Communication: Four-component density matrix renormalization group

Stefan Knecht, Örs Legeza, and Markus Reiher

Citation: The Journal of Chemical Physics 140, 041101 (2014); doi: 10.1063/1.4862495
View online: http://dx.doi.org/10.1063/1.4862495
View Table of Contents: http://aip.scitation.org/toc/jcp/140/4
Published by the American Institute of Physics

Articles you may be interested in

The ab-initio density matrix renormalization group in practice
The Journal of Chemical Physics 142, 034102 (2015); 10.1063/1.4905329
Quasi-degenerate perturbation theory using matrix product states
The Journal of Chemical Physics 144, 034103 (2016); 10.1063/1.4939752
Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms The Journal of Chemical Physics 145, 014102 (2016); 10.1063/1.4955108

Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group
The Journal of Chemical Physics 141, 174111 (2014); 10.1063/1.4900878
Density matrix renormalization group with efficient dynamical electron correlation through range separation The Journal of Chemical Physics 142, 224108 (2015); 10.1063/1.4922295

Linear response theory for the density matrix renormalization group: Efficient algorithms for strongly correlated excited states
The Journal of Chemical Physics 140, 024108 (2014); 10.1063/1.4860375

Communication: Four-component density matrix renormalization group

Stefan Knecht, ${ }^{1, a)}$ Örs Legeza, ${ }^{2, b}$, and Markus Reiher ${ }^{1, c}$ (
${ }^{1}$ ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
${ }^{2}$ Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary

(Received 3 December 2013; accepted 6 January 2014; published online 22 January 2014)

Abstract

We present the first implementation of the relativistic quantum chemical two- and four-component density matrix renormalization group algorithm that includes a variational description of scalarrelativistic effects and spin-orbit coupling. Numerical results based on the four-component DiracCoulomb Hamiltonian are presented for the standard reference molecule for correlated relativistic benchmarks: thallium hydride. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862495]

Owing to remarkable advances in the past decades, relativistic quantum chemical methods have become a routinely applicable and indispensable tool for the accurate description of the chemistry and spectroscopy of heavy-element compounds ${ }^{1-3}$ and even of first- and second-row molecules. ${ }^{4}$ Major challenges for relativistic quantum chemistry originate from (i) the reduction of non-relativistic (spin and spatial) symmetries caused by magnetic couplings that lead to in general complex wave functions and require the use of double-group symmetry as well as (ii) the large number of (unpaired) valence electrons to be correlated (in particular for heavy elements) and (iii) the occurrence of near-degeneracies of electronic states. Popular quantum chemical methods such as CASSCF/CASPT2/SO-CASPT2 ${ }^{5}$ assume an additivity of electron correlation and spin-orbit effects or a weak polarization of orbitals due to spin-orbit interaction, or both. Hence, for heavy-element compounds accuracy is inevitably limited as relativistic effects and static or dynamic electron correlation are often not only large but also counteracting. ${ }^{1,6}$

To address the latter issue adequately, a number of genuine relativistic multiconfigurational and multireference approaches have been proposed. ${ }^{7-9}$ In this Communication we merge the strengths of the density matrix renormalization group (DMRG) algorithm, ${ }^{10}$ which has been successfully introduced to the field of non-relativistic quantum chemistry, ${ }^{11-13}$ with a variational description of all relativistic effects in the orbital basis. This new four-component (4c) DMRG ansatz goes beyond preceding scalar-relativistic DMRG approaches ${ }^{14,15}$ and allows us to efficiently describe first and foremost non-dynamic correlation (or strong correlations) in heavy-element complexes by means of extensive active orbital spaces which would surmount capabilities of any to-date available relativistic multiconfigurational approach.

