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We present the first implementation of the relativistic quantum chemical two- and four-component
density matrix renormalization group algorithm that includes a variational description of scalar-
relativistic effects and spin–orbit coupling. Numerical results based on the four-component Dirac–
Coulomb Hamiltonian are presented for the standard reference molecule for correlated relativistic
benchmarks: thallium hydride. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862495]

Owing to remarkable advances in the past decades, rela-
tivistic quantum chemical methods have become a routinely
applicable and indispensable tool for the accurate descrip-
tion of the chemistry and spectroscopy of heavy-element
compounds1–3 and even of first- and second-row molecules.4

Major challenges for relativistic quantum chemistry origi-
nate from (i) the reduction of non-relativistic (spin and spa-
tial) symmetries caused by magnetic couplings that lead to
in general complex wave functions and require the use of
double-group symmetry as well as (ii) the large number of
(unpaired) valence electrons to be correlated (in particular for
heavy elements) and (iii) the occurrence of near-degeneracies
of electronic states. Popular quantum chemical methods such
as CASSCF/CASPT2/SO-CASPT25 assume an additivity of
electron correlation and spin–orbit effects or a weak polariza-
tion of orbitals due to spin–orbit interaction, or both. Hence,
for heavy-element compounds accuracy is inevitably limited
as relativistic effects and static or dynamic electron correla-
tion are often not only large but also counteracting.1, 6

To address the latter issue adequately, a number of
genuine relativistic multiconfigurational and multireference
approaches have been proposed.7–9 In this Communication
we merge the strengths of the density matrix renormal-
ization group (DMRG) algorithm,10 which has been suc-
cessfully introduced to the field of non-relativistic quantum
chemistry,11–13 with a variational description of all relativis-
tic effects in the orbital basis. This new four-component
(4c) DMRG ansatz goes beyond preceding scalar-relativistic
DMRG approaches14, 15 and allows us to efficiently describe
first and foremost non-dynamic correlation (or strong cor-
relations) in heavy-element complexes by means of exten-
sive active orbital spaces which would surmount capabili-
ties of any to-date available relativistic multiconfigurational
approach.

Our relativistic DMRG implementation rests on the
time-independent, first-quantized 4c-Dirac–Coulomb(–Breit)
Hamiltonian16 – any two-component (2c) Hamiltonian is also
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directly usable – (with positive-energy projectors omitted for
brevity),2, 3

Ĥel =
∑

i

ĥD(i) + 1

2

∑
i �=j

ĝ(i, j ) + VNN, (1)

where ĥD(i) is the one-electron Dirac Hamiltonian for elec-
tron i, ĝ(i, j ) is a two-electron operator describing the inter-
action between electrons i and j, and VNN is the classical nu-
clear repulsion energy operator. In the absence of any exter-
nal magnetic field it can be shown that Eq. (1) is symmet-
ric under time-reversal3 from which follows that a fermion
four-component spinor function φi occurs in Kramers pairs
{φi, φ̄i}. A spinor φ̄i can thus be obtained from the action
of the time-reversal operator K̂ = −i�yK̂0 on φi, that is
K̂φi = φ̄i . Hence, our 4c- (or 2c-)spinor basis is comprised
of Kramers pairs.

In the no-pair approximation, we can formulate the re-
sulting Hamiltonian in second-quantized and normal ordered
form,

ˆ̃
Hel =

∑
PQ

F
Q
P {a†

P aQ} + 1

4

∑
PQRS

V
QS
PR {a†

P a
†
RaSaQ} , (2)

where the summation indices P, Q, R, S strictly refer to
positive-energy spinors, and F

Q
P and V

QS
PR = (GQS

PR − G
SQ
PR)

are Fock-matrix elements and antisymmetrized two-electron
integrals G

QS
PR , respectively.

We benefit from a quaternion symmetry scheme17 that
has been implemented for the binary double groups D∗

2h and
subgroups thereof in the Dirac program package which our
DMRG program is interfaced. In this scheme, point group
symmetry and quaternion operator algebra are combined ad-
vantageously such that the eigenvalue equation, Eq. (1), can
be solved either using real (double groups D∗

2h, D∗
2, and C∗

2v;
resulting number of non-zero real matrices of a quaternion
operator matrix representation: NZ = 1), complex (C∗

2h, C∗
2,

and C∗
s ; NZ = 2), or quaternion algebra (C∗

i and C∗
1; NZ = 4).

