons between NCD/NCD and NCD/HFD offspring (Figure 3C).

Of note, AgRP can be modulated by, but does not depend on posttranslational modifications

to decrease TRH expression in the PVH (Creemers et al., 2006; Fekete et al., 2001).

However, POMC has to undergo proprotein-convertase (PC)-1, -2 and carboxypeptidase

(CPE)-mediated processing to generate the active neuropeptide alpha-melanocyte-

stimulating-hormone (α-MSH), which exerts its anorexigenic functions, in part via

upregulation of TRH (Fekete et al., 2000). Thus, we investigated whether POMC processing

might be impaired in NCD/HFD offspring. Hypothalamic mRNA expression of Pcsk1, Pcsk

2 (respectively PC-1 and PC-2) and Cpe did not show any differences between groups of

offspring (Figure 3D). Moreover, MALDI-TOF mass spectrometry of dissected ARH

samples showed nearly identical peptide signals, including ions that are mass-identical with

products of the POMC precursor protein (i.e. α-MSH, di-acetylated α-MSH and joining

peptide) (Pritchard and White, 2007) between NCD/NCD and NCD/HFD offspring (Figure

3E).

Next, we analyzed whether maternal HFD-feeding during lactation had an effect on the

electrophysiological properties of POMC neurons in the offspring. Whole-cell and

perforated patch clamp recordings on POMCeGFP transgenic NCD/NCD and NCD/HFD

offspring indicated that maternal HFD-feeding during lactation did not result in any

differences in spontaneous firing frequency of POMC-neurons (Figure 3F), POMC-neuron

resting membrane potential (Figure 3G), or in the relative synaptic input onto POMC-

neurons (Figure 3H). Collectively, these data demonstrate that maternal HFD-feeding

exclusively during lactation permanently decreases anorexigenic TRH expression, which is a
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target of POMC- and AgRP-neurons of the ARH, without altering ARH neuropeptide gene

expression, ARH neuronal cell number, neuropeptide processing of POMC to di-acetylated

α-MSH and/or electrophysiological properties of POMC-neurons.

Maternal HFD-feeding exclusively during lactation impairs axonal projections of ARH
neurons to intrahypothalamic target sites

Considering that altering maternal diet selectively during lactation, the phase of

hypothalamic neurocircuit development in which axonal projections are formed in rodents,

had the strongest impact on the metabolic fate of the offspring, we next analyzed the

immunoreactivity of α-MSH- and AgRP-containing fibers in three of the main ARH

downstream hypothalamic projection areas: the PVH, DMH and LH. Of note, the PVH

consists of distinct functional subcompartments that regulate neuroendocrine, behavioral and

autonomic responses to control energy and glucose homeostasis (Biag et al., 2012).

Neuroendocrine neurons, such as TRH neurons, reside mainly in the anterior two thirds of

the PVH (referred to as PVHant), whereas preautonomic neurons are predominantly found in

the posterior part of the PVH (referred to as PVHpost) (Biag et al., 2012). Due to this distinct

compartmentalization and the associated diverse functions of the PVH, we differentiated

both, the PVHant and the PVHpost, in our analysis. Quantification of the fiber density in the

PVHant (Figure 4A), the PVHpost (Figure 4B), the DMH (Figure 4C) and the LH (Figure

4D) revealed robust reductions in both, the α-MSH and AgRP fiber densities in NCD/HFD

offspring compared to NCD/NCD offspring. Thus, maternal HFD-feeding results in a

consistent decrease of ARH neuronal fiber densities in hypothalamic areas critically

involved in the neuroendocrine and autonomic regulation of energy homeostasis, likely due

to impaired axon formation in the offspring.

Deciphering the role of neuronal insulin signaling in the predisposition for metabolic
disorders in NCD/HFD offspring

Although maternal HFD-feeding during lactation did not affect body weight, it significantly

increased the glucose and insulin content of the milk in NCD/HFD mothers (Figure S4),

which was associated with a distinct hyperinsulinemia in the NCD/HFD offspring at 3

weeks of age (Figure 1E). Thus, we aimed to define the potential contribution of neuronal

insulin signaling in impairing melanocortin projections in offspring of postnatally HFD-fed

mothers. To this end, we specifically inactivated the insulin receptor (IR) from POMC

neurons in NCD/NCD and NCD/HFD offspring by crossing female IR floxed/floxed (IRfl/fl)

mice with male IRfl/fl mice expressing Cre recombinase under the control of the POMC

promoter (Balthasar et al., 2004; Bruning et al., 1998; Konner et al., 2007) and further

subjected the mothers to our postnatal feeding paradigm. All groups of offspring were

challenged with a HFD after 8 weeks of age, resulting in 4 groups of offspring differing in

both, the maternal diet during lactation and in the presence (NCD/NCD ctrl and NCD/HFD

ctrl) and absence (NCD/NCD POMCΔIR and NCD/HFD POMCΔIR) of IR-expression on

POMC neurons. Similar to our previous results, maternal HFD-feeding exclusively during

lactation did not alter body weight between NCD/NCD ctrl and NCD/HFD ctrl offspring on

HFD, and also had no effect on the respective POMC-specific IR-deficient offspring (Figure

5A). Despite showing no increases in body weight, NCD/HFD offspring developed greater

adiposity independent of their genotype, as revealed by elevated body fat content (Figure
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5B), increased perigonadal fat pad weight (Figure 5C) and elevated serum leptin levels

(Figure 5D). Similarly, both measures of insulin sensitivity, i.e. the HOMA-IR (Figure 5E)

and insulin tolerance tests (ITT) (Figure 5F) showed tendencies towards an impaired insulin

sensitivity in both NCD/HFD ctrl and in NCD/HFD POMCΔIR offspring. Thus, POMC-

specific inactivation of IR-signaling did not affect adiposity, nor the impaired insulin

sensitivity in offspring from mothers fed a HFD exclusively during lactation.

However, when subjected to a glucose tolerance test (GTT), NCD/HFD ctrl mice displayed

a pronounced glucose intolerance, which was rescued to NCD/NCD levels in NCD/HFD

POMCΔIR offspring (Figure 5G). Together, these results point to a distinct role for elevated

neuronal insulin signaling in response to maternal postnatal HFD-feeding in predisposing

the offspring for an impaired glucose tolerance throughout lifetime.