Our relativistic DMRG implementation rests on the time-independent, first-quantized 4c-Dirac-Coulomb(-Breit) Hamiltonian ${ }^{16}$ - any two-component (2c) Hamiltonian is also

[^0]directly usable - (with positive-energy projectors omitted for brevity), ${ }^{2,3}$
\[

$$
\begin{equation*}
\hat{H}_{e l}=\sum_{i} \hat{h}_{D}(i)+\frac{1}{2} \sum_{i \neq j} \hat{g}(i, j)+V_{N N} \tag{1}
\end{equation*}
$$

\]

where $\hat{h}_{D}(i)$ is the one-electron Dirac Hamiltonian for electron $i, \hat{g}(i, j)$ is a two-electron operator describing the interaction between electrons i and j, and $V_{N N}$ is the classical nuclear repulsion energy operator. In the absence of any external magnetic field it can be shown that Eq. (1) is symmetric under time-reversal ${ }^{3}$ from which follows that a fermion four-component spinor function ϕ_{i} occurs in Kramers pairs $\left\{\phi_{i}, \bar{\phi}_{i}\right\}$. A spinor $\bar{\phi}_{i}$ can thus be obtained from the action of the time-reversal operator $\hat{\mathcal{K}}=-i \Sigma_{y} \hat{\mathcal{K}}_{0}$ on ϕ_{i}, that is $\hat{\mathcal{K}} \phi_{i}=\bar{\phi}_{i}$. Hence, our 4 c - (or $2 \mathrm{c}-$)spinor basis is comprised of Kramers pairs.

In the no-pair approximation, we can formulate the resulting Hamiltonian in second-quantized and normal ordered form,

$$
\begin{equation*}
\hat{\widetilde{H}}_{e l}=\sum_{P Q} F_{P}^{Q}\left\{a_{P}^{\dagger} a_{Q}\right\}+\frac{1}{4} \sum_{P Q R S} V_{P R}^{Q S}\left\{a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}\right\} \tag{2}
\end{equation*}
$$

where the summation indices P, Q, R, S strictly refer to positive-energy spinors, and F_{P}^{Q} and $V_{P R}^{Q S}=\left(G_{P R}^{Q S}-G_{P R}^{S Q}\right)$ are Fock-matrix elements and antisymmetrized two-electron integrals $G_{P R}^{Q S}$, respectively.

We benefit from a quaternion symmetry scheme ${ }^{17}$ that has been implemented for the binary double groups $\mathrm{D}_{2 h}^{*}$ and subgroups thereof in the Dirac program package which our DMRG program is interfaced. In this scheme, point group symmetry and quaternion operator algebra are combined advantageously such that the eigenvalue equation, Eq. (1), can be solved either using real (double groups $\mathrm{D}_{2 h}^{*}, \mathrm{D}_{2}^{*}$, and $\mathrm{C}_{2 v}^{*}$; resulting number of non-zero real matrices of a quaternion operator matrix representation: $\mathrm{NZ}=1$), complex $\left(\mathrm{C}_{2 h}^{*}, \mathrm{C}_{2}^{*}\right.$, and $\mathrm{C}_{s}^{*} ; \mathrm{NZ}=2$), or quaternion algebra $\left(\mathrm{C}_{i}^{*}\right.$ and $\left.\mathrm{C}_{1}^{*} ; \mathrm{NZ}=4\right)$. Working in a Kramers-paired spinor basis, one can then show that all operator matrix elements $t_{p \bar{q}}$ of a time-symmetric one-electron operator \hat{t} are zero by symmetry. Furthermore, the complete set of two-electron integrals $G_{P R}^{Q S}$ of the twoelectron (Coulomb) operator \hat{g} in molecular spinor (MS)
basis can be cast into a $4 \times 3((\mathrm{NZ}, 3))$ matrix representation (see also Appendix B. 3 page 161ff of Ref. 18),

