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Small gaps between products of two primes

D. A. GOLDSTON, S. W. GRAHAM, J. PINTZ AND C. Y. YILDIRIM

1. Introduction

As an approximation to the twin prime conjecture it was proved in [11] that

(1.1) lim inf
n→∞

pn+1 − pn

log pn
= 0.

The strongest approximation for the twin prime conjecture in another direction was
proved in the celebrated work of Chen [4] 1 (see also [15, Chapter 11]), where he
showed that there are infinitely many primes p such that p + 2 ∈ P2, where

(1.2) P2 := {n : Ω(n) ≤ 2}.
If P denotes the set of primes, then Chen’s theorem asserts that at least one of the
relations

(1.3) p + 2 = p′ ∈ P
or

(1.4) p + 2 = p1p2, p1, p2 ∈ P
holds for infinitely many primes p.

The phenomenon that we cannot specify which one of the two equations (1.3) and
(1.4) has infinitely many solutions (in reality most probably both, naturally) is the
most significant particular case of the parity problem, a heuristic principle stating
that sieve methods cannot differentiate between integers with an even and an odd
number of prime factors. This principle is based on some extremal examples of
Selberg (see [14, Ch. 4], [28, p. 204]). Accordingly, until very recently, problems
involving numbers that are products of two distinct prime factors (which we called
E2-numbers in [13]) seemed to be as difficult as problems involving primes, since
sieve methods seemed to be not suitable to attack these problems due to the parity
problem. For example, the analogue of (1.1),

(1.5) lim inf
n→∞

qn+1 − qn

log qn/ log log qn
= 0

(where q1 < q2 < . . . denotes the sequence of E2-numbers) was, similar to (1.1),
not known.

Date: September 20, 2006.
1Chen’s result was announced in 1966 [3]. However, due to the Cultural Revolution, the

complete proof was not published until 1973.
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The present authors observed that the method – a variant of Selberg’s sieve – which
led to the proof of (1.1) in [11], can be used even more successfully for E2-numbers.
In our preceding work [13] we gave an alternative proof of (1.1); further we showed
that E2-numbers are infinitely often a bounded distance apart, more precisely,

(1.6) lim inf
n→∞

(qn+1 − qn) ≤ 26.

The relation (1.6) was actually a simple consequence of a more general result,
according to which every admissible (see the definition below) 8-tuple contains at
least two E2-numbers infinitely often. The following far reaching generalization
of the twin prime conjecture was formulated qualitatively 100 years ago by L. E.
Dickson [6], and two decades later in a quantitative form by Hardy and Littlewood
[16]. In order to formulate the conjecture we define a set

(1.7) H = {hi}k
i=1 hi ∈ Z+ ∪ {0}

to be admissible if for every prime number p the set H does not cover all residue
classes mod p.

Prime-tuple conjecture. Given any admissible set H, there are infinitely many
integers n such that all numbers of the form n + hi (1 ≤ i ≤ k) are primes. The
number of such n’s below N is asymptotically equal to

(1.8)
N

logk N
S(H) =

N

logk N

∏

p

(
1 − νp(H)

p

)(
1 − 1

p

)−k

,

where νp(H) denotes the number of residue classes mod p covered by H.

The above conjecture includes (as the case k = 2) the generalized twin prime
conjecture, which states that every even number can be written as the difference
of two primes in infinitely many ways. This was formulated by de Polignac [26] in
1849 in a qualitative way, and in the same work of Hardy and Littlewood [16] in a
quantitative form.

If we substitute primes by almost primes of the form Pr (integers having at most
r ≥ 2 prime factors) then the qualitative form of the analogous conjecture is true
for k = 2, as shown by Chen’s theorem (1.2), even for r = 2. This trivially implies
that we have infinitely often at least two P2-numbers in any admissible k-tuple for
any k ≥ 2.

We will examine the problem whether for any ν we can guarantee that there are
infinitely often at least ν P2-numbers (or at least ν Pr-numbers with a given fixed
r, independent of ν) in any admissible k-tuple if k is sufficiently large, that is,
k ≥ C0(ν).

Such a result seems to be unknown for any fixed value of r. The strongest result in
this direction is due to Heath-Brown [17] who showed that if {hi}k

i=1 is an admissible
k-tuple then there are infinitely many n such that

(1.9) max
1≤i≤k

ω(n + hi) < C log k.
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This improved an earlier result of Halberstam and Richert [15, Ch. 10], where the
analogue of (1.9) was proved with the max replaced by the average of ω(n + hi).

In the case of the primes it was shown in [11] that if the level ϑ of distribution of
primes (see the definition (1.17) below) is any fixed number in (1/2, 1], then

(1.10) lim inf
n→∞

(pn+1 − pn) < ∞.

On the other hand, we needed the Elliott–Halberstam conjecture (EH) (see [7]) in
its full strength to obtain

(1.11) lim inf
n→∞

pn+2 − pn

log pn
= 0.

For pn+3 − pn the best result we were able to prove on EH in [12] was

(1.12) lim inf
n→∞

pn+3 − pn

log pn
≤ e−γ

(√
3 −

√
2
)2

.

The incredible depth of the assumption EH in (1.11)–(1.12) suggests that it might
be very difficult to prove

(1.13) lim inf
n→∞

(qn+ν − qn) < ∞,

already for ν = 2 or 3. We will show, however, that our method can be applied
very efficiently to this problem.

In the present work we will show the existence of at least ν E2-numbers in any
admissible k-tuple if k ≥ C1(ν). We will also show that C1(2) = 3 is permitted,
that is, every admissible triplet contains at least two E2-numbers infinitely often.

The mentioned work of Heath-Brown [17] is based on a method of Selberg [28].
Selberg considered only the case k = 2 and showed that there are infinitely many
pairs n, n + 2 such that one of them is a P2-number, the other a P3-number.

Our method, a modified form of the above mentioned methods of Selberg and
Heath-Brown, also shows that C0(2) = 2. So we have

(1.14) n, n + 2 ∈ P2,

infinitely often, improving Selberg’s result but falling short of (1.2).

We will, in fact, prove the above results in the following more general form, similar
to Heath-Brown [17]. Let

(1.15) Li(x) = aix + bi (1 ≤ i ≤ k) ai, bi ∈ Z, ai > 0

be an admissible k-tuple of distinct linear forms. In other words, we suppose that
for every prime p there exists xp ∈ Z such that

(1.16) p ∤

k∏

i=1

(aixp + bi).
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In order to formulate the results we will introduce the level ϑ of distribution of
primes in arithmetic progressions. We say that the primes have level of distribution
ϑ if for any positive A there exists a constant C = C(A) such that

(1.17)
∑

q≤Nϑ(log N)−C

max
a

(a,q)=1




∑

p≡a (mod q))

1 − li(N)

ϕ(q)



≪A
N

(log N)A
.

The Bombieri–Vinogradov Theorem states that ϑ = 1/2 is admissible. Elliott and
Halberstam [7] conjectured that (1.17) is true for any ϑ < 1. Friedlander and
Granville[10] proved that (1.17) is not true with ϑ = 1, but it is possible that it
still holds for any fixed ϑ < 1.

In the following we suppose that an analogue of (1.17) is true for E2-numbers with
the same value of ϑ. This is true with ϑ = 1/2 unconditionally, as shown by Moto-
hashi [23]. Motohashi gives a more general result; he proves that if two functions
satisfy analogues of the Bombieri-Vinogradov Theorem, then under certain rea-
sonable conditions, the convolution of the two functions also satisfies an analogue
of Bombieri-Vinogradov. This may also be proved using a slight variation of the
argument of Bombieri [1, Theorem 22].

In the formulation of the theorems below, we assume that ϑ (1/2 ≤ ϑ < 1) is a
common level of distribution for primes and E2-numbers. We then define

(1.18) B =
2

ϑ
.

Unconditionally, we may take B = 4. The Elliott–Halberstam conjecture for primes
and E2-numbers is equivalent to taking B = 2 + ǫ.

Theorem 1. Let D be any constant and let Li(x) (1 ≤ i ≤ k) be an admissible
k-tuple of distinct linear forms. Then there are ν +1 forms among them which take
simultaneously E2-numbers as values with both prime factors above D if 2

(1.19) k ≥ C1(ν) :=
4e−γ(1 + o(1))

B
eBν/4.

Theorem 2. Let {L1(n), L2(n), L3(n)} be an admissible triplet of linear forms.
Among these, exist two forms Li, Lj such that for infinitely many n, Li(n), Lj(n)

are both E2-numbers, all the prime factors of which exceed n1/144.

Theorem 3. Let {L1(n), L2(n)} be an admissible pair of linear forms. Then there
exist infinitely many n such that both L1(n) and L2(n) are P2-numbers, and the
prime factors of L1(n)L2(n) all exceed n1/10. In particular, there are infinitely
many integers n such that

(1.20) n, n − d ∈ P2

for any even integer d.

2For clarity, we remark that here and in subsequent results (Theorems 4, 5, 6, Corollaries 1,
3, 4, 5) the notation o(1) denotes a function g(ν) such that g(ν) → 0 as ν → ∞.
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Theorem 1 shows that, in contrast to the case of primes, we can really prove the
existence of infinitely many blocks of ν consecutive E2-numbers with a bounded
diameter (depending on ν) for any given ν.

Corollary 1. We have for any ν > 0,

(1.21) lim inf
n→∞

(qn+ν − qn) ≤ C2(ν) = e−γνeBν/4(1 + o(1)).

Taking the admissible triplet {n, n + 2, n + 6}, we see that Theorem 2 implies an
improvement of (1.6), namely

Corollary 2. lim inf
n→∞

(qn+1 − qn) ≤ 6.

The question arises: why is our present method much more successful for E2-
numbers than for primes, as indicated by (1.11)–(1.12) and (1.21)?