POMC-specific IR-deficiency in NCD/HFD offspring prevents altered axonal projections of
POMC neurons to preautonomic PVH

To decipher persistent hypothalamic cellular changes responsible for the metabolic rescue of

glucose tolerance in NCD/HFD POMCΔIR mice, we analyzed fiber densities of ARH

neurons to the distinct subcompartments of the PVH at 8 and 20 weeks of age, as well as to

the DMH and LH at 20 weeks of age. Loss of the IR specifically on POMC neurons did not

change α-MSH or AgRP fiber densities to any hypothalamic target site in NCD/NCD

offspring at any age (Figure 6A and 6B, Figure S5A and S5B). Moreover, maternal HFD-

feeding exclusively during lactation resulted in a decrease of α-MSH fiber density in the

neuroendocrine PVHant in young and old NCD/HFD animals (Figure 6A), as well as in the

DMH (Figure S5A) and LH (Figure S5B), independent of their genotype. However,

although NCD/HFD POMCΔIR mice displayed a similar decrease in α-MSH fiber density in

the neuroendocrine PVHant region as their control litter mates (Figure 6A), specific

inactivation of the IR on POMC neurons protected against a decrease in the α-MSH fiber

density in the preautonomic PVHpost compartment resulting in a persistent restoration of α-

MSH fiber density in NCD/HFD POMCΔIR offspring close to NCD/NCD levels both at 8

and 20 weeks of age (Figure 6B).

In contrast, AgRP fiber densities were significantly reduced in NCD/HFD offspring

independent of their genotype in the PVHant, DMH, LH and most importantly, also the

PVHpost at the age of 20 weeks (Figure 6A, 6B, Figure S5A and S5B). Collectively,

hyperinsulinemia in response to maternal HFD-feeding during lactation impairs the axonal

outgrowth of POMC neurons specifically to the preautonomic compartment of the PVH.

Effects of maternal HFD-feeding during lactation and POMC-specific IR-deficiency on
pancreatic β-cells

Reciprocal neural connections between the hypothalamus and preganglionic motor neurons

of the autonomic nervous system play an important role in the regulation of energy and

glucose homeostasis (Marino et al., 2011). Therefore, we aimed to identify changes in the

autonomic tone in peripheral organs that could possibly be linked to the specific restoration

of α-MSH axonal projections to the preautonomic compartment of the PVHpost in

NCD/HFD POMCΔIR mice. Given the distinct rescue of glucose tolerance in POMC-
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specific IR-deficient NCD/HFD offspring in the absence of alterations in insulin sensitivity,

we analyzed the parasympathetic innervation of pancreatic β-cells by staining for vesicular

acetylcholine transporter (vAChT) (Rossi et al., 2005). Strikingly, the number of vAChT-

immunoreactive buttons per islet area was significantly reduced in NCD/HFD ctrl offspring,

but rescued to NCD/NCD levels in NCD/HFD POMCΔIR mice (Figure 7A). In line with the

decreased parasympathetic innervation of pancreatic β-cells in NCD/HFD ctrl mice,

glucose-stimulated insulin-secretion was significantly decreased compared to NCD/HFD

POMCΔIR offspring (Figure 7B). Consistently, C-peptide levels were decreased 5 minutes

after intravenous glucose injection in NCD/HFD ctrl offspring (Figure 7C). In contrast, this

defect in insulin secretion in NCD/HFD ctrl mice was not seen upon L-arginine stimulation

(Figure 7D) and was not associated with glucose-stimulated alterations in levels of free fatty

acids (FFA) or glucagon-like peptide 1 (GLP-1) (Figure S6). Moreover, neither maternal

HFD-feeding during lactation, nor POMC-specific IR-deficiency had any effect on the

average pancreatic β-cell-mass or the average islet size of the pancreas (Figure 7E). Taken

together, our results indicate that POMC-specific IR-deficiency improves glucose-stimulated

insulin secretion presumably in part via modulation of the parasympathetic tone in offspring

from postnatally HFD-fed mothers.

Discussion

Heavy mothers have heavy babies – is one oversimplified conclusion from studies

demonstrating that maternal obesity, diabetes and hyperglycemia during pregnancy and

lactation have long-term effects on the offspring's future health prognoses (Plagemann,

2012; Sullivan and Grove, 2010). To shed more light on the molecular processes underlying

this phenomenon also referred to as “metabolic programming”, we sought to identify the

period(s) of hypothalamic neurocircuit development most strongly perturbed by maternal

HFD-feeding to impair energy and glucose homeostasis in the offspring. Our study not only

shows that the lactation period in rodents is most sensitive to the altered developmental

environment in response to maternal HFD-feeding, predisposing the offspring for metabolic

diseases as described before (Sun et al., 2012); but importantly demonstrates that the short

exposure to HFD during this distinct developmental phase is sufficient to predispose the

offspring for metabolic disorders at least in part via impairing ARH neuronal innervation of

intrahypothalamic target areas. This finding is supported by other models of postnatal

overnutrition, such as litter size adaptation and cross-fostering experiments demonstrating

that an altered milieu during early postnatal environment in rodents is not only sufficient to

predispose for metabolic disorders, but can partly override prenatal factors and genetic

predisposition to develop obesity (Chen et al., 2008; Glavas et al., 2010; Gorski et al., 2006).

Importantly, the sustained impairment of melanocortin projections throughout lifetime in the

offspring from mothers exposed to HFD-feeding during lactation clearly highlights the

apparent lack of plasticity of the CNS during adulthood to compensate for this

developmental defect.