$$
\mathbf{G}=\left(\begin{array}{lll}
\mathcal{R}((P Q \mid R S)) & \mathcal{R}((P \bar{Q} \mid R \bar{S})) & \mathcal{R}((\bar{P} Q \mid \bar{R} S)) \tag{3}\\
\mathcal{I}((P Q \mid R S)) & \mathcal{I}((P \bar{Q} \mid R \bar{S})) & \mathcal{I}((\bar{P} Q \mid \bar{R} S)) \\
\mathcal{R}((P Q \mid R \bar{S})) & \mathcal{R}((P \bar{Q} \mid R S)) & \mathcal{R}((\bar{P} Q \mid R S)) \\
\mathcal{I}((P Q \mid R \bar{S})) & \mathcal{I}((P \bar{Q} \mid R S)) & \mathcal{I}((\bar{P} Q \mid R S))
\end{array}\right),
$$

where \mathcal{R} and \mathcal{I} denote the real and complex parts of a two-electron integral in MS representation, respectively. The number of nonzero rows for a given binary double group thus corresponds to the NZ rank as given above. Important symmetry reductions for both the one- and two-electron integrals are therefore being taken into account in our relativistic Kramers-unrestricted DMRG implementation.

In a Kramers-restricted spinor basis all one-electron matrix elements F_{P}^{Q} (see Eq. (2)) among barred and unbarred components will be identical while matrix elements between barred and unbarred are non-zero only in the $N Z=4$ case. In contrast, a two-electron integral $G_{P R}^{Q S}$ may generally be comprised of barred and unbarred spinors. As illustrated by Eq. (3) for $\mathrm{NZ}=1$ and $\mathrm{NZ}=2$, respectively, only an even number ($n_{\text {barred }}=0,2,4$) of barred spinors yields a nonvanishing two-electron integral whereas for $\mathrm{NZ}=4$ all combinations are contributing. Even though integrals can be made real-valued $(\mathrm{NZ}=1)$, permutational symmetry is reduced by a factor two compared to the 8 -fold permutational symmetry in the non-relativistic case since orbitals are complex in a relativistic framework.

In DMRG, electron-electron correlation is taken into account by an iterative procedure that minimizes the Rayleigh quotient corresponding to the electronic Hamiltonian \hat{H} and eventually converges a full-CI-type wave function within the selected active orbital space. The full configuration Hilbert space of a finite system comprising $N \mathrm{MSs}, \Lambda^{(N)}$, is built from tensor product spaces of local orbital (tensor) spaces $\Lambda_{i},{ }^{19}$ which can be written as $\Lambda^{(N)}=\otimes_{i=1}^{N} \Lambda_{i}$. Our implementation exploits a two-dimensional local Hilbert-space representation, $q=2$, where each spinor can be either empty or singly occupied. The tensor space dimension is then 2^{N} with N being the number of spinors.

In the two-site DMRG variant, ${ }^{10}$ that is the basis for our relativistic DMRG implementation, $\Lambda^{(N)}$ is approximated by a tensor product space of four tensor spaces, i.e., $\Lambda_{\text {DMRG }}^{(N)}$ $=\Lambda^{(l)} \otimes \Lambda_{l+1} \otimes \Lambda_{l+2} \otimes \Lambda^{(r)}$. The dimensions of the corresponding local left (l) and right (r) spaces are denoted as $M_{l}=\operatorname{dim} \Lambda^{(l)}$ and $M_{r}=\operatorname{dim} \Lambda^{(r)}$, respectively. With q $=\operatorname{dim} \Lambda_{l+1}=\operatorname{dim} \Lambda_{l+2}$ the resulting dimensionality of the DMRG wave function is $\operatorname{dim} \Lambda_{\text {DMRG }}^{(N)}=q^{2} M_{l} M_{r} \ll q^{N}$. The number of block states, M_{l} and M_{r}, required to achieve sufficient convergence can be regarded as a function of the level of entanglement among the molecular orbitals. Hence the maximum number of block states $M_{\max }=\max \left(M_{l}, M_{r}\right)$ determines the accuracy of a DMRG calculation. ${ }^{20}$