Usually sieve methods are at any rate unable to detect Er-numbers for any given
r due to the parity problem, and even in the case of Pr-numbers (r fixed) they
produce only numbers with all prime factors larger than

(1.22) X1/w, w > 0 fixed,

where cardA ∼ X , where A is a starting set containing almost primes, as empha-
sized by J. H. Kan [20, 21]. In these cases the number of almost primes considered
below N is Ow(N/ logN) (the same as the number of primes), whereas the true
order of magnitude of the number of Pr-numbers (or Er-numbers) is

(1.23) c(r)
N(log2 N)r−1

(log N)
.

Differently from almost all other applications of sieve methods (for exceptions see
the mentioned works [20], [21] of Kan), our method is able to make use of E2-
numbers that satisfy

(1.24) n = p1p2, p1 < nε, p2 > n1−ε,

for any given small ε > 0. In the proof of Theorem 8, we allow E2-numbers with
prime factors of any size.

This phenomenon (the larger density of E2-numbers over primes) is crucial in our
method. A careful consideration of the proof of Theorem 1 reveals that without
taking into account the contribution of E2-numbers with (1.24) for all ε > 0, our
method would fail to prove Theorem 1. If we exclude numbers of type (1.24) for
ε < c0, then we would be unable to show Theorem 1, and so Corollary 1 for any
ν > ν0(c0) ≍ c−1

0 .

As we have seen in (1.10)–(1.11), the level ϑ of distribution of primes has dramatic
consequences for the strength of the result we can show about the existence of
primes in tuples. On the other hand, the value of ϑ, that is, of B, is much less
important in the distribution of E2-numbers; only the quantitative value C1(ν)
depends on the value of B, i.e. of ϑ. The dependence of C1(ν) in (1.19) on ϑ is not
too strong: we have in the exponent of C1(ν)

(1.25) Bν/4 = ν/(2ϑ) ∈ [ν/2, ν] for ϑ ∈ [1/2, 1].
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This observation has theoretical importance, for we do not need the full strength
of the Bombieri–Vinogradov theorem. Moreover, it can be used to generalize the
results of Theorem 1 for a situation when ϑ = ε ⇔ B = 2/ε, for example. We
remark that, contrary to this, the proof of (1.1) would break down if we had just a
fixed ϑ < 1/2 at our disposal, even if this value were very close to 1/2.

The case of ϑ being small occurs when we would like to find blocks of bounded
length of E2-numbers in short intervals of type

(1.26)
[
N, N + N7/12+ε

]
, ε > 0 fixed.

In this case it was proved by Perelli, Pintz and Salerno [24] in 1985 that one has a
short interval version of Bombieri–Vinogradov theorem for intervals of type (1.26)
where (surprisingly) we can choose ϑ as a fixed positive constant, ϑ = 1/40 for any
ε > 0. This was improved two years later by Timofeev [30] to

(1.27) ϑ = 1/30 ⇐⇒ B = 60.

The result proved in [24] reads as

(1.28)
∑

q≤Q

max
(a,q)=1

max
h≤y

max
x/2<z≤x

∣∣∣∣
∑

p≡a(mod q)
z<p≤z+h

log p − h

ϕ(q)

∣∣∣∣≪
y

(log x)A
,

where y = x7/12+ε, Q = xϑ(log x)−D, A arbitrary, D = D(A).

The method of proof of both works [24] and [30] uses Heath-Brown’s identity,
therefore the analogue of (1.28) can be proved mutatis mutandis for E2-numbers
as well. Accordingly, we will prove

Theorem 4. Under the conditions of Theorem 1 we can find ν + 1 linear forms
Lij (n) which take E2-numbers with both prime factors above D and for any ε > 0
we can require

(1.29) n ∈
[
N, N + N7/12+ε

]

if

(1.30) k ≥ C3(ν) :=
e−γ(1 + o(1))

15
e15ν , N > N0(k, ε, D).

Corollary 3. Let ν ∈ Z+, ε > 0. If N > N1(ν, ε), then there exist n, m ∈ Z+ such
that

(1.31) n ∈
[
N, N + N7/12+ε

]

(1.32) n < qm < qm+1 < · · · < qm+ν < n + e−γνe15ν(1 + o(1)).

We can further restrict our E2-numbers p1p2 to be of the form

(1.33) p1p2 = x2 + y2 (x, y ∈ Z) ⇐⇒ p1, p2 ≡ 1 (mod 4).

It is relatively easy to show the existence of infinitely many families of triplets of
consecutive integers that are sums of two squares–see [5] or [19] for a more general
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result. A modification of our proof of Theorem 1 shows that Theorem 1 remains
essentially valid for E2-numbers which are sums of two squares.

Theorem 5. Under the conditions of Theorem 1, we have infinitely many n such
that at least ν + 1 linear forms Lij (n) take simultaneously E2-values (with both
prime factors above D) which are sums of two squares, if

(1.34) k ≥ C4(ν) :=
4e−γ(1 + o(1))

B
eBν .

Corollary 4. Under the conditions of Theorem 5 we have at least ν E2-numbers
which are sums of two squares infinitely often in intervals of length K if

(1.35) K ≥ C5(ν) := 4e−γνeBν(1 + o(1)).

Finally we can combine the results of Theorems 4 and 5 to have ν E2-numbers which
are sums of two squares if the value n is localized in a short interval of type (1.29).

Theorem 6. In Theorem 4 we may require that the ν E2-values of the linear forms
should be sums of two squares if we have in place of (1.30) the restriction

(1.36) k ≥ C6(ν) :=
e−γ(1 + o(1))

15
e60ν .

Corollary 5. Let {q′n}∞1 denote the set of E2 numbers which can be written as
sums of two squares. Then Corollary 3 is true if (1.32) is replaced by

(1.37) n < q′m < q′m+1 < q′m+ν < n + 4e−γνe60ν(1 + o(1)).

It will be clear from the proofs that all of the above theorems and corollaries remain
true if we require that all of the constructed E2-numbers have both of their prime
factors exceeding some specific constant. Indeed, this holds more generally if both
prime factors exceed some Y (N) with log Y (N)/ log N → 0 as N → ∞.

Our methods open the way towards a new, simpler and unified treatment of some
conjectures of Erdős [8] on consecutive integers, the most well-known of them being
the Erdős–Mirsky [9] conjecture, which states that

(1.38) d(n) = d(n + 1) infinitely often (i.o.);

the two others being the analogous conjectures with d(n) replaced by the functions
f(n) = ω(n) or Ω(n) (number of prime divisors of n counted without and with
multiplicity, respectively). Similar to (1.3)–(1.4), the parity problem seemed to
prevent a solution of these conjectures. However, as observed by Spiro [29] and
Heath-Brown [18], the parity problem can be “sidestepped,” and it is possible to
prove the conjectures without specifying the common value of f(n) = f(n + 1) (or
even its parity) for the relevant functions f = d or Ω. Recently, the same was
shown for f = ω by Schlage-Puchta [27].

In the next part of this series we will show these conjectures in the stronger form,
where we can specify the common value f(n) = f(n+1), even in a nearly arbitrary
way in case of ω or Ω, thereby overcoming the parity problem in these cases. We
will prove

(i) d(n) = d(n + 1) = A holds i.o. for any A with 24 | A,
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(ii) ω(n) = ω(n + 1) = A holds i.o. for any A ≥ 3,

(iii) Ω(n) = Ω(n + 1) = A holds i.o. for any A ≥ 4.

Further we can show the analogous statements in case of an arbitrary shift b in
place of 1, if f = ω or Ω (where the lower bound for A may depend on b in case of
ω, and should be replaced uniformly by 5 in case of Ω) and for every shift b 6≡ 15
(mod 30) for the divisor function.

This generalization was proved for every b by Pinner [25] in 1997 (without specifying
the common value of f) for f = d and Ω; however, the method used by Schlage-
Puchta for ω does not work for general b. On the other hand, Buttkewitz [2] has
recently proved that an analogous result holds for an infinite set B of possible shifts
b.

2. Notation and Preliminary Lemmas

Most of our notation will be introduced as needed, but it is useful to make the
following comments here. Throughout this paper, we use k to denote an integer
k ≥ 2, L to denote an admissible k-tuple of linear forms, and P to denote a
polynomial. The constants implied by “O′′ and “ ≪′′ may depend on k,L, and P .
τk(n) denotes the number of ways of writing n as product of k factors. ω(n) is the
number of distinct prime factors of n. φ(n) and µ(n) are the usual functions of
Euler and Möbius, respectively. The letters N and R denote real numbers regarded
as tending to infinity, and we always assume that R ≤ N1/2.

To count E2-numbers, we introduce the following function β. Let Y be a real
number with 1 ≤ Y ≤ N1/4, and define

(2.1) β(n) =

{
1 if n = p1p2, Y < p1 ≤ N1/2 < p2,

0 otherwise.

The notation π(x) is commonly used to denote the number of primes up to x, and
π(x; q, a) denotes the number of primes up to x that are congruent to a (mod q).
For our purposes, it is convenient to define the following related quantities.

π♭(x) =
∑

x<p≤2x

1 = π(2x) − π(x)

π♭(x; q, a) =
∑

x<p≤2x
p≡a (mod q)

1 = π(2x; q, a) − π(x; q, a)

πβ(x) =
∑

x<n≤2x

β(n)

πβ,u(x) =
∑

x<n≤2x
(n,u)=1

β(n)
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πβ(x; q, a) =
∑

x<n≤2x
n≡a (mod q)

β(n)

As mentioned in the introduction, we will employ results on the level of distribution
for both prime numbers and E2-numbers. For primes, define

∆(x; q, a) = π♭(x; q, a) − 1

φ(q)
π♭(x)

and

∆∗(x; q) = max
y≤x

max
a;(a,q)=1

|∆(y; q, a)|

Lemma 1. Assume that the primes have level of distribution ϑ, ϑ ≤ 1. For every
A > 0 and for every fixed integer h ≥ 0, there exists C = C(A, h) such that if
Q ≤ xϑ(log x)−C , then

∑

q≤Q

µ2(q)hω(q)∆∗(x; q) ≪A x(log x)−A.