Working in a Kramers-paired spinor basis, one can then show
that all operator matrix elements tpq̄ of a time-symmetric
one-electron operator t̂ are zero by symmetry. Furthermore,
the complete set of two-electron integrals G

QS
PR of the two-

electron (Coulomb) operator ĝ in molecular spinor (MS)
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basis can be cast into a 4 × 3 ((NZ,3)) matrix representation
(see also Appendix B.3 page 161ff of Ref. 18),

G =

⎛
⎜⎜⎜⎝
R((PQ|RS)) R((PQ̄|RS̄)) R((P̄Q|R̄S))

I((PQ|RS)) I((PQ̄|RS̄)) I((P̄Q|R̄S))

R((PQ|RS̄)) R((PQ̄|RS)) R((P̄Q|RS))

I((PQ|RS̄)) I((PQ̄|RS)) I((P̄Q|RS))

⎞
⎟⎟⎟⎠ , (3)

where R and I denote the real and complex parts of a
two-electron integral in MS representation, respectively. The
number of nonzero rows for a given binary double group
thus corresponds to the NZ rank as given above. Important
symmetry reductions for both the one- and two-electron inte-
grals are therefore being taken into account in our relativistic
Kramers-unrestricted DMRG implementation.

In a Kramers-restricted spinor basis all one-electron ma-
trix elements F

Q
P (see Eq. (2)) among barred and unbarred

components will be identical while matrix elements between
barred and unbarred are non-zero only in the NZ = 4 case.
In contrast, a two-electron integral G

QS
PR may generally be

comprised of barred and unbarred spinors. As illustrated by
Eq. (3) for NZ = 1 and NZ = 2, respectively, only an even
number (nbarred = 0, 2, 4) of barred spinors yields a non-
vanishing two-electron integral whereas for NZ = 4 all com-
binations are contributing. Even though integrals can be made
real-valued (NZ = 1), permutational symmetry is reduced by
a factor two compared to the 8-fold permutational symmetry
in the non-relativistic case since orbitals are complex in a rel-
ativistic framework.

In DMRG, electron–electron correlation is taken into ac-
count by an iterative procedure that minimizes the Rayleigh

quotient corresponding to the electronic Hamiltonian ˆ̃
H and

eventually converges a full-CI-type wave function within the
selected active orbital space. The full configuration Hilbert
space of a finite system comprising N MSs, �(N), is built from
tensor product spaces of local orbital (tensor) spaces �i,19

which can be written as �(N) = ⊗N
i=1�i . Our implementa-

tion exploits a two-dimensional local Hilbert-space represen-
tation, q = 2, where each spinor can be either empty or singly
occupied. The tensor space dimension is then 2N with N being
the number of spinors.

In the two-site DMRG variant,10 that is the basis for our
relativistic DMRG implementation, �(N) is approximated by
a tensor product space of four tensor spaces, i.e., �

(N)
DMRG

= �(l) ⊗ �l+1 ⊗ �l+2 ⊗ �(r). The dimensions of the cor-
responding local left (l) and right (r) spaces are denoted
as Ml = dim �(l) and Mr = dim �(r), respectively. With q

= dim �l+1 = dim �l+2 the resulting dimensionality of the
DMRG wave function is dim �

(N)
DMRG = q2MlMr � qN . The

number of block states, Ml and Mr, required to achieve suffi-
cient convergence can be regarded as a function of the level of
entanglement among the molecular orbitals. Hence the maxi-
mum number of block states Mmax = max (Ml, Mr) determines
the accuracy of a DMRG calculation.20

The success and numerical efficiency of the DMRG al-
gorithm rely on a subsequent application of the singular value
decomposition (SVD) theorem19, 21 while the performance
depends on the level of entanglement encoded in the wave
function.22 During an SVD step, the finite system is divided

into two parts �
(N)
DMRG = �(s) ⊗ �(e), namely into a system

and an environment block. In each DMRG step, the basis
states of the system block are then transformed to a new trun-
cated basis set by a unitary transformation based on the pre-
ceding SVD.23 This transformation depends therefore on how
accurately the environment is represented24 as well as on the
level of truncation.20 As a consequence the accuracy of the
DMRG method is governed by the truncation error, δεTR, as
well as by the environmental error, δεsweep.25 The latter is min-
imized in each DMRG macro-iteration by a successive appli-
cation of the SVD going through the system back and forth
(“sweeping”).

In order to minimize δεsweep, which is usually largest dur-
ing the initial sweep of the DMRG approach because of a poor
representation of the environment, we take advantage of the
Configuration Interaction based Extended Active Space pro-
cedure (CI-DEAS)26, 27 to efficiently construct the environ-
mental basis states by means of an orbital entropy profile.28

The latter is dependent on the orbital ordering along a (fic-
titious) one-dimensional chain22, 29 and determines the maxi-
mum number of block states Mmax = max (M) that is needed
to satisfy an a priori defined accuracy threshold given by a
value χ .