The success and numerical efficiency of the DMRG algorithm rely on a subsequent application of the singular value decomposition (SVD) theorem ${ }^{19,21}$ while the performance depends on the level of entanglement encoded in the wave function. ${ }^{22}$ During an SVD step, the finite system is divided
into two parts $\Lambda_{\mathrm{DMRG}}^{(N)}=\Lambda^{(s)} \otimes \Lambda^{(e)}$, namely into a system and an environment block. In each DMRG step, the basis states of the system block are then transformed to a new truncated basis set by a unitary transformation based on the preceding SVD. ${ }^{23}$ This transformation depends therefore on how accurately the environment is represented ${ }^{24}$ as well as on the level of truncation. ${ }^{20}$ As a consequence the accuracy of the DMRG method is governed by the truncation error, $\delta \varepsilon_{\mathrm{TR}}$, as well as by the environmental error, $\delta \varepsilon_{\text {sweep }} .{ }^{25}$ The latter is minimized in each DMRG macro-iteration by a successive application of the SVD going through the system back and forth ("sweeping").

In order to minimize $\delta \varepsilon_{\text {sweep }}$, which is usually largest during the initial sweep of the DMRG approach because of a poor representation of the environment, we take advantage of the Configuration Interaction based Extended Active Space procedure (CI-DEAS) ${ }^{26,27}$ to efficiently construct the environmental basis states by means of an orbital entropy profile. ${ }^{28}$ The latter is dependent on the orbital ordering along a (fictitious) one-dimensional chain ${ }^{22,29}$ and determines the maximum number of block states $M_{\max }=\max (M)$ that is needed to satisfy an a priori defined accuracy threshold given by a value χ.

The truncation error $\delta \varepsilon_{\mathrm{TR}}$ is a function of the total number of block states M. Assuming $M_{l}=M_{r}=M$ we can exploit a second-order polynomial fit as a function of $1 / M$ by taking the limit of zero energy change between two sweeps $E_{e l}(M$, $\delta \varepsilon_{\text {sweep }}=0$) for a given M to provide a good estimate for the truncation-free solution. ${ }^{25,30}$

We demonstrate the capabilities of our 4c-DMRG implementation at the example of the thallium hydride molecule since this system has become a standard benchmark molecule for a plethora of relativistic methods. ${ }^{31-40,58}$ Spinors and MS integrals were computed with a development version of the Dirac12 program package ${ }^{41}$ using the Dirac-Coulomb (DC) Hamiltonian and triple- ζ basis sets for $\mathrm{Tl}(\mathrm{cv} 3 \mathrm{z})^{42,43}$ and H (cc-pVTZ), ${ }^{44}$ which include core-correlating functions for Tl. All DMRG calculations were performed with the relativistic development branch of the QC-DMRG-BUDAPEST program. ${ }^{45} \mathrm{C}_{2 v}^{*}$ double group symmetry $(\mathrm{NZ}=1)$ was assumed throughout all calculations for TlH. MP2 natural spinors (NSs), ${ }^{46}$ correlating the $\mathrm{Tl} 5 s 5 p 4 f 5 d 6 s 6 p$ and $\mathrm{H} 1 s$ electrons while keeping the remaining core electrons of Tl frozen, served as the orbital basis for all electron-correlation calculations. Since Dirac12 requires to use uncontracted basis sets in a four-component framework, a virtual orbital threshold was set at 135 hartree, such that the initial virtual correlation space in the MP2 calculation comprised all recommended core-valence and valence-correlation functions. The final active space was then chosen to include all occupied spinors that have MP2-NS occupancies less than 1.98 as well as all virtuals up to a cutoff of ≈ 0.001 in the MP2-NS occupation numbers. Given this criterion, an active space of 14 electrons - the occupied Tl $5 d 6 s 6 p$ plus H $1 s$ shells - in 47 Kramers pairs (94 spinors) was