By the Bombieri-Vinogradov Theorem, this lemma is unconditional for ϑ ≤ 1/2.
The incorporation of the factor hω(q) is familiar feature in sieve applications; see
[15, Lemma 3.5], for example.

For the function β, we define

∆β(x; q, a) =
∑

x<n≤2x
n≡a (mod q)

β(n) − 1

φ(q)

∑

x<n≤2x
(n,q)=1

β(n) = πβ(x; q, a) − 1

φ(q)
πβ,q(x),

∆∗
β(x; q) =max

y≤x
max

a;(a,q)=1
|∆β(y; q, a)|.

Lemma 2. Assume that E2-numbers have a level of distribution ϑ, ϑ ≤ 1. For
every A > 0 and for every fixed integer h ≥ 0, there exists C = C(A, h) such that
if Q ≤ xϑ(log x)−C , then

(2.2)
∑

q≤Q

µ2(q)hω(q)∆∗
β(x; q) ≪A x(log x)−A.

This follows from a general result of Motohashi [23] when ϑ ≤ 1/2. When 1/2 <
ϑ ≤ 1, Lemmas 1 and 2 are both hypothetical.

Our next lemma is central to the estimation of the sums that arise in Selberg’s
sieve.

Lemma 3. Suppose that γ is a multiplicative function, and suppose that there are
positive real numbers κ, A1, A2, L such that

(2.3) 0 ≤ γ(p)

p
≤ 1 − 1

A1
,
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and

(2.4) −L ≤
∑

w≤p<z

γ(p) log p

p
− κ log

z

w
≤ A2

if 2 ≤ w ≤ z. Let g be the multiplicative function defined by

(2.5) g(d) =
∏

p|d

γ(p)

p − γ(p)
.

Then ∑

d<z

µ2(d)g(d) = cγ
(log z)κ

Γ(κ + 1)

{
1 + O

(
L

log z

)}
,

where

cγ =
∏

p

(
1 − γ(p)

p

)−1(
1 − 1

p

)κ

.

This is a combination of Lemmas 5.3 and 5.4 of Halberstam and Richert’s book
[15]. In [15], the hypothesis (2.3) is denoted (Ω1), and hypothesis (2.4) is denoted
(Ω2(κ, L)). The constant implied by “O” may depend on A1, A2, κ, but it is inde-
pendent of L.

Our next lemma is a variant of the previous one with the terms g(d) weighted by
an appropriate function.

Lemma 4. Assume the hypotheses of Lemma 3. Assume also that F : [0, 1] → R
is a piecewise differentiable function. Then

∑

d<z

µ2(d)g(d)F

(
log z/d

log z

)
= cγ

(log z)κ

Γ(κ)

∫ 1

0

F (1 − x)xκ−1dx(2.6)

+ O
(
cγLM(F )(log z)κ−1

)
,

where M(F ) = sup{(|F (x)| + |F ′(x)|) : 0 ≤ x ≤ 1}. The constant implied by “O”
may depend on A1, A2, and κ, but it is independent of L and F .

Proof. The left-hand side of the proposed conclusion is
∫ z

1−

F

(
log z/u

log z

)
dG(u),

where

G(u) =
∑

d<u

µ2(d)g(d) = cγ
(log u)κ

Γ(κ + 1)
+ E(u),

and E(u) ≪ cγL(log 2u)κ−1 by the previous lemma. Consequently, the sum in (2.6)
may be written as

∫ z

1

F

(
log z/u

log z

)
dcγ

(log u)κ

Γ(κ + 1)
+

∫ z

1−

F

(
log z/u

log z

)
dE(u).

In the first integral, we make the change of variables u = zx; this gives the first
term. We use integration by parts on the second integral to obtain
∫ z

1−

F

(
log z/u

log z

)
dE(u) = F

(
log z/u

log z

)
E(u)

]z

1−

+

∫ z

1

E(u)F ′

(
log z/u

log z

)
du

u log z
.



SMALL GAPS BETWEEN PRODUCTS OF TWO PRIMES 11

The desired result now follows by using the above-mentioned bound for E(u). �

3. Initial Considerations

Let L = {L1, L2, . . . , Lk} be an admissible k-tuple of linear forms; i.e., a set of
linear forms satisfying the conditions of (1.15) and (1.16). Admissibility can also
be defined in terms of solutions of congruences. Define

PL(n) =
k∏

i=1

Li(n) = (a1n + b1) . . . (akn + bk),

and for each prime p define

Ωp(L) = {n : 1 ≤ n ≤ p and PL(n) ≡ 0 (mod p)},
νp(L) = #Ωp(L).

The condition that L is admissible is equivalent to requiring that

(3.1) νp(L) < p

for all primes p. We always have νp(L) ≤ k, so the above condition is automatic
for any prime p > k.

The singular series connected to L is defined as

S(L) =
∏

p

(
1 − νp(L)

p

)(
1 − 1

p

)−k

.

The product converges because νp = k for all but finitely many primes p, and L is
admissible if and only if S(L) 6= 0.

Next, we examine those primes p satisfying νp < k. First of all, if p|ai for some i,
then the congruence ain + bi ≡ 0 (mod p) will have no solutions, and so νp < k in
this case. Now suppose that p ∤ ai for all i. In this instance, νp < k if and only if
there are indices i, j (i 6= j) such that

aibi ≡ ajbj (mod p),

where ai denotes the multiplicative inverse of ai (mod p). We therefore see that
νp < k if and only if p|A, where

(3.2) A = A(L) =

k∏

i=1

ai

∏

1≤i<j≤k

|aibj − ajbi|.

For technical reasons, it is useful to adopt the normalization introduced by Heath-
Brown[17]. For each prime p|A, there is an integer np such that p ∤ PL(np). By the
Chinese Remainder Theorem, there is an integer B such that B ≡ np (mod p) for
all p|A. For i = 1, . . . , k, we define

L′
i(n) = Li(An + B) = a′

in + b′i,

where a′
i = aiA and b′i = Li(B) = aiB + bi. Set

L′ = {L′
1, . . . , L

′
k}.
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We claim that

(3.3) νp(L′) =

{
k if p ∤ A, and

0 if p | A.

To justify this claim, we assume first that p|A. Then

L′
i(n) ≡ Li(B) ≡ Li(np) 6≡ 0 (mod p)

for all integers n, and so νp(L′) = 0. Next assume that p ∤ A. As noted before,
νp(L′) < k if and only if p|(a′

ib
′
j − a′

jb
′
i) for some choice of i, j with 1 ≤ i < j ≤ k.

However,

a′
ib

′
j − a′

jb
′
i = det

∣∣∣∣
aiA ajA

aiB + bi ajB + bj

∣∣∣∣ = Adet

∣∣∣∣
ai aj

bi bj

∣∣∣∣ ,

and this is not divisible by p.

For brevity, it is useful to relabel L′
i as Li and to assume the following hypothesis.

Hypothesis A. L = {L1, . . . , Lk} is an admissible k-tuple of linear forms. The
functions Li(n) = ain + bi(1 ≤ i ≤ k) have integer coefficients with ai > 0. Each
of the coefficients ai is composed of the same primes, none of which divides any of
the bi. If i 6= j, then any prime factor of aibj − ajbi divides each of the ai.

For sets of linear forms L satisfying Hypothesis A, we re-define

A =
∏

i

ai.

In this case,

S(L) =
∏

p|A

(
1 − 1

p

)−k∏

p∤A

(
1 − k

p

)(
1 − 1

p

)−k

.

Note that by (3.1) and (3.3),

(3.4) p ≤ k =⇒ p|A,

so S(L) is indeed positive.

The primary tool for proving Theorems 1 through 3 is an adaptation of the basic
construction of Goldston, Pintz, and Yıldırım. Let L = {L1, L2, . . . , Lk} be a set
of linear forms satisfying Hypothesis A, and let β be as defined in (2.1). For the
proof of Theorem 1, we seek an asymptotic formula for the sum

(3.5) S =
∑

N<n≤2N





k∑

j=1

β(Lj(n)) − ν








∑

d|PL(n)

λd




2

,

where the λd’s are real numbers to be chosen in due course. The significance of S
is that a value of n contributes a positive amount only if at least ν + 1 elements of
the set {L1(n), . . . , Lk(n)} are E2-numbers.

We immediately decompose S as

(3.6) S =

k∑

j=1

S1,j − νS0,
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where

S1,j =
∑

N<n≤2N

β(Lj(n))




∑

d|PL(n)

λd




2

,

and

S0 =
∑

N<n≤2N




∑

d|PL(n)

λd




2

,

The motivation for the use of the coefficient λd comes from the realm of the Selberg
sieve. More specifically, consider the problem of bounding the number of n for which
all of L1(n), . . . , Lk(n) are prime. Start from the observation that if λ1 = 1 and
λd = 0 for d > N , then

∑

N<n≤2N
all Li(n) prime

1 ≤
∑

N<n≤2N




∑

d|PL(n)

λd




2

=
∑

d,e

λdλe

∑

N<n≤2N
[d,e]|PL(n)

1.(3.7)

As we noted in the introduction, we take νp(L) to be the number of solutions
of PL(n) ≡ 0 (mod p). We extend this definition to arbitrary squarefree d by
multiplicativity. Consequently,

∑

N<n≤2N
d|PL(n)

1 = N
νd(L)

d
+ O

(
kω(d)

)

for squarefree d. Returning to (3.7), we find that the expression there is

N
∑

d,e

λdλeν[d,e](L)

[d, e]
+ O




∑

d,e

|λdλe|kω([d,e])



 .