The truncation error δεTR is a function of the total number
of block states M. Assuming Ml = Mr = M we can exploit a
second-order polynomial fit as a function of 1/M by taking
the limit of zero energy change between two sweeps Eel(M,
δεsweep = 0) for a given M to provide a good estimate for the
truncation-free solution.25, 30

We demonstrate the capabilities of our 4c-DMRG imple-
mentation at the example of the thallium hydride molecule
since this system has become a standard benchmark molecule
for a plethora of relativistic methods.31–40, 58 Spinors and
MS integrals were computed with a development version of
the Dirac12 program package41 using the Dirac–Coulomb
(DC) Hamiltonian and triple-ζ basis sets for Tl (cv3z)42, 43

and H (cc-pVTZ),44 which include core-correlating functions
for Tl. All DMRG calculations were performed with the rela-
tivistic development branch of the QC-DMRG-BUDAPEST

program.45 C∗
2v double group symmetry (NZ = 1) was as-

sumed throughout all calculations for TlH. MP2 natural
spinors (NSs),46 correlating the Tl 5s5p4f5d6s6p and H 1s
electrons while keeping the remaining core electrons of Tl
frozen, served as the orbital basis for all electron-correlation
calculations. Since Dirac12 requires to use uncontracted
basis sets in a four-component framework, a virtual or-
bital threshold was set at 135 hartree, such that the ini-
tial virtual correlation space in the MP2 calculation com-
prised all recommended core-valence and valence-correlation
functions. The final active space was then chosen to in-
clude all occupied spinors that have MP2-NS occupancies
less than 1.98 as well as all virtuals up to a cutoff of
≈0.001 in the MP2-NS occupation numbers. Given this cri-
terion, an active space of 14 electrons – the occupied Tl
5d6s6p plus H 1s shells – in 47 Kramers pairs (94 spinors)
was used in the CI47–49 MP2, CC,50, 51 and DMRG calcu-
lations. The latter are further characterized by the choice
of Mmax,Mmin,M

DEAS
min , and χ , denoted in the following as

DMRG(14,94)[Mmax,Mmin,M
DEAS
min , χ ].
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FIG. 1. Left: One-orbital entropy profile, si, calculated at the experimental internuclear distance r
exp
e =1.872 Å. The larger the entropy value for a given spinor

the larger its contribution to the total correlation energy. Right: Schematic plot of a piecewise orbital entanglement based on the two-orbital mutual information,
Iij. Entanglement strengths are indicated by different colors.

Figure 1 depicts the one-orbital si and two-orbital
Iij entropy profiles22, 52, 53 at the experimental internu-
clear distance r

exp
e = 1.872 Å computed from an initial

DMRG[256,256,256,10−5] calculation. We first note that the
one-orbital entropy profile (left-hand side of Figure 1) is
nearly perfectly symmetric with respect to the unbarred (#1–
#47) and barred (#48–#94) spinors where any slight devia-
tion is an artefact of the preset low Mmin, Mmax values. The
total quantum information Itot encoded in the wave func-
tion, defined as the sum of one-orbital entropies, Itot = ∑

isi,
can be taken as a measure of the importance of dynamic
(weak) electron correlation. The lower Itot (compared to
Imax

tot = ∑
i s

max
i = N ln(2) = 65.15), the more important will

be an appropriate account of dynamic electron correlation in
order to grasp all important correlation effects. In the present
case of TlH we have Itot � 2.23 � Imax

tot which points to the
fact that TlH is a predominantly single-reference close to its
equilibrium structure.

The two-orbital mutual information, Iij, confirms this
qualitative picture. Iij values are visualized in the right panel
of Figure 1, where the degree of entanglement between
spinors is marked by a color-coded connecting line. While
few spinors are weakly entangled (red) the majority is entan-
gled with even smaller strengths (green). Since several spinors
are mutually entangled with the same order of magnitude,
we expect that large Mmin, Mmax values combined with a low
quantum information loss threshold χ are required to reach a
fully converged DMRG wave function.