A distinct role for perinatal hyperinsulinemia in mediating metabolic programming in

offspring of malnourished or diabetic mothers has been proposed as early as the 1970s

(Pedersen, 1971). Since then, several human epidemiological and animal studies have

further substantiated this hypothesis, however, without providing direct mechanistic
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evidence on how abnormal insulin signaling contributes to the predisposition for metabolic

diseases later in life (Harder et al., 1999; Plagemann et al., 1999; Plagemann et al., 1992;

Steculorum and Bouret, 2011; Steculorum et al., 2013). Thus, to decipher the relative

contribution of neuron-specific insulin signaling in mediating metabolic programming, we

genetically ablated the insulin receptor (IR) from POMC-neurons in offspring from

postnatally HFD-fed mothers (POMCΔIR). In contrast to mice lacking the IR specifically on

AgRP-neurons, which display impaired regulation of hepatic glucose production, POMCΔIR

mice do not have a baseline phenotype (Konner et al., 2007). Thus, employing our feeding

paradigm to POMCΔIR offspring largely facilitated the interpretation of results and

conclusions that could be drawn - as a proof of principle - for the role of hypothalamic

insulin signaling during development under pathological conditions. Although insulin had

been reported to have axonotrophic effects in vitro (Schechter et al., 1999; Toran-Allerand et

al., 1988), we did not observe significant differences in POMC axonal formation between

ctrl and POMCΔIR offspring from NCD-fed mothers suggesting that IR-signaling is not

essential for POMC axonal organization under normal developmental conditions. Similarly,

we have recently demonstrated that in adult mice, only under obese conditions, activation of

insulin signaling in the ventromedial nucleus of the hypothalamus contributes to the diet-

induced inhibition of POMC neurons (Klockener et al., 2011). Moreover, offspring from

obese mothers in rodents and humans display altered insulin sensitivity, including in the

CNS (Catalano et al., 2009; Chen et al., 2008; Gupta et al., 2009; Morris and Chen, 2009).

Accordingly, it is conceivable that in our model, neonatal hyperinsulinemia in the offspring

could result in an abnormal activation of insulin signaling in POMC neurons, thereby

contributing to the disruption of melanocortin projections.

The site-specificity in the rescue of POMC axonal formation to the preautonomic

compartment, but not to the neuroendocrine compartment of the PVH in POMC-specific IR-

deficient offspring from postnatally HFD-fed mothers, might result from the cellular

heterogeneity of this neuronal population. Only a subset of POMC neurons is insulin-

responsive and this subpopulation of neurons is distinct from leptin-responsive POMC

neurons in the ARH (Williams et al., 2010). Thus, loss of IR-signaling under

hyperinsulinemic conditions might only lead to a beneficial effect on a subpopulation of

POMC neurons, which might predominantly target the posterior part of the PVH. However,

future studies will clearly have to address the mechanistic basis for the selective effect of IR-

signaling on projection formation to the PVH. Of note, Bouyer and Simerly have recently

demonstrated a similar role for leptin in mediating site-specific axonal innervation of AgRP

neurons to the preautonomic compartment of the PVH (Bouyer and Simerly, 2013).

However, whether abnormal levels of insulin have identical effects on the axonal projections

of AgRP neurons as we described for POMC neurons still requires further investigation.

Although we could show that POMC-specific inactivation of the IR rescues POMC axonal

innervation of the preautonomic PVH, as well as glucose tolerance and improves glucose-

stimulated insulin secretion in offspring from postnatally HFD-fed mothers, loss of insulin

signaling in POMC neurons did neither ameliorate POMC axonal innervation of the

neuroendocrine compartment of the PVH, the DMH or LH, nor reduce the susceptibility to

develop increased adiposity and insulin resistance. Thus, other mechanisms than abnormal
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insulin signaling in POMC neurons must play an important role in mediating metabolic

programming in offspring from postnatally HFD-fed mothers. Indeed, maternal HFD-

feeding during lactation does not only lead to increased levels of glucose and insulin, but

also to elevated levels of leptin and free fatty acids in the milk (Figure S4), presumably

contributing to the strong metabolic impairments in offspring exposed to maternal HFD-

feeding during lactation. Accordingly, the crucial role of well-balanced leptin levels during

hypothalamic neurocircuit development has been established in a series of outstanding

studies (Bouret et al., 2004b; Bouyer and Simerly, 2013; Vickers et al., 2005). Apart from

leptin, abnormal levels of other hormones such as ghrelin, corticosterone, serotonin or

elevated levels of free fatty acids in response to postnatal maternal HFD-feeding might

affect hypothalamic neurocircuit development and/or alter cellular plasticity in peripheral

organs thereby contributing to the predisposition of metabolic diseases (Bonnin and Levitt,

2011; Grove and Cowley, 2005; Sasaki et al., 2013). Nevertheless, among all the

developmental factors that may act synergistically and antagonistically to shape neuronal

circuitries, the present study highlights a critical role of insulin in impairing long-term

organization of melanocortin projections within the hypothalamus under pathological

conditions during development.

Obesity has previously been associated with disturbed functions of the autonomic nervous

system (Baum et al., 2013; Greenfield and Campbell, 2008). Consistently, our study

suggests that maternal HFD-feeding only during lactation results in reduced pancreatic

vagus nerve activity in the offspring. Similarly, offspring from undernourished mothers,

which share several metabolic impairments with offspring from obese mothers, were

reported to have a decreased pancreatic parasympathetic activity (Gravena et al., 2007).

Moreover, perinatal HFD-exposure was shown to reduce hepatic sympathetic innervation in

non-human primates (Grant et al., 2012). Thus, altering maternal metabolism during

development may further (directly or indirectly) affect downstream autonomic pathways,

thereby potentially deteriorating proper regulation of energy and glucose homeostasis in the

offspring. Accordingly, POMC- and AgRP-neurons do not only project to intra-

hypothalamic areas, but also sparsely innervate distinct regions throughout the CNS,

including autonomic control sites in the brainstem and spinal cord (Broberger and Hokfelt,

2001; King and Hentges, 2011), where they act on melanocortin 4 receptors to regulate

energy and glucose homeostasis (Rossi et al., 2011; Sohn et al., 2013). Thus, maternal HFD-

feeding during lactation and the associated developmental hyperinsulinemia could also

affect melanocortin projections to these autonomic control sites directly, thereby

contributing to the obese and glucose intolerant phenotype seen in NCD/HFD offspring, a

possibility, which clearly deserves further investigation.

Importantly, the establishment of ARH neuronal projections as it occurs during lactation in

rodents, occurs predominantly during the third trimester of human pregnancy in utero

(Grayson et al., 2006; Grove et al., 2005; Koutcherov et al., 2003). Thus, although based on

these developmental differences a direct transfer of our results to the human situation

warrants caution, our experiments clearly indicate that acute changes in maternal glucose

metabolism during this critical time window, i.e. third trimester, may exert detrimental

effects on the offspring's health throughout life. Since maternal glucose can freely permeate
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the placenta, blood glucose excursions can stimulate insulin secretion in the offspring. In

fact, children of mothers with altered glucose metabolism during the last trimester of

pregnancy exhibit significant hyperinsulinemia at birth (Metzger et al., 2008). In light of our

results, this hyperinsulinemia specifically during the period in which melanocortin-

projections are formed, may therefore contribute to the long-term impairment of

hypothalamic regulation of energy and glucose homeostasis. Given that gestational diabetes

frequently manifests during exactly this critical period (third trimester), our results point

towards the necessity of highly-sensitive glucose tolerance screenings and well-controlled

anti-diabetic therapy for mothers particularly during this distinct phase of pregnancy

independent of their body mass index (Mumtaz, 2000).