We control the size of the error term by specifying that λd = 0 if d ≥ R, where R
will be chosen later. Moreover, the terms with ([d, e], A) > 1 make no contribution
since ν[d,e](L) = 0 for these terms. Accordingly, we restrict the sum to terms with
(d, A) = (e, A) = 1. It is also convenient to specify that

λd = 0 if d is not squarefree.

The coefficient of N in the main term may be rewritten as

(3.8)
∑′

d,e

λdλe

f([d, e])
,

where
∑′ denotes that the sum is over all values of the indices that are relatively

prime to A, and

(3.9) f(d) =
d

νd(L)
=

d

τk(d)
=
∏

p|d

p

k
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for squarefree d with (d, A) = 1.

The typical approach in the Selberg sieve is to choose the λd to minimize the form
in (3.8). To make this problem feasible, one needs to diagonalize this bilinear form.
This can be done by making a change of variables

(3.10) yr = µ(r)f1(r)
∑′

d

λdr

f(dr)
,

where f1 is the multiplicative function defined by f1 = f ∗ µ. In other words,

(3.11) f1(d) =
∏

p|d

p − k

k

whenever d is squarefree and (d, A) = 1. (Note that the sum in (3.10) is finite
because λd = 0 for d > R. Note also that there is an implicit condition (d, r) = 1
because λdr = 0 if dr is not squarefree.) The sum in (3.8) is then transformed into

∑′

r

y2
r

f1(r)
,

and the bilinear form is minimized by taking

(3.12) yr = µ2(r)
λ1

V

when r < R and (r, A) = 1, where

V =
∑′

r<R

µ2(r)

f1(r)
.

The minimum of the form in (3.8) is then seen to be

λ2
1

V
.

One usually assumes that λ1 = 1, but this is not an essential element of the Selberg
sieve, and it is sometimes useful to assign some other nonzero value to λ1.

Using Möbius inversion, one can easily show that

(3.13) λd = µ(d)f(d)
∑′

r

yrd

f1(rd)
.

Consequently, specifying a choice for λd is equivalent to specifying a choice for yr.
Our choice of λd is different from the choice implied by (3.12), and it is most easily
described in terms of yr. We will take

(3.14) yr =





µ2(r)S(L)P

(
log R/r

log R

)
if r < R and (r, A) = 1,

0 otherwise.

Here, P is a polynomial to be determined later.

Our estimate for S follows from the following two results.
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Theorem 7. Suppose that L is a set of linear forms satisfying Hypothesis A. Sup-
pose that λd is given by (3.13) and (3.14). There is some constant C such that if
R ≤ N1/2(log N)−C , then

S0 =
S(L)N(log R)k

(k − 1)!
J0 + O

(
N(log N)k−1

)

where

J0 =

∫ 1

0

P (1 − x)2xk−1dx.

Theorem 8. Suppose that the primes and the E2-numbers have a common level
of distribution ϑ ≤ 1, and let L be a set of linear forms satisfying Hypothesis A.
Suppose that λd is given by (3.13) and (3.14), and let the polynomial P̃ is defined
as

P̃ (x) =

∫ x

0

P (t)dt.

There is some constant C such that if R = Nϑ/2(log N)−C, then

S1,j =
S(L)N(log R)k+1

(k − 2)!(log N)
(J1 + J2 + J3) + O

(
N(log log N)(log N)k−1

)
,

where Y = Nη, B = 2/ϑ, and

J1 =

∫ 1

Bη

B

y(B − y)

∫ 1−y

0

(
P̃ (1 − x) − P̃ (1 − x − y)

)2

xk−2dx dy,

J2 =

∫ 1

Bη

B

y(B − y)

∫ 1

1−y

P̃ (1 − x)2xk−2dx dy,

J3 =

∫ B/2

1

B

y(B − y)

∫ 1

0

P̃ (1 − x)2xk−2dx dy.

Finally, we mention the following result, which is needed for the proof of Theorem
3.

Theorem 9. Assume the hypotheses of Theorem 8. Let ̟ denote the characterstic
function of the primes; i.e., ̟(p) = 1 if p is a prime and ̟(p) = 0 otherwise.
There is some constant C such that if R ≤ Nϑ/2(log N)−C, then

∑

N<n≤2N

̟(Lj(n))



∑

d|PL(n)

λd




2

=
S(L)N(log R)k+1

(k − 2)!(log N)
J̟

+ O
(
N(log log N)(log N)k−1

)
,

where

J̟ =

∫ 1

0

P̃ (1 − x)2xk−2dx.

This result is very similar to Theorem 1.6 of [13] and to Theorem 8; consequently,
we will give just a short sketch of the proof in Section 7.
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4. Proof of Theorem 7

From the definition of S0, we see that

S0 =
∑′

d,e

λdλe

∑

N<n≤2N
[d,e]|PL(n)

1 = N
∑′

d,e

λdλe

f([d, e])
+ O



∑′

d,e

|λdλer[d,e]|




= NS01 + O(S02),(4.1)

say, where

(4.2) rd =
∑

N<n≤2N
d|PL(n)

1 − N

f(d)
.

Now

S01 =
∑′

d,e

λdλe

f(d)f(e)

∑′

r|d
r|e

f1(r) =
∑′

r

f1(r)

(
∑′

d

λdr

f(dr)

)2

=
∑′

r

µ2(r)y2
r

f1(r)
.

We use Lemma 4 with

γ(p) =

{
k if p ∤ A,

0 if p|A
and κ = k, F (x) = P (x)2. We deduce that

S01 =
S(L)(log R)k

(k − 1)!

∫ 1

0

P (1 − x)2xk−1dx + O
(
(log R)k−1

)
.

For S02, we first note the bound

|r[d,e]| ≤ kω([d,e])

that follows from (4.2). We will later establish the bound

(4.3) |λd| ≪ (log R)k

whenever d ≤ R and d is squarefree. Assuming this momentarily, we find that

S02 ≪ (log R)2k
∑

d,e<R

µ2(d)µ2(e)kω([d,e]) ≪ (log R)2k
∑

r<R2

µ2(r)(3k)ω(r)

≪ R2(log R)2k
∑

r<R2

µ2(r)(3k)ω(r)

r
≪ R2(log R)2k

∏

p<R2

(
1 +

3k

p

)

≪ R2(log R)5k.

Therefore S02 ≪ N if R ≤ N1/2(log N)−3k.

To finish, we need to establish the bound (4.3) on |λd|. From (3.13), we see that if
d ≤ R and d is squarefree, then

|λd| =S(L)
f(d)

f1(d)

∑′

r<R/d
(r,d)=1

µ2(r)

f1(r)
P

(
log R/dr

log R

)
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≤S(L) sup
0≤u≤1

|P (u)|
∑

δ|d

1

f1(δ)

∑′

r<R/δ
(r,d)=1

µ2(r)

f1(r)

≪
∑′

r<R

µ2(r)

f1(r)
≪ (log R)k,

where we have used Lemma 3 in the last line.

5. Proof of Theorem 8–Initial Steps

From the definition of S1,j , we see that

(5.1) S1,j =
∑

d,e

λdλe

∑

N<n≤2N
[d,e]|PL(n)

β(Lj(n)).

We analyze the inner sum in the next lemma.

Lemma 5. Suppose that u is squarefree, (u, A) = 1, and all prime divisors of u
are less than R. Define

Mj(u) =
∑

N<n≤2N
u|PL(n)

β(Lj(n)).

Then

Mj(u) =
τk−1(u)

φ(aju)

∑

Y <p≤N1/2

p∤u

π♭(ajN/p) +
∑

Y <p<R
p|u

τk−1(u/p)

φ(aju/p)
π♭(ajN/p)(5.2)

+ O(τk(u)) + O
(
τk−1(u)∆∗

β(AN ; aju)
)

+ O


τk−1(u)

∑

p|u

∆∗(AN/p; aju/p)


 .

Proof. Assume that u|PL(n) and let ui = (PL(n), u). Then u = u1 . . . uk, where
each ui|Pi(n). Moreover, we claim that this decomposition is unique because L
satisfies Hypothesis A. To justify this, assume that the decomposition is not unique.
Then there must be some prime p such that p|Li(n) and p|Lj(n) for distinct values
of i and j. We conclude that p|(aibj − ajbi); this, however, contradicts Hypothesis
A.

Therefore

(5.3)
∑

N<n≤2N
u|PL(n)

β(Lj(n)) =
∑

u1...uk=u

∑

N<n≤2N
ui|Li(n)
i=1,...,k

β(Lj(n)).

Set Lj(n) = m. Then ajN + bj < m ≤ 2ajN + bj Moreover, uj |m. Now when

β(m) 6= 0, m has exactly one prime divisor p with p ≤ N1/2, and all prime divisors
of u are less than R ≤ Nϑ/2 ≤ N1/2. Consequently, we may assume that either
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uj = 1 or uj = p for some prime p < R. In the latter case, our definition of β
implies that we may also assume p > Y .

From our definition of m, we also have

m ≡ bj (mod aj) and aim ≡ aibj − ajbi (mod ui) for i 6= j.

We use the Chinese Remainder Theorem to combine these into one congruence

m ≡ m0 (mod aju/uj).

Observe that m0 is relatively prime to aju/uj by Hypothesis A; the condition
(u, A) = 1 implies that u is coprime to ai, aj , and aibj − ajbi.

Now we fix values of u1, . . . , uk. The inner sum of (5.3) is
∑

ajN<m≤2ajN
m≡m0 (mod aju/uj)

β(m) + O(1).

Summing the error term over all values of u1, . . . , uk gives the first error term in
(5.2).