To corroborate this hypothesis we compiled in
Table I total energy differences for various standard
wave-function-expansion methods as well as for our 4c-
DMRG(14,94)[4500,1024,2048,10−5] model with respect
to a chosen 4c-CCSDTQ reference at r

exp
e = 1.872 Å. The

4c-DMRG wave function was built from an optimized
ordering of orbitals based on the entropy profiles given in
Figure 1 and by applying high accuracy settings in the initial
CI-DEAS sweep (with CIlevel = 4 and χCI = 10−8). These
initial conditions ensured both a rapid elimination of the
environmental error and a fast total convergence towards the
global minimum. The 4c-CISDTQ energy is reached after
no more than six sweeps of the 4c-DMRG wave function
optimization procedure. Inspection of Table I furthermore

reveals that the 4c-DMRG energy is, although being below
our best variational 4c-CISDTQ energy, still 2.57 mH higher
than the reference 4c-CCSDTQ as well as 2.89 mH higher
than the single-reference 4c-CCSD(T) energies. We recall
that DMRG is best suited for static-correlation problems,
whereas TlH is dominated by dynamic correlation. The
missing dynamic-correlation contributions may be captured
by multireference perturbation theory on top of the relativistic
DMRG wave function. However, extrapolating the DMRG
energy for a given M to the limit Eel(M, δεsweep = 0) provides
an effective means to eliminate the truncation error. The
resulting best estimate of Eel(M → ∞) = −20275.8395 H at
r

exp
e =1.872 Å is then as close as +0.7 mH to the CCSDTQ

reference energy. Moreover, we found that even a reduced-M
4c-DMRG[512, δεsweep = 0] potential energy curve does
not only effectively reproduce the shape of the 4c-CCSDTQ
potential energy curve but also yields accurate spectroscopic
constants—extracted from a fourth-order polynomial fit and
compiled in Table II. The 4c-CCSDTQ data are in excellent
agreement with experiment for the equilibrium internuclear
distance re, harmonic frequency ωe, and for the anharmonic-
ity constant ωexe. Our DMRG results also show an excellent
agreement with experiment for re, while predicting slightly
too high values for ωe (+20 cm−1) and ωexe (+4 cm−1),
respectively.

TABLE I. Total electronic energy differences 
Eel (in mH) for different
correlation approaches with respect to the 4c-CCSDTQ(14,94) reference en-
ergy of −20275840.24233 mH for TlH computed at the experimental equi-
librium internuclear distance 1.872 Å.

Method 
Eel

4c-CISD(14,94) 41.55
4-CISDT(14,94) 32.80
4c-CISDTQ(14,94) 2.63
4c-MP2(14,94) − 13.49
4c-CCSD(14,94) 10.58
4c-CCSD(T)(14,94) − 0.32
4c-CCSDT(14,94) 0.33
4c-CCSDT(Q)(14,94) − 0.07
4c-DMRG(14,94)[4500,1024,2048,10−5] 2.57
4c-DMRG(14,94)[M → ∞ extrapolated] 0.7
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TABLE II. Spectroscopic constants of 205TlH obtained from 4c-
DMRG[512, δεsweep = 0)], CI, and CC calculations in comparison with other
theoretical and experimental work.

Method re (Å) ωe (cm−1) ωexe (cm−1)

4c-DMRG(14,94)[512] 1.873 1411 26.64
4c-CISD(14,94) 1.856 1462 23.11
4c-CISDTQ(14,94) 1.871 1405 20.11
4c-MP2(14,94) 1.828 1546 47.27
4c-CCSD(14,94) 1.871 1405 19.36
4c-CCSD(T)(14,94) 1.873 1400 23.52
4c-CCSDT(14,94) 1.873 1398 22.28
4c-CCSDT(Q)(14,94) 1.873 1397 21.01
4c-CCSDTQ(14,94) 1.873 1397 22.24
CCSD(T)a 1.876 1385 n/a
CCSD(T)b 1.877 1376 n/a
MRD-CIc 1.870 1420 n/a
SO-MCQDPTd 1.876 1391 29.42
Experimente 1.872 1390.7 22.7

a4c-DC CCSD(T) [14 electrons], see Ref. 35.
b4c-DC-Gaunt CCSD(T) [36 electrons], see Ref. 35.
cGRECP spin–orbit MRD-CI, see Ref. 34.
dModel-core potential spin–orbit MCQDPT, see Ref. 40.
eExperimental data taken from Refs. 34 and 55–57.

We conclude with a note on the computational demands
of our 4c-DMRG implementation in comparison to CCS-
DTQ. The benchmark DMRG[4500,1024,2048,10−5] calcu-
lation required ≈50 GB of core memory to represent all
operators of the left and right blocks of the most expensive
local optimization step while the relativistic MRCC code54

had similar memory requirements for the optimization of the
various t amplitudes.

Our new 4c- and 2c-DMRG approach (no 2c-results
shown here) bears the potential to become a new powerful
tool for the theoretical chemistry and photophysics of heavy-
element molecules dominated by strong static electron cor-
relation as observed, for instance, in lanthanide and actinide
complexes.

M.R. has been financially supported by SNF (No.
200020_144458/1) and O.L. by OTKA (Nos. K100908 and
NN110360).
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