Experimental procedures

Animal care

All animal procedures were conducted in compliance with protocols approved by local

government authorities (Bezirksregierung Köln) and the Institutional Animal care and Use

Committee from Yale University and were in accordance with National Institutes of Health

guidelines. Unless otherwise stated, animals were allowed ad libitum access to either normal

chow diet (#T.2018.R12, Harlan Teklad Global Rodent) containing 53.5 % carbohydrates,

18.5 % protein and 5.5 % fat (12 % fat calories from fat) or high-fat diet (#C1057, Altromin)

containing 32.7 % carbohydrates, 20% protein and 35.5 % fat (55.2 % calories from fat) and

drinking water. For detailed information regarding maternal diet manipulations, analytical

time-points of the offspring, determination of body composition and HOMA-IR, serum

analyses and glucose and insulin tolerance tests, see supplementary section.

Glucose- and L-arginine-stimulated insulin secretion

15-week-old, 16-hours-fasted animals were intravenously (i.v.) or intraperitoneally (i.p.)

injected with 1 mg g−1 body weight of glucose (20 % glucose, Delta Select) or 3 mg g−1

body weight L-arginine (Sigma-Aldrich), respectively. Blood samples were collected 0, 2, 5,

15 and 30 minutes after injection. For analysis of glucose-stimulated C-peptide, GLP-1 and

FFA levels, blood samples were collected before and 5 minutes after i.v. glucose injection.

Samples used for determination of GLP-1 concentration were treated with dipeptidyl

peptidase 4 inhibitor (Merck Millipore). For information regarding serum analyses, see

supplementary section.

ARH neuronal cell count

For determination of ARH neuronal cell number, POMC and AgRP neurons were counted in

NCD/NCD and NCD/HFD POMCeGFP and AgRPtdTomato offspring, respectively. For

detailed information, see supplementary section.

Tissue collection and MALDI-TOF mass spectrometry

The ARH of 20-week-old animals were carefully microdissected under visual guidance

using a binocular microscope, then further processed to be subjected to MALDI-TOF mass

spectrometry. Mass spectra were manually acquired in positive ion and reflectron mode on

an ultrafleXtreme MALDI TOF/TOF mass spectrometer (Bruker Daltonics). ClinPro Tools

Vogt et al. Page 10

Cell. Author manuscript; available in PMC 2014 July 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



software 3.0 (Bruker) was used for comparison of signal intensities of Pomc-products; the

results are presented as gel view in logarithmic gray scale display mode. For detailed

information, see supplementary section.

Electrophysiology

POMC neurons were recorded from NCD/NCD and NCD/HFD POMCeGFP transgenic mice

(Cowley et al., 2001) at room temperature under current- and voltage-clamp in the

perforated patch and whole-cell patch-clamp configuration using an EPC10 patch-clamp

amplifier (HEKA). For detailed information, see supplementary section

AgRP and α-MSH immunostaining and analyses

For the analysis of α-MSH and AgRP fiber densities, 8 and 20 week-old male mice were

anesthetized and transcardially perfused with phosphate buffered saline (PBS), pH 7.5,

followed by 4 % paraformaldehyde (PFA) in borate buffer, pH 9.5 and post-fixed for 4 h in

20 % sucrose 4 % PFA in borate buffer and transferred to 20 % sucrose in PBS overnight.

25 μm-thick sections throughout the hypothalamus were processed for immunofluorescence

as previously described (Bouret et al., 2004b; Bouret et al., 2008; Steculorum and Bouret,

2011). Briefly, sections were incubated in goat anti-AgRP (1:4000; Phoenix

Pharmaceuticals) or sheep anti-α-MSH (1:40000, Millipore). Secondary Alexa Fluor 488

goat antirabbit IgG or Alexa Fluor 568 donkey anti-sheep IgG (1:200, Life Technologies™)

were used to detect primary antibodies. For detailed information regarding picture

acquisition and quantification, see supplementary section.

Statistical analyses

Data sets with only two independent groups were analyzed for statistical significance using

unpaired two-tailed Student's t-test. Data sets with more than two groups were analyzed

using one-way analysis of variance (ANOVA) followed by Tukey's posthoc test. For

statistical analyses of body weight gain, the area-under-the-curve (AUC) from week 2 to

week 20 was calculated for each mouse and used for further statistical analyses. For

statistical analyses of GTTs and ITTs, we performed two-way ANOVAs followed by

Bonferroni's posthoc test. Statistically significant outliers were calculated using Grubb's test

for outliers. All p-values below 0.05 were considered significant. All displayed values are

presented as mean ± SEM; *p < 0.05. **p < 0.01. ***p < 0.001 versus all other groups

within the same diet after week 8, if not indicated otherwise.

Experimental Procedures

Analysis of body composition

Nuclear magnetic resonance was employed to determine whole-body composition of 20

week-old live animals using the NMR Analyzer minispeq mq7.5 (Bruker Optik, Germany).

Serum analyses

Blood glucose levels were determined from whole venous tail blood using an automatic

glucose monitor (GlucoMen Glycó, A.Menarini Diagnostics). Serum insulin, leptin, C-
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peptide and GLP-1 levels were measured by enzyme-linked immunosorbent assays

according to the manufacturer's instructions (Mouse/Rat Insulin ELISA, Mouse Leptin

ELISA, Crystal Chem Inc.; Mouse C-peptide (Mouse) ELISA Kit, ALPCO; GLP-1 ELISA

kit, MyBioSource). Serum non-esterified free fatty acids (NEFA) were quantified according

to the manufacturer's instructions (WAKO Chemicals GmbH).

Determination of HOMA-IR

The HOMA-IR was calculated as follows: fasting serum insulin concentration (μU/ml)

multiplied by fasting blood glucose levels (mg/dl) divided by 405 (Matthews et al., 1985).