Next, we consider the effect of different values of uj . First, we assume that uj = 1.
Then

∑

ajN<m≤2ajN
m≡m0 (mod aju)

β(m) =
πβ,aju(ajN)

φ(aju)
+ ∆β(ajN ; aju, m0)(5.4)

=
1

φ(aju)

∑

Y <p≤N1/2

p∤u

π♭(ajN/p) + ∆β(ajN ; aju, m0).

Now, assume that uj = p for some prime p, Y < p < R. Let p̄ be the inverse of p
(mod aju/p). Then

∑

ajN<m≤2ajN
m≡m0 (mod aju/uj)

β(m) =
∑

ajN

p <p2≤
2ajN

p

p2≡m0p̄ (mod aju/p)

β(pp2)(5.5)

= π♭(ajN/p; aju/p, m0p̄)

=
π♭(ajN/p)

φ(aju/p)
+ ∆(ajN/p; aju/p, p̄m0).

We now sum (5.4) and (5.5) over all choices of u1, u2, . . . , uk with u1u2 . . . uk = u
to finish the proof of the lemma. �

Returning to the estimate of S1,j , we inject Lemma 5 into (5.1). The first two error
terms contribute

≪
∑

d,e<R

|λdλe|τk([d, e])
{
1 + ∆∗

β(AN, aj [d, e])
}

.
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Using (4.3), we find that this is

≪ (log R)2k
∑

r<R2

µ2(r)(3k + 3)ω(r)
{
1 + ∆∗

β(AN, ajr)
}

.

By Lemma 2, there is some constant C such that if R ≤ Nϑ/2(log N)−C , then the
above is ≪ N .

The contribution of the third error term requires a slightly more elaborate analysis.
After using (4.3), we find that this contribution is

≪(log R)2k
∑

r<R2

µ2(r)(3k)ω(r)
∑

p|r;p<R

∆∗(AN/p, ajr/p)

≪(log R)2k
∑

p<R

∑

m<R2/p

µ2(m)(3k)ω(m)∆∗(AN/p, ajm).

We use Lemma 1 to bound the innermost sum. If R ≤ Nϑ/2(log N)−C for some
sufficiently large C, then the above is

∑

p<R

N

p(log N/p)
≪ N.

We close this section by updating our progress on S1,j . So far, we have

S1,j =
1

φ(aj)

∑′

Y <p≤N1/2

π♭

(
ajN

p

)
Tp + O(N),

where we define

(5.6) Tp =
∑

d,e
p∤[d,e]

λdλeτk−1([d, e])

φ([d, e])
+
∑

d,e
p|[d,e]

λdλeτk−1([d, e]/p)

φ([d, e]/p)
.

Note that in the sum defining Tp, we implicitly have the conditions d < R and
e < R because we are assuming that λd = 0 if d ≥ R. Therefore, if p ≥ R, the
second sum in (5.6) is empty, and the condition that p ∤ [d, e] is vacuous. In other
words, if R ≤ p < N1/2, then

(5.7) Tp =
∑

d,e

λdλeτk−1([d, e])

φ([d, e])

However, when p < R, the sum Tp is more complicated, and we will analyze this
case in more detail in the next section.

Before closing this section, we use the prime number theorem to write

π♭

(
ajN

p

)
=

ajN

p log N
α(p) + O

(
N

p(log N)2

)
,

where

α(p) =
log N

log(N/p)
.
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Note that by Hypothesis A, aj and A have exactly the same prime divisors. Con-
sequently, aj/φ(aj) = A/φ(A), and

(5.8) S1,j =
A

φ(A)

N

log N

∑′

Y <p≤N1/2

α(p)

p
Tp + O


N +

N

(log N)2

∑′

Y <p≤N1/2

Tp

p


 .

6. Evaluation of Tp

Analogous to the function f defined in (3.9), we define

(6.1) f∗(d) =
φ(d)

τk−1(d)

whenever d is squarefree and relatively prime to A. We use this to define

(6.2) Tδ =
∑′

d,e

λdλe

f∗([d, e, δ]/δ)
.

When δ = p, (6.2) reduces to the earlier definition of Tp. We will analyze the
more general quantity Tδ; this provides additional insight at the cost of little extra
complication of detail.

An expression similar to Tδ occurs in Selberg’s Λ2Λ− sieve. See, for example, the
last displayed equation on page 85 of Selberg[28] or equation (1.9) on page 287 of
Greaves[14]. In our notation, those results can be stated as

∑

d,e

λdλe

f([d, e, δ]/δ)
=

∑

r
(r,δ)=1

µ2(r)

f1(r)




∑

s|δ

µ(s)yrs




2

.

Our next lemma is an analogue of this result with f replaced by f∗.

Lemma 6. If δ is squarefree and relatively prime to A, then

Tδ =
∑′

r
(r,δ)=1

µ2(r)

f∗
1 (r)



∑

s|δ

µ(s)y∗
rs




2

.

where

f∗
1 (d) = µ ∗ f∗(d) =

∏

p|d

p − k

k − 1

whenever d is squarefree and (d, A) = 1, and

(6.3) y∗
r =

µ2(r)r

φ(r)

∑′

m

ymr

φ(m)
.

Proof. Define g∗δ (d) = g∗(d) by the relation

g∗(d) = f∗

(
d

(d, δ)

)
.
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If p is a prime, p ∤ A, then

g∗(p) =

{
f∗(p) if p ∤ δ

1 if p|δ.
With this notation, we may write

Tδ =
∑′

d,e

λdλeg
∗((d, e))

g∗(d)g∗(e)
=
∑′

d,e

λdλe

g∗(d)g∗(e)

∑

r|d
r|e

g∗1(r),

where g∗1 = g∗ ∗ µ. Note that

g∗1(p) =

{
f∗
1 (p) if p ∤ δ,

0 if p|δ.
After changing the order of summation in the last sum, we find that

Tδ =
∑′

r
(r,δ)=1

g∗1(r)



∑′

d
r|d

λd

g∗(d)




2

.

The condition that (r, δ) = 1 may be inserted because g∗1(r) = 0 if (r, δ) 6= 1.

Define

w∗
r = µ(r)g∗1 (r)

∑′

d

λdr

g∗(dr)
.

Then

(6.4) Tδ =
∑′

r
(r,δ)=1

µ2(r)

g∗1(r)
(w∗

r )2.

Assume henceforth that (r, δ) = 1. Then

w∗
r =

µ(r)g∗1(r)

g∗(r)

∑′

d

λdr

g∗(d)

=
µ(r)g∗1(r)

g∗(r)

∑′

d

µ(dr)f(dr)

g∗(d)

∑′

t

ydrt

f1(drt)

=
µ2(r)g∗1(r)f(r)

g∗(r)f1(r)

∑′

m

ymr

f1(m)

∑′

d|m

µ(d)f(d)

g∗(d)
.

We note that g∗1(r) = f∗
1 (r) and g∗(r) = f∗(r) because of our hypothesis (r, δ) = 1.

Thus
g∗1(r)f(r)

g∗(r)f1(r)
=

f∗
1 (r)f(r)

f∗(r)f1(r)
=

r

φ(r)
.

Next, we consider the sum
∑′

d|m

µ(d)f(d)

g∗(d)
=
∑′

d|m

µ(d)f(d)

f∗

(
d

(d, δ)

) .
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We write d = d1d2, with (d1, δ) = 1 and d2|δ. The above sum is then

(6.5)
∑′

d1|m
(d1,δ)=1

µ(d1)f(d1)

f∗(d1)

∑′

d2|m
d2|δ

µ(d2)f(d2).

The first factor in (6.5) is

∑′

d1|m
(d1,δ)=1

µ(d1)f(d1)

f∗(d1)
=
∏

p|m
p∤δ

(
1 − p(k − 1)

(p − 1)k

)
=

f1(m/(m, δ))

φ(m/(m, δ))
.

The second factor in (6.5) is
∑

d2|(m,δ)

µ(d2)f(d2) =
∏

p|(m,δ)

(1 − f(p)) = µ((m, δ))f1((m, δ)).

We conclude that the expression in (6.5) is

f1(m)

φ(m)
µ((m, δ))φ((m, δ)).

Now
µ((m, δ))φ((m, δ)) =

∑

s|m
s|δ

µ(s)s,

so

w∗
r =

µ2(r)r

φ(r)

∑

m

ymr

φ(m)

∑

s|m
s|δ

µ(s)s.

The definition of w∗
r depends on r as well as δ. Using the definition of y∗

r given in
(6.3), we find that

w∗
r =

∑

s|δ

µ(s)y∗
rs.

Inserting this into (6.4) completes the proof of the lemma. �

When δ = p, Lemma 6 becomes

(6.6) Tp =
∑′

r
(r,p)=1

µ2(r)

f∗
1 (r)

(y∗
r − y∗

rp)
2.

Now y∗
rp = 0 if r ≥ R/p, so

Tp =
∑′

r<R/p
(r,p)=1

µ2(r)

f∗
1 (r)

(y∗
r − y∗

rp)
2 +

∑′

R/p≤r<R
(r,p)=1

µ2(r)

f∗
1 (r)

(y∗
r )2.

When p ≥ R, the second sum above is empty, and the condition (p, r) = 1 in the
first sum is vacuous. In other words, if p ≥ R, then

Tp =
∑′

r<R

µ2(r)

f∗
1 (r)

(y∗
r )2 = T1.

This is equivalent to the observation that we made earlier in (5.7).
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Now we turn our attention to the sum

∑′

Y <p≤N1/2

α(p)

p
Tp

that appears in the main term of (5.8). Using the above observations on Tp, we
find that

(6.7)
∑′

Y <p≤N1/2

α(p)

p
Tp = S1 + S2 + S3,

where

S1 =
∑′

Y <p<R

α(p)

p

∑′

r<R/p
(r,p)=1

µ2(r)

f∗
1 (r)

(y∗
r − y∗

rp)
2,(6.8)

S2 =
∑′

Y <p<R

α(p)

p

∑′

R/p≤r<R
(r,p)=1

µ2(r)

f∗
1 (r)

(y∗
r )2,(6.9)

S3 =
∑′

R≤p<N1/2

α(p)

p

∑′

r<R

µ2(r)

f∗
1 (r)

(y∗
r )2.(6.10)

Lemma 7. Assume that r < R, (r, A) = 1, and r is squarefree. Let y∗
r be as defined

in (6.3). Then

y∗
r =

φ(A)

A
S(L)(log R)P̃

(
log R/r

log R

)
+ O(L(r)),

where

L(r) = 1 +
∑

p|r

log p

p
.

Proof. From (6.3) and (3.14), we see that

(6.11) y∗
r = µ2(r)

r

φ(r)
S(L)

∑

m≤R/r
(m,rA)=1

µ2(m)

φ(m)
P

(
log R/rm

log R

)
.

We apply Lemma 4 with

γ(p) =

{
1 if p ∤ rA,

0 if p|rA.

Then cγ = φ(rA)/rA and condition (2.4) is satisfied with κ = 1 and

L =
∑

p|rA

log p

p
+ O(1).

We are regarding A as fixed, so L ≪ L(r). Using Lemma 4 with

F (x) = P

(
x

log R/r

log R

)
,
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we obtain
∑

m<R/r
(m,rA)=1

µ2(m)

φ(m)
P

(
log R/rm

log R

)
=

φ(rA)

rA
(log(R/r))

∫ 1

0

P

(
log R/r

log R
(1 − x)

)
dx

+ O

(
φ(r)

r
L(r)

)
.

The desired results follows by making an appropriate change of variables in the
integral on the right-hand side. �

Lemma 8. For u ≥ 1, define

G∗(u) :=
∑′

r<u

µ2(r)

f∗
1 (r)

.

Then

(6.12) G∗(u) =
A

φ(A)

(log u)k−1

S(L)(k − 1)!
+ E∗(u),

where E∗(u) ≪ (log(2u))k−2.

Proof. We apply Lemma 3 with

(6.13) γ(p) =






p(k − 1)

p − 1
if p ∤ A,

0 if p|A,

and κ = k − 1. As noted in (3.4), every prime p ≤ k divides A, so

γ(p)

p
≤ 1 − 1

k

for p ∤ A. Therefore, (2.3) is satisfied with A1 = k. We are treating A as fixed, so
(2.4) is satisfied with L ≪ 1. Moreover,

cγ =
∏

p|A

(
1 − 1

p

)k−1∏

p∤A

(
1 − k − 1

p − 1

)−1(
1 − 1

p

)k−1

=
A

φ(A)

1

S(L)
,

and (6.12) follows from Lemma 3. �

Lemma 9. If p is prime, then Tp ≪ (log R)k+1.

Proof. From (6.6),

Tp =
∑′

r
(r,p)=1

µ2(r)

f∗
1 (r)

(y∗
r − y∗

rp)
2.

We are regarding P as fixed, so Lemma 7 implies that y∗
j ≪ log R for any j < R,

and y∗
j = 0 if j ≥ R. Therefore

Tp ≪ (log R)2
∑′

r<R

µ2(r)

f∗
1 (r)

,

and the lemma now follows by using (6.12) with u = R. �
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Using the above lemma, we see that the second error term in (5.8) is

(6.14)
N

(log N)2
(log R)k+1

∑

p≤N1/2

1

p
≪ N(log log N)(log N)k−1.

Combining (5.8), (6.14), and (6.7), we now have

(6.15) S1,j =
A

φ(A)

N

log N
(S1 + S2 + S3) + O

(
N(log log N)(log N)k−1

)
.

To finish the proof of Theorem 8, we will show that when i = 1, 2, or 3,

Si =
φ(A)

A

S(L)(log R)k+1

(k − 2)!
Ji + O

(
(log log R)(log R)k

)
,

where J1, J2, J3 are as defined in the statement of Theorem 8.

7. Completion of proof of Theorem 8

Lemma 10. Let S1 be as defined in (6.8), and let J1 be as defined in the statement
of Theorem 8. Then

S1 =
φ(A)

A

S(L)(log R)k+1

(k − 2)!
J1 + O

(
(log log R)(log R)k

)
.

Proof. Assume that r < R, r is squarefree, p is a prime with p < R/r, (p, r) = 1,
and (pr, A) = 1. By Lemma 7,

y∗
r − y∗

rp =
φ(A)

A
S(L)(log R)

∫ 1− log r
log R

1− log pr
log R

P (x)dx + O(L(r))

In the above, we have used the simple observation that

L(rp) = L(r) +
log p

p
≪ L(r) + 1 ≪ L(r).

Note also that

(log R)

∫ 1− log r
log R

1− log pr
log R

P (x)dx ≪ log p,

and

L(r) ≤ 1 +
∑

p≤log R

log p

p
+

∑

p|r
p>log R

log p

p
(7.1)

≪ 1 + log log R +
log log R

log R

log R

log log R

≪ log log R.

In particular, L(r) ≪ log p when p > Y . Therefore

(y∗
r − y∗

rp)
2 =

φ(A)2

A2
S(L)2(log R)2

(
P̃

(
log R/r

log R

)
− P̃

(
log R/rp

log R

))2

+ O ((log p)L(r)) .
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We use this in the definition of S1 to obtain

S1 =
φ(A)2

A2
S(L)2(log R)2

∑′

Y <p<R

α(p)

p

∑′

r<R/p
(r,p)=1

µ2(r)

f∗
1 (r)

(
P̃

(
log R/r

log R

)
− P̃

(
log R/rp

log R

))2

+ O



∑

p<R

1

p

∑′

r<R/p

µ2(r)

f∗
1 (r)

(log p)L(r)




=S11 + O(S12),

say.

For S12, we reverse the order of summation and use (6.12) to obtain

S12 =
∑′

r<R

µ2(r)

f∗
1 (r)

L(r)
∑

p<R/r

log p

p
≪ (log log R)(log R)

∑′

r<R

µ2(r)

f∗
1 (r)

(7.2)

≪ (log log R)(log R)k.

Now we consider S11. We write this as S13 − S14, where

S13 =
φ(A)2

A2
S(L)2(log R)2(7.3)

∑′

Y <p<R

α(p)

p

∑′

r<R/p

µ2(r)

f∗
1 (r)

(
P̃

(
log R/r

log R

)
− P̃

(
log R/rp

log R

))2

,

and S14 is the same sum with the extra condition that p|r.

For S14, we note that

P̃

(
log R/r

log R

)
− P̃

(
log R/rp

log R

)
=

∫ log R/r
log R

log R/rp
log R

P (t)dt ≪ log p

log R
.

We also note that f∗
1 (p) = (p − k)/(k − 1) ≫ p. Making the change of variables

r = mp, we get

S14 ≪(log R)2
∑′

Y <p<R

1

p2

∑′

m<R/p

µ2(m)

f∗
1 (m)

(
log p

log R

)2

≪(log R)k−1
∑

p<R

(log p)2

p2

by Lemma 8. The last sum converges, so

(7.4) S14 ≪ (log R)k−1.



SMALL GAPS BETWEEN PRODUCTS OF TWO PRIMES 27

For S13, we evaluate the inner sum using Lemma 4 with z = R, g(d) = 1/f∗
1 (d),

κ = k − 1, γ as defined in (6.13), and

F

(
log R/r

log R

)
=






{
P̃
(

log R/r
log R

)
− P̃

(
log R/rp

log R

)}2

if r < R/p,

0 if R/p ≤ r < R.

If we set y = log p/ logR and x = log r/ log R, then the last is equivalent to

F (1 − x) = Fp(1 − x) =






(
P̃ (1 − x) − P̃ (1 − x − y)

)2

if x < 1 − y,

0 if 1 − y ≤ x < 1.

Making the substitution w = 1 − x, we see that this is the same as

F (w) = Fp(w) =





(
P̃ (w) − P̃ (w − y)

)2

if y ≤ w ≤ 1,

0 if 0 ≤ w < y.

From Lemma 4, we find that

∑′

r<R/p

µ2(r)

f∗
1 (r)

(
P̃

(
log R/r

log R

)
− P̃

(
log R/rp

log R

))2

=(7.5)

A

φ(A)

(log R)k−1

S(L)(k − 2)!
V1

(
log p

log R

)
+ O

(
M(Fp)(log R)k−2

)
.

where

V1(y) =

∫ 1−y

0

{
P̃ (1 − x) − P̃ (1 − x − y)

}2

xk−2dx.

Observe that if y ≤ x ≤ 1, then

|Fp(x)| =

(∫ x

x−y

P (t)dt

)2

≤ y2 sup
t∈[0,1]

|P (t)| ≪ 1,

where the implied constant depends on P but not on p. Similarly, F ′
p(x) ≪ 1, and

therefore M(Fp) ≪ 1 uniformly in p. The error term in (7.5) thus contributes

(7.6) ≪ (log R)k
∑

p<R

1

p
≪ (log log R)(log R)k

to S13. Incorporating the contribution of the main term from (7.5), we now have
(7.7)

S13 =
φ(A)

A

S(L)(log R)k+1

(k − 2)!

∑′

Y <p<R

α(p)

p
V1

(
log p

log R

)
+ O

(
(log log R)(log R)k

)
.

Now let Z(u) be defined by the relation

(7.8)
∑

p≤u

log p = u + Z(u).

From the classical form of the prime number theorem, we know that

Z(u) ≪ u exp(−c
√

log u)
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for some absolute constant c. Therefore the sum in (7.7) is

(7.9)

∫ R

Y

α(u)V1

(
log u

log R

)
du

u logu
+

∫ R

Y

α(u)V1

(
log u

log R

)
dZ(u)

u log u
.