Insulin- and Glucose-Tolerance Tests

Insulin-tolerance tests were performed with 14-wk-old animals fed ad libitum. After

measuring basal blood glucose levels, each animal was intraperitoneally (i.p.) injected with

0.75 U kg−1 body weight of insulin (Actrapid; Novo Nordisk A/S). Blood glucose levels

were recorded 15, 30 and 60 minutes after injection. Glucose-tolerance tests were carried out

on 15-wk-old mice after a 16 h overnight fast. After determination of fasted blood glucose

levels, animals were injected i.p. with a bolus of 2 mg mg−1 body weight of glucose (20%

glucose, Delta Select) and blood glucose levels were monitored 15, 30, 60 and 120 minutes

after injection.

Determination of milk composition

At P19, lactating mothers were separated from their pups for 16 h overnight. Milk was

manually collected from deeply anesthetized females for a total of 5 minutes and stored at

−20°C until further use. Milk insulin and leptin levels were determined by ELISA assays

according to the manufacturer's instructions for serum analysis (Mouse/Rat Insulin ELISA,

Mouse Leptin ELISA, Crystal Chem Inc, USA). Non-esterified free fatty acids (NEFA) in

the milk were quantified according to the manufacturer's instructions for serum analysis

(WAKO Chemicals GmbH, Germany). Milk glucose levels were determined using the B-

Glucose Analyzer (Hemocue, Germany).

Animal care, maternal diet manipulation and analytical time-points of their offspring

All animals were housed in 3-4 animals per cage at 22-24°C on a 12h light/dark cycle with

lights on at 6 am. 3 week-old female C57Bl/6 mice were either fed a NCD or a HFD up to

the age of 11 weeks. At the age of 10 weeks, blood glucose levels were determined and

whole venous tail blood was collected, after a 16 h overnight fast, to determine fasted serum

insulin. Breedings with male C57Bl/6 mice were set up at 11 weeks of age. NCD-fed

females were only used for breedings if their HOMA-IR was below or equal to the mean of

all NCD-fed females and HFD-fed females were only used for breedings if their HOMA-IR

was above this threshold. During gestation, mice were maintained on the same diet they had

received before. During lactation, half of the mothers received the other respective diet. At

the day of weaning, whole venous tail blood was collected both from the mothers, as well as

from their offspring at random fed state. Blood samples were collected from the offspring in

the same manner at 8 weeks of age, and, after a 16 h fast, at 15 wks of age before being

subjected to a GTT. Body weight of the offspring was measured in the second and third
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week of postnatal life, as well as after week 8 on a weekly basis. Offspring for phenotypical

analyses were sacrificed in a random-fed state at 20 weeks of age. Every experimental group

consists of offspring from at least three different litters. IRfl/fl mothers and their offspring

were treated the same way except that they were only fed a NCD prior to and during

gestation.

Generation of POMCeGFP, AgRPtdTomato and POMCΔIR mice

Mice expressing the POMCeGFP transgene were generated by crossing C57Bl/6 female to

transgenic POMCeGFP male mice (Cowley, 2001). To generate AgRPtdTomato offspring,

female reporter mice homozygously carrying the B6;129S6-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (The Jackson Laboratories) allele were crossed to

AgRPCrepos/neg male mice (Tong et al., 2008). To generate POMCΔIR mice, IRfl/fl female

mice were mated with POMCCrepos/neg, IRfl/fl male mice (Konner et al., 2007). All animals

were backcrossed to C57Bl/6J mice for at least 10 generations.

POMCeGFP and AgRPtdTomato neuronal cell count

8-week-old POMCeGFP and AgRPtdTomato mice were transcardially perfused with phosphate

buffered saline (PBS), pH 7.5, followed by 4 % paraformaldehyde in PBS, pH 7.5. Brains

were dissected, postfixed for 4 h at 4°C in PBS containing 4% PFA and 20% Sucrose, pH

7.5 and cryoprotected overnight in PBS containing 20% Sucrose, pH 7.5. To determine

neuronal cell number, 25 μm-thick free-floating coronal sections through the ARH were cut

using a cryostat (Leica) and used for the respective staining. eGFP-positive neurons were

detected using rabbit anti-GFP antiserum (1:10000, Molecular Probes/Invitrogen).

Incubation with secondary Biotin-labeled donkey antirabbit IgG (1:500, Jackson

ImmunoResearch) was followed by incubation with the VECTASTAIN Elite ABC kit

(Vector Laboratories) and 0.4 % DAB/0.01 % H2O2 for 1 h. Pictures were acquired using a

Leica DM1000 LED microscope (Leica) equipped with a 10x objective. Pictures of red

fluorescent protein in AgRP neurons of AgRPtdTomato offspring were acquired using a

confocal Leica TCS SP-8-X microscope (Leica) equipped with a 20x objective. For each

animal, neurons were manually counted to obtain the total POMCeGFP and/or AgRPtdTomato

neuronal number.

Analysis of gene expression

Hypothalami were dissected using Brain Matrices (Braintree Scientific, Inc.). Isolated

mRNA from this tissue was analyzed using quantitative real-time PCR. RNA was isolated

using the Qiagen RNeasy Kit (Qiagen), which was combined with the RNase-Free DNase

Set (Qiagen). RNA was reversely transcribed with High Capacity cDNA RT Kit and

amplified using TaqMan® Universal PCR-Master Mix, NO AmpErase UNG with

TaqMan® Assay-on-demand kits (Applied Biosystems). Relative expression of target

mRNAs was adjusted for total RNA content by hypoxanthine guanine phosphoribosyl

transferase 1 (Hprt1) RNA quantitative PCR. Calculations were performed by a

comparative method (2−ΔΔCT). Quantitative PCR was performed on an ABI-PRISM 7900

HT Sequence Detection system (Applied Biosystems).
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Tissue collection and MALDI-TOF mass spectrometry

The ARH were carefully microdissected under visual guidance using a binocular

microscope, then rinsed in distilled water for a few seconds and transferred with a glass

capillary into 20 μl methanol/water (1/1) in 1 % formic acid. Dissected tissues were

homogenized, sonicated and subsequently centrifuged for 15 min at 13.000 U/min. All steps

were performed at 4°C; 0.3μl of the supernatant was pipetted on a stainless steel sample

plate for MALDI-TOF mass spectrometry. Remaining supernatants were each filled with 40