In the first integral, we make the change of variable u = Ry, and we set

(7.10) b =
log N

log R

to obtain

(7.11)

∫ R

Y

α(u)V1

(
log u

log R

)
du

u logu
=

∫ 1

bη

b

y(b − y)
V1(y)dy = J1.

Note that we have used the fact that log Y/ log N = η. Comparing the definitions
of b and B (see (1.18)), we see that

b =

(
ϑ

2
− C log log N

log N

)−1

= B + O(log log R/ logR).

We may therefore replace b by B on the right-hand side of (7.11) at the cost of an
error term O(log log R/ logR). The first integral in (7.9) is thus

(7.12) =

∫ 1

Bη

B

B − y
V1(y)dy + O

(
log log R

log R

)
= J1 + O

(
log log R

log R

)
.

We write the second integral in (7.9) as
∫ R

Y

F1(u)dZ(u) = F1(R)Z(R) − F1(Y )Z(Y ) −
∫ R

Y

Z(u)F ′
1(u)du,

where

F1(u) =
α(u)

u log u
V1

(
log u

log R

)
.

Now V1(y) ≪ y, so

F1(u) ≪ 1

u log R
.

Moreover,

F ′
1(u) =F1(u)

d

du
log F1(u)

=F1(u)

{
1

u log(N/u)
− V ′

1

V1

(
log u

log R

)
1

u log R
− 1

u
− 1

u logu

}
,

so

|F ′
1(u)| ≪ |F1(u)|

u
≪ 1

u2 log R
.

Therefore
∫ R

Y

Z(u)F ′
1(u)du ≪

∫ R

Y

exp(−c
√

log u)

u logR
du ≪ (log R)−1

We also note that

|F1(R)Z(R)| + |F1(Y )Z(Y )| ≪ (log R)−1.
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From the last two estimates, (7.7), and (7.12), we conclude that

S13 =
φ(A)

A

S(L)(log R)k+1

(k − 2)!
J1 + O

(
(log log R)(log R)k

)
.

We combine this with (7.2) and (7.4) to complete the proof. �

Lemma 11. Let S2 be as defined in (6.9), and let J2 be as defined in the statement
of Theorem 8. Then

S2 =
φ(A)

A

S(L)(log R)k+1

(k − 2)!
J2 + O

(
(log log R)(log R)k

)
.

Proof. From Lemma 7 and (7.1), we see that

(7.13) (y∗
r )2 =

φ(A)2

A2
S(L)2(log R)2P̃

(
log R/r

log R

)2

+ O(L(r) log R).

Therefore

S2 =
φ(A)2

A2
S(L)2(log R)2

∑′

Y <p<R

α(p)

p

∑′

R/p≤r<R
(r,p)=1

µ2(r)

f∗
1 (r)

P̃

(
log R/r

log R

)2

(7.14)

+ O


(log R)

∑′

Y <p<R

1

p

∑′

R/p≤r<R

µ2(r)

f∗
1 (r)

L(r)




=S21 + O(S22),

say.

We first consider S22. From the above definition, we see that

S22 ≪ (log log R)(log R)
∑′

r<R

µ2(r)

f∗
1 (r)

L(r).

Now
∑′

r<R

µ2(r)

f∗
1 (r)

L(r) =
∑′

r<R

µ2(r)

f∗
1 (r)

+
∑′

r<R

µ2(r)

f∗
1 (r)

∑

p|r

log p

p
,

and
∑′

r<R

µ2(r)

f∗
1 (r)

∑

p|r

log p

p
=
∑′

p<R

log p

pf∗
1 (p)

∑′

t<R/p;(t,p)=1

µ2(t)

f∗
1 (t)

≪
∑

p<R

log p

p2
(log R)k−1 ≪ (log R)k−1.

Therefore

(7.15)
∑′

r<R

µ2(r)

f∗
1 (r)

L(r) ≪ (log R)k−1,

and

(7.16) S22 ≪ (log log R)(log R)k.
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Now S21 = S23 − S24, where

(7.17) S23 =
φ(A)2

A2
S(L)2(log R)2

∑′

Y <p<R

α(p)

p

∑′

R/p≤r<R

µ2(r)

f∗
1 (r)

P̃

(
log R/r

log R

)2

,

and S24 is the same sum with the extra condition that p|r.

For S24, we begin by noting that P̃ (y) ≪ y. Therefore, if R/p ≤ r < R, then

P̃

(
log R/r

log R

)
≪
(

log p

log R

)2

.

Consequently,

(7.18) S24 ≪ (log R)2
∑

p<R

(log p)2

p2

∑′

t<R

µ2(t)

f∗
1 (t)

≪ (log R)k−1.

Using Lemma 4, we find that the innermost sum in S23 is

A

φ(A)

(log R)k−1

S(L)(k − 2)!
V2

(
log p

log R

)
+ O

(
(log R)k−2

)
,

where

V2(y) =

∫ 1

1−y

P̃ (1 − x)2xk−2dx.

Inserting this into (7.17), we find that
(7.19)

S23 =
φ(A)

A

S(L)(log R)k+1

(k − 2)!

∑′

Y <p<R

α(p)

p
V2

(
log p

log R

)
+ O

(
(log log R)(log R)k

)
.

The sum in the main term is

(7.20)

∫ R

Y

α(u)V2

(
log u

log R

)
du

u logu
+

∫ R

Y

α(u)V2

(
log u

log R

)
dZ(u)

u log u
,

where Z(u) was defined in (7.8). In the first integral, we let u = Ry to obtain
∫ R

Y

α(u)V2

(
log u

log R

)
du

u logu
=

∫ 1

bη

b

y(b − y)
V2(y)dy,

where b = log N/ logR, as defined in (7.10). As in the proof of Lemma 10, we may
replace b by B at the cost of an error term O(log log R/ logR); therefore,

∫ R

Y

α(u)V2

(
log u

log R

)
du

u logu
= J2 + O

(
log log R

log R

)
.

The second integral in (7.20) may be written as
∫ R

Y

F2(u)dZ(u)

where

F2(u) =
α(u)

u log u
V2

(
log u

log R

)
.
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We estimate this by using the argument following (7.12), but with F1 and V1

replaced by F2 and V2. Note that V2(y) ≪ y, so F2(u) ≪ (u log R)−1. The end
result is that ∫ R

Y

F2(u)dZ(u) ≪ (log R)−1.

We combine the above estimates to get

∑′

Y <p<R

α(p)

p
V2

(
log p

log R

)
= J2 + O

(
log log R

log R

)
.

The proof of the lemma is completed by combining this with (7.14), (7.16), (7.18),
and (7.19). �

Lemma 12. Let S3 be as defined in (6.10), and let J3 be as defined in the statement
of Theorem 8. Then

S3 =
φ(A)

A

S(L)(log R)k+1

(k − 2)!
J3 + O

(
(log log R)(log R)k

)
.

Proof. S3 is a product of two sums. Using (7.13), we see that the second sum is

∑′

r<R

µ2(r)

f∗
1 (r)

(y∗
r )2 =

φ(A)2

A2
S(L)2(log R)2

∑′

r<R

µ2(r)

f∗
1 (r)

P̃

(
log R/r

log R

)2

+ O

(
(log R)

∑′

r<R

µ2(r)

f∗
1 (r)

L(r)

)
.

We use Lemma 4 for the main term and (7.15) for the error term. Therefore
(7.21)
∑′

r<R

µ2(r)

f∗
1 (r)

(y∗
r )2 =

φ(A)

A

S(L)(log R)k+1

(k − 2)!

∫ 1

0

P̃ (1 − x)2xk−2dx + O
(
(log R)k

)
.

The first sum in the definition of S3 is

(7.22)

∫ N1/2

R

α(u)
du

u log u
+

∫ N1/2

R

α(u)
dZ(u)

u log u
.

In the first integral, we set u = Ry to get

∫ N1/2

R

α(u)
du

u log u
=

∫ b/2

1

b

y(b − y)
dy.

As in the proofs of Lemma 10 and Lemma 11, we may replace b by B at the cost
of a small error term, and therefore

∫ N1/2

R

α(u)
du

u log u
=

∫ B/2

1

B

y(B − y)
dy + O

(
log log R

log R

)
.

Letting F3(u) = α(u)/(u log u), we see that the second integral in (7.22) is

∫ N1/2

R

F3(u)dZ(u)
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≪ |F3(R)Z(R)| + |F3(N
1/2)Z(N1/2)| +

∫ N1/2

R

|F ′
3(u)| exp(−c

√
log u)du

≪ (log R)−1.

Therefore
∑′

R≤p<N1/2

α(p)

p
=

∫ B/2

1

B

y(B − y)
dy + O

(
(log R)−1

)
.

We combine this with (7.21) to complete the proof. �

Theorem 8 now follows by combining the previous three lemmas and (6.15).

We close this section by giving, as promised earlier, a short sketch of the proof of
Theorem 9. The left-hand side of the conclusion is

(7.23) =
∑

d,e

λdλeQj([d, e]),

where

Qj(u) =
∑

N<n≤2N
u|PL(n)

̟(Lj(n)).

This last sum can be evaluated in the same way as the related sum Mj(u) considered
in Lemma 5. The evaluation is simpler because only the case uj = 1 occurs in this
instance. The final result is

Qj(u) =
τk−1(u)

φ(aju)
π♭(ajN) + O(τk−1(u)∆∗(AN, u)).

We insert this into (7.23) and use the Bombieri-Vinogradov theorem to handle the
error terms. The main term is

π♭(ajN)

φ(aj)
T1 =

A

φ(A)

N

log N
T1 + O(T1N(log N)−2),

where T1 is given by (6.2) with δ = 1. By Lemma 6, T1 is equal to the sum
considered in (7.21), and the proof is completed by appealing to the formula there.