μl 0.5 % acetic acid and then evaporated to about 10 μl to reduce the methanol

concentration. Samples were refilled, again with 40 μl 0.5 % acetic acid, and loaded onto

activated and equilibrated home-made Stage Tips (Rappsilber et al., 2007) filled with C18

discs from Empore™ filter material (Bioanalytical Technologies). After rinsing with 20 μl

0.5 % acetic acid, peptides were eluted using 4 μl of 10/20/25/30/40/50 % acetonitrile in 0.5

% acetic acid, respectively. Each eluate was divided in six portions and applied onto the

sample plate for MALDI-TOF mass spectrometry. Dried samples were covered with a

mixture of 0.5 μl α-cyano-4-hydroxycinnamic acid (CHCA, Sigma-Aldrich, Germany)

dissolved in 50% methanol/water. After drying at room temperature, each spot was finally

rinsed with water for a few seconds. Mass spectra were manually acquired in positive ion

and reflectron mode on an ultrafleXtreme MALDI TOF/TOF mass spectrometer (Bruker

Daltonics). Instrument calibration was performed using a peptide standard kit (Bruker) and,

before sample analysis, laser power was adjusted to provide optimal signal-to-noise ratio.

For mass fingerprints, brain samples were analyzed with a laser frequency of 1 kHz (3000

laser shots; m/z 600-4000). Ion signals mass-identical with products of the POMC-precursor

were selected and fragmented by tandem mass spectrometry (LIFT technology, with

acceleration set at 1 kV) using the same samples. Mass spectra obtained in these

experiments were processed with the flexAnalysis 3.4 software (Bruker); deduced sequences

were counterchecked using the ProteinProspector (http://prospector.ucsf.edu). ClinPro Tools

software 3.0 (Bruker) was used for comparison of signal intensities of Pomc-products; the

results are presented as gel view in logarithmic gray scale display mode.

Electrophysiology

POMC neurons were recorded from NCD/NCD and NCD/HFD POMCeGFP transgenic mice

(Cowley et al., 2001) at room temperature under current- and voltage-clamp in the

perforated patch and whole-cell patch-clamp configuration using an EPC10 patch-clamp

amplifier (HEKA). The animals were anesthetized with halothane (B4388; Sigma-Aldrich)

and decapitated. Coronal slices (250 – 300 μm) containing the arcuate nucleus (ARH) were

cut with a vibration microtome (HM-650 V; Thermo Scientific) under cold (4°C),

carbogenated (95% O2 and 5% CO2), glycerol-based modified artificial cerebrospinal fluid

(GaCSF; (Ye et al., 2006)), which contained (in mM): 250 Glycerol, 2.5 KCl, 2 MgCl2, 2

CaCl2, 1.2 NaH2PO4, 10 HEPES, 21 NaHCO3, and 5 Glucose adjusted to pH 7.2 with

NaOH. If not mentioned otherwise, the brain slices were continuously superfused with

carbogenated artificial cerebrospinal fluid (aCSF) at a flow rate of ~2 ml·min-1, which

contained (in mM): 125 NaCl, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.2 NaH2PO4, 21 NaHCO3, 10

HEPES, and 5 Glucose adjusted to pH 7.2 with NaOH.
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Current-clamp recordings in the perforated patch configuration were performed using

protocols modified from Horn and Marty (Horn and Marty, 1988), Rae et al. (Rae et al.,

1991) and Akaike and Harata (Akaike and Harata, 1994). The recordings were performed

with ATP and GTP free pipette solution containing (in mM): 128 K-gluconate, 10 KCl, 10

HEPES, 0.1 EGTA, 2 MgCl2 and adjusted to pH 7.3 with KOH. The patch pipette was tip

filled with internal solution and back filled with tetraethylrhodamine-dextran (D3308;

Invitrogen, Eugene) and amphotericin B- (~200 μg·ml−1; A4888; Sigma) or nystatin-

containing (~200 μg·ml−1; N6261; Sigma) internal solution to achieve perforated patch

recordings. For the mean firing rate of POMC neurons, the measured frequency was

averaged as soon as it was stable for ~5 mins after perforation reached stable series

resistances. Cell input resistance and whole-cell conductance were calculated from voltage

responses to hyperpolarizing current pulses.

Whole-cell recordings were performed following the methods of Hamill et al. (Hamill et al.,

1981). For measurements of postsynaptic currents (PSCs), the patch pipette solution

contained (in mM): 140 KCl, 10 HEPES, 0.1 EGTA, 5 MgCl2, 5 K-ATP, 0.3 Na-GTP;

adjusted to pH 7.3 with KOH). Cells were voltage clamped at −60 mV and the high

intracellular chloride concentration shifted the chloride equilibrium potential to a more

depolarized potential, which reversed the polarity of GABAA receptor mediated currents

from outward to inward, and made their detection easier by increasing the driving force on

the chloride ions. The contribution of excitatory (EPSCs) and inhibitory PSCs (IPSCs) to the

synaptic input was determined in three steps. First, we measured the overall frequency of

PSCs. Second, we blocked the glutamatergic EPSCs with 5 × 10−5 D-AP5 and 10−5 M

CNQX to isolate the IPSCs, which were identified as GABAergic (inhibitory) PSCs by their

sensitivity to 10−4 M PTX. The EPSC frequency was determined by subtracting the IPSC

frequency from the overall frequency. The overall PSC frequency was determined after the

recording had stabilized (>10 minutes after break in) for a 2 minutes interval. The IPSC

frequency was measured after 10 – 15 minutes D-AP5/CNQX application for a 2 minutes

interval. Ratios of IPSCs are relative to overall PSCs.

AgRP and α-MSH immunostaining and analyses

8- and 20-week-old male mice were anesthetized and transcardially perfused with phosphate

buffered saline (PBS), pH 7.5, followed by 4 % paraformaldehyde (PFA) in borate buffer,

pH 9.5 and post-fixed for 4 h in 20 % sucrose 4 % PFA in borate buffer and transferred to 20

% sucrose in PBS overnight. Brains were frozen, sectioned at 25 μm and processed for

immunofluorescence as described previously (Bouret et al., 2004; Bouret et al., 2008;

Steculorum and Bouret, 2011). Briefly, sections were incubated in goat anti-AgRP (1:4000;

Phoenix Pharmaceuticals) or sheep anti-α-MSH (1:40000, Millipore). Secondary Alexa

Fluor 488 goat antirabbit IgG or Alexa Fluor 568 donkey anti-sheep IgG (1:200, Life

Technologies™) were used to detect primary antibodies. Sections were mounted in DAPI-

containing Vectashield (Vector Laboraties Inc.). Pictures were acquired using a confocal

Leica TCS SP-8-X microscope equipped with a 20x objective. Image analysis was

performed in a blind manner using ImageJ software (ImageJ1.45s; National Institutes of

Health), as described previously (Bouret et al., 2004; Steculorum and Bouret, 2011). Briefly,

the integrated density was calculated for each image, a figure that reflects the total number
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of pixels in a given region of the image and that is proportional to the total density of labeled

fibers in this region. If there were more than one section per animal in the correct region, the

average integrated intensity was used to calculate the ratio to the average integrated density

of ctrl animals (i.e. NCD/NCD ctrl), which was used for further statistical analyses.