8. Proofs of Theorems 1–3 and Corollaries

For the proof of Theorem 1, we use (3.5). For our choice of P , we take ℓ = [
√

k],
and

P (x) =
xℓ

ℓ!
, P̃ (x) =

xℓ+1

(ℓ + 1)!
.

We take Y = 1 in the definition of β; therefore η = 0.

From Theorems 7 and 8, we see that (cf. (3.6))

S ∼ S(L)N(log R)kJ,

where

(8.1) J =

{
k

B

(J1 + J2 + J3)

(k − 2)!
− ν

J0

(k − 1)!

}
.
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Next, we write

(8.2)
J1 + J2

(k − 2)!
= J4 + J5 + J6,

where

J4 =

1∫

0

(
1

y
+

1

B − y

) 1∫

0

P̃ (1 − x)2
xk−2

(k − 2)!
dxdy,

J5 = −2

1∫

0

(
1

y
+

1

B − y

) 1−y∫

0

P̃ (1 − x)P̃ (1 − y − x)
xk−2

(k − 2)!
dxdy,(8.3)

J6 =

1∫

0

(
1

y
+

1

B − y

) 1−y∫

0

P̃ (1 − x − y)2
xk−2

(k − 2)!
dxdy.

In J5, we can write

(8.4) (1 − x)ℓ+1 = (1 − y − x)ℓ+1 +

ℓ+1∑

j=1

(
ℓ + 1

j

)
yj(1 − y − x)ℓ+1−j

and denote the corresponding integrals by J
(0)
5 and J

(1)
5 , resp. The terms J4, J

(0)
5

and J6 will contribute to the main term, J
(1)
5 to the secondary term.

We will often use the evaluation (m, n ∈ Z+)

(8.5)

1∫

0

xm(1 − x)ndx =
m!n!

(m + n + 1)!
,

which is a special case of a standard formula for the Euler beta function (see e.g.
Karacuba [22, p. 46]). For later convenience, we define3

A(k, ℓ) =

(
2ℓ + 2

ℓ + 1

)
1

(k + 2ℓ + 1)!
.

Using (8.5) we obtain

J
(0)
5 + J6 = −J6 = −

1∫

0

(
1

y
+

1

B − y

)(
2ℓ + 2

ℓ + 1

)
(1 − y)k+2ℓ+1

(k + 2ℓ + 1)!
dy(8.6)

= −A(k, ℓ)

1∫

0

(
1

y
+

1

B − y

)
(1 − y)k+2ℓ+1 dy,

(8.7) J4 = A(k, ℓ)

1∫

0

(
1

y
+

1

B − y

)
dy,

3A(k, ℓ) should not be confused with the quantity A defined in (3.2).
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J7 = J4 + J
(0)
5 + J6 = A(k, ℓ)

1∫

0

(
1

y
+

1

B − y

)(
1 − (1 − y)k+2ℓ+1

)
dy(8.8)

= A(k, ℓ)

1∫

0

(
1

y
y

k+2ℓ∑

j=0

(1 − y)j +
1

B − y
− (1 − y)k+2ℓ+1

B − y

)
dy.

With the notation

(8.9) L(n) =

n∑

i=1

1

i
= log n + γ + O

( 1

n

)
,

we obtain by B ≥ 2,

J7 = A(k, ℓ)




k+2ℓ∑

j=0

1∫

0

(1 − y)j dy +

1∫

0

dy

B − y
−

1∫

0

(1 − y)k+2ℓ+1

B − y
dy


(8.10)

= A(k, ℓ)

(
L(k + 2ℓ + 1) + log

B

B − 1
+ O(1/k)

)

= A(k, ℓ)

(
log k + γ + log

B

B − 1
+ O(1/

√
k)

)
.

Since in the term J
(1)
5 the factor y appears, we can directly work with J

(1)
5 , and we

get

−J
(1)
5

2
=

1∫

0

ℓ+1∑

j=1

yj−1 + yj

B−y

(ℓ + 1)!(ℓ + 1 − j)!j!

1−y∫

0

(1 − y − x)2ℓ+2−jxk−2

(k − 2)!
dxdy(8.11)

=
ℓ+1∑

j=1

1∫

0

(yj−1 + O(yj))(1 − y)k+2ℓ+1−j(2ℓ + 2 − j)!

(ℓ + 1)!(ℓ + 1 − j)!j!(k + 2ℓ + 1 − j)!
dy

= A(k, ℓ)

ℓ+1∑

j=1

(ℓ + 1) . . . (ℓ + 1 − (j − 1))

(2ℓ + 2) . . . (2ℓ + 2 − (j − 1))

(
1

j
+ O

(
1

k + 2ℓ + 2

))

= A(k, ℓ) (C(ℓ) + O(1/k)) .

By log(1 − x) = −
∞∑

j=1

xj/j we have

(8.12) C(ℓ) =
∞∑

j=1

1

2j
· 1

j
+ o(1) = − log

(
1 − 1

2

)
+ o(1) = log 2 + o(1)

as ℓ → ∞, so

J
(1)
5 = − log 4 + o(1).

Finally,

(8.13)
J3

(k − 2)!
=

B/2∫

1

(
1

y
+

1

B − y

)
· (2ℓ + 2)!

((ℓ + 1)!)2
dy

(k + 2ℓ + 1)!
= A(k, ℓ) log(B−1).
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Summarizing (8.2)–(8.13), we obtain

J1 + J2 + J3

(k − 2)!
= J7 + J

(1)
5 +

J3

(k − 2)!
+ o(1)(8.14)

= A(k, ℓ) (log k + γ + log B − log 4 + o(1))

= A(k, ℓ)

(
log

Beγk

4
+ o(1)

)
.

From (8.5), we deduce that

J0

(k − 1)!
=

(
2ℓ

ℓ

)
1

(k + 2ℓ)!
= A0(k, ℓ),

say.

Returning to (8.1), we find that

J =
k

B
A(k, ℓ) log

(
Beγk

4

)
− νA0(k, ℓ) + o(kA(k, ℓ))

= A0(k, ℓ)




2
(
2 − 1

ℓ+1

)
k

B(k + 2ℓ + 1)
log

(
Beγk

4

)
− ν + o(1)




= A0(k, ℓ)

(
4

B
log

(
Beγk

4

)
− ν + o(1)

)
.

This is positive if

(8.15)
Beγk

4
≥ e

Bν
4 (1 + o(1)),

and this proves Theorem 1.

We remark that in the above proof, we are finding “unsifted” E2-numbers; i.e., the
E2-numbers found in the proof can have small prime factors. However, it should
be clear from the argument, that if one desires, one may take Y in the definition
of β to be any function of N such that log Y/ log N → 0 as N → ∞, and the same
argument goes through.

In order to show Corollary 1, we have only to note that if p1 < p2 < . . . are the
consecutive primes then

(8.16) H = {pπ(k)+1 . . . pπ(k)+k}
forms an admissible k-tuple and pπ(k)+k ∼ k log k.

Now we consider Theorem 2. Let S be as defined in (3.5) with ν = 1. By Theorems
7 and 8, we see that

S ∼ S(L)N(log R)k

(k − 1)!
J,

where

J =
k(k − 1)

B
(J1 + J2 + J3) − J0.
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We take k = 3, B = 4, η = 1/144, and P (x) = 1+6x. Straightforward computations
show that

J0 =
38

15
= 2.5333, . . . ,

J1 =4824 log

(
143

108

)
− 13641020155

10077696
= 0.57625 . . . ,

J2 = − 77824

15
log

(
143

108

)
+

14680965985

10077696
= 0.36202 . . . ,

J3 =
41

60
log 3 = 0.75071 . . . ,

J =
41

40
log 3 − 2732

5
log

(
143

108

)
+

852438101

5598720
= 0.00016493 . . . .

For Theorem 3, we take k = 2, B = 4, η = 1/10, and consider the sum

S̃(L) =
∑

N<n≤2N






2∑

j=1

(β(Lj(n)) + ̟(Lj(n)) − 1








∑

d|PL(n)

λd




2

.

From Theorems 7, 8, and 9, we see that

S̃(L) ∼ NS(L)(log R)2J,

where

J =
1

2
(J1 + J2 + J3 + J̟) − J0.

With P (x) = 1 + x, we see that

J0 =
11

12
= 0.91667 . . . ,

J1 = − 144 log(6/5) +
66363

2500
= 0.29089 . . . ,

J2 =
2048

15
log(6/5)− 308429

12500
= 0.21864 . . . ,

J3 =
19

30
log 3 = 0.69578 . . . ,

J̟ =
19

30
= 0.63333 . . . ,

J =
19

60
log 3 − 56

15
log(6/5) +

4193

12500
= 0.00266 . . . ,

and the theorem follows. The result of (1.20) follows by taking L = {n, n− d}.

Now we mention the slight changes which lead to the proofs of Theorems 4–6.

Theorem 4 follows from the proof of Theorem 1 by taking B = 60 in view of (1.27)–
(1.28). For Theorem 5 we have to restrict p and q to primes of the form 4m + 1.
This means that the density of both p and q is half of that of all primes, therefore
we obtain finally for all Si and Ji (i = 2, 4, 5, 6) a quantity which is 1/4 of that in
the proof of Theorem 1, which has the same effect as to writing 4ν in place of ν.
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Finally, the proof of Theorem 6 is just a combination of the proofs of Theorems 4
and 5. The result is that we have to take B = 60 as in Theorem 4 and to replace
ν by 4ν as in Theorem 5. This leads finally to (1.36).

Corollaries 3–5 follow from Theorems 4–6 in the same way as Corollary 1 follows
from Theorem 1 (see (8.16)).
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