Insulin and vAChT double-immunostaining and analyses

Frozen pancreata from 20-week-old animals were sectioned at 10 μm at three different

levels, collected on microscope slides and frozen at −20°C until further use. Microscope

slides were warmed up to room temperature (RT) for 20 mins and fixed with 4 % PFA in

PBS, pH 7.5 for 10 mins. The slides were then rinsed in PBS and subjected to antigen

retrieval. Pancreatic sections were blocked in PBS containing 3% donkey serum and 0.3 %

Triton X (Sigma) for 1 h at RT and subsequently incubated in goat anti-vACht (1:100,

Millipore) and guinea-pig anti-Insulin (1:500, Dako) in PBS containing 3 % donkey serum

and 0.3 % Triton X overnight at RT. Primary antibodies were detected with Alexa Fluor488

donkey anti-goat IgG (1:500, Life Technologies™) and Cy3 donkey anti-guinea-pig (1:500,

Jackson ImmunoResearch Laboratories, Inc.) for 1 h at RT. 10-15 islets per animal were

acquired using a confocal Leica TCS SP-8-X microscope equipped with a 40x objective.

Image analysis was performed using ImageJ software (ImageJ1.45s; National Institutes of

Health). Briefly, each vAChT-immunoreactive button that could clearly be distinguished

from background signal was counted and set in relation to the insulin-immunoreactive islet

size. The average relative number of vAChT-immunoreactive buttons of all islets from one

animal was used to calculate its ratio to the average number of the relative vAChT-

immunoreactive buttons of control animals (i.e. NCD/NCD ctrl), which was used for further

statistical analyses.

Analysis of pancreatic β-cell mass

Pancreatic sections were fixed with acetone for 10 mins at 4°C. Subsequently, sections were

first blocked in PBS containing 1 % BSA and 0.3 % H2O2 and after washing 3x with PBS,

blocked in Rotiblock (1:10 with PBS, Roth®) containing 0.1 % Triton X. Incubation with

guinea pig anti-insulin (1:50, DAKO) for 60 mins was followed by 3x washing with PBS

and a 60 mins incubation with secondary horse-radish peroxidase (HRP)-coupled anti-

guinea-pig (HRP; 1:500, Jackson ImmunoResearch Laboratories, Inc.) in PBS containing

0.25 % Triton X. HRP was detected using liquid diaminobenzidine + chromogene Substrate

(1:50, Dako) for 20 mins. Sections were counter-stained with Mayer's Haematoxylin for 3

mins. Pictures were acquired using the LeicaSCN400 slidescanner for brightfield images

equipped with a 20x objective (Leica, Germany).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Maternal HFD-feeding during lactation impairs metabolic health of the

offspring

• Maternal HFD during lactation impairs formation of melanocortin projections

• Abnormal insulin action in POMC-neurons impairs POMC projections to

preautonomic PVH

• Abrogating POMC insulin action improves glucose metabolism despite maternal

HFD
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Figure 1. Maternal HFD-feeding induces pregestational metabolic abnormalities and
hyperinsulinemia during lactation in the offspring
Maternal (A) pregestational body weight, (B) fasted blood glucose levels and (C)

homeostatic model assessment indices of insulin resistance (HOMA-IR) (n=48vs50). (D)

Maternal preweaning serum insulin levels in the fed state (n=4 for all groups). (E) Serum

insulin levels in the offspring at 3 weeks of age (n=9 for all groups). NCD=normal chow

diet, HFD=high fat diet. Data are presented as mean ± SEM, **p < 0.01, ***p < 0.001

versus all other groups within the same diet after week 8, if not indicated otherwise. See also

Figure S1 for an overview of all experimental groups.
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Figure 2. Maternal HFD-feeding exclusively during lactation predisposes the offspring for
metabolic disorders
The following metabolic parameters were analyzed in all eight groups of male offspring. (A)

Body weight on (i) normal chow diet (NCD; n=14vs10vs14vs13) or (ii) high fat diet (HFD;

n=10vs8vs13vs12), (B) body fat content and (C) perigonadal fat pad weight at 20 weeks

(nNCD=14vs10vs13vs12 and nHFD=10vs8vs12vs11), (D) fasted serum leptin levels and (E)

homeostatic model assessment indices of insulin resistance (HOMA-IR) at 15 weeks

(nNCD=13vs8vs11vs9 and nHFD=9vs8vs11vs11) and (F) glucose tolerance tests (GTT) at 15

weeks of age on i) NCD (n=13vs10vs14vs13) and ii) HFD (n=10vs8vs9vs12). Data are

presented as mean ± SEM, *p < 0.05. **p < 0.01. ***p < 0.001 versus all other groups

within the same diet after 8 weeks of age, unless otherwise indicated. See also Figure S2 for

data on female offspring.
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Figure 3. Effects of maternal HFD-feeding during lactation on hypothalamic neurocircuits
All following analyses were performed in NCD/NCD and NCD/HFD male offspring.

Quantitative real-time PCR analysis of hypothalamic (A) pro-opiomelanocortin (Pomc),

agouti-related peptide (Agrp) and neuropeptide Y (Npy) and (B) thyrotropin-releasing

hormone (Trh) mRNA expression at 3 (n=9vs11) and 20 weeks (n=8vs9) of age on NCD.

(C) Analysis of POMC (left) and AgRP (right) neurons in the arcuate nucleus of the

hypothalamus (ARH) in POMCeGFP and AgRPtdTomato mice, respectively, at 8 weeks of age

(nPOMC=3vs3 and nAgRP=4vs5; scale bar = 100 μm). (D) Quantitative real-time PCR

analysis of hypothalamic proprotein convertase subtilisin/kexin type 1 (Pcsk1), proprotein

convertase subtilisin/kexin type 2 (Pcsk2) and carboxypeptidase E (Cpe) mRNA expression

at 3 (n=9vs11) and 20 weeks (n=8vs9) of age on NCD. (E) MALDITOF mass spectra

obtained by profiling extracts of the ARH at 20 weeks of age (n=4vs4). Prominent ion

signals are labeled. i) Comparison of mass fingerprints showing nearly identical ion signals,

including ions that are mass-identical with products of the POMC precursor (α-MSH, Di-

Ac-MSH, joining peptide (JP)). Fragmentation experiments confirmed the sequences of all

labeled peptides; the ion-signal at 1622.81 (asterisk) is composed of two substances

(including α-MSH). The arrow marks processed and biologically more potent di-acetylated

α-MSH. b) Isotopic pattern and signal intensity of di-acetylated α-MSH before (lower

traces) and after Stage Tip concentration. ii) MALDI-TOF/TOF fragment spectrum of di-

acetylated α-MSH purified and concentrated with Stage Tips. Y- and b-type fragment ions

are labelled, which confirmed the amino acid sequence of di-acetylated α-MSH. iii) Gel

view of mass spectra (n=4 each) from preparation of ARH and pituitary gland (Pit)

demonstrating identical processing of Pomc-products in all samples. (F) Spontaneous spike
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frequency and (G) membrane potential of POMCeGFP neurons obtained by perforated patch

clamp recordings (n=13 neurons obtained from n=3 animals for each group). (H) Whole-cell

recordings showing the relative synaptic input on POMCeGFP neurons (n=13vs14 neurons

obtained from n=5vs8 mice). Data are presented as mean ± SEM, *p < 0.05 versus all other

groups at the same age. See also Figure S3 for hypothalamic mRNA expression of

inflammatory markers at 3 and 20 weeks of age.
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Figure 4. Maternal HFD-feeding exclusively during lactation impairs axonal projections of ARH
neurons to intrahypothalamic target sites
Images and quantification of α-melanocyte-stimulating hormone (α-MSH) and agouti-

related peptide (AgRP) immunoreactive fibers innervating (A) the anterior endocrine

paraventricular nucleus of the hypothalamus (PVHant; nα-MSH =6vs7 and nAgRP=7vs7), (B)

the posterior preautonomic PVHpost (nα-MSH =5vs5 and nAgRP=4vs4), (C) the dorsomedial

nucleus of the hypothalamus (DMH; nα-MSH =7vs7 and nAgRP=4vs5) and (D) the lateral

hypothalamic area (LH; nα-MSH =6vs6 and nAgRP=6vs4) at 8 weeks of age. Schematics

illustrating the localization in the CNS of the respective hypothalamic nuclei presented in

the pictures were based on and modified from Brain Maps: Structure of the Rat Brain

(Swanson, 1998). Coordinates were adapted according to the Mouse Brain in Stereotaxic

Coordinates (Franklin and Paxinos, 1997). White boxes indicate area of quantification. 3V =

third ventricle, fx = fornix. Scale bar = 100 μm. Data are presented as mean ± SEM, *p <

0.05. **p < 0.01 versus all other groups of offspring.
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Figure 5. POMC-specific IR-deficiency does not protect from adiposity or insulin resistance, but
improves glucose tolerance in NCD/HFD offspring
(A) Body weight (n=10vs13vs14vs14), (B) body fat content (n=9vs12vs14vs14) and (C)

perigonadal fat pad weight (n=10vs12vs14vs14) at 20 weeks of age. (D) Fasted serum leptin

levels (n=9vs9vs9vs14) and (E) homeostatic model assessment indices of insulin resistance

(HOMA-IR; n=6vs10vs10vs14)) at 15 weeks, (F) insulin tolerance tests (ITT) at 14 weeks

(n=16vs19vs20vs19) and glucose tolerance tests (GTT) at 15 weeks of age

(n=10vs13vs13vs14). Data are presented as mean ± SEM, *p < 0.05. **p < 0.01. ***p <

0.001 versus all other groups of offspring, unless otherwise indicated. See also Figure S4 for

data on milk composition.
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Figure 6. POMC-specific IR-deficiency in NCD/HFD offspring rescues POMC axonal
projections to preautonomic regions in the PVH
Images and quantification of α-melanocyte-stimulating hormone (α-MSH) and agouti-

related-peptide (AgRP) immunoreactive fibers innervating (A) the anterior neuroendocrine

paraventricular nucleus of the hypothalamus (PVHant) at 8 (nα-MSH and nAgRP

=8vs8vs8vs10) and 20 weeks of age (n = 5 for all groups); and (B) the posterior

preautonomic PVH (PVHpost) at 8 (nα-MSH =7vs6vs5vs6 and nAgRP=5vs6vs5vs6) and 20

weeks of age (n= 5 for all groups). White boxes indicate area of quantification. 3V= third

ventricle. Scale bar = 100 μm. Data are presented as mean ± SEM, *p < 0.05 versus all other

groups of offspring, unless otherwise indicated. See also S5 for images and quantification of

α-MSH and AgRP immunoreactive fibers innervating the dorsomedial nucleus of the

hypothalamus (DMH) and the lateral hypothalamic area (LH) at 20 weeks of age.
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Figure 7. Effects of maternal HFD-feeding during lactation and POMC-specific IR-deficiency on
pancreatic β-cells
(A) Images and quantification of the parasympathetic marker vesicular acetylcholine

transporter (vAChT, green) on pancreatic β-cells (insulin, red) at 20 weeks of age

(n=6vs5vs8vs6). Scale bar = 50 μm. (B) Glucose-stimulated insulin secretion (n=13vs13),

(C) C-peptide levels 0 and 5 minutes after glucose injection (n=8vs8) (See also S6 for

corresponding glucagon-like peptide 1 and free fatty acid concentrations), and (D) L-

arginine-stimulated insulin secretion at 15 weeks of age (n=7vs7). (E) Images and

quantification of total β-cell mass and average β-cell islet size at 20 weeks of age

(n=6vs5vs4vs5). Scale bar = 300 μm. Data are presented as mean ± SEM, *p < 0.05 versus

all other groups of offspring, unless otherwise indicated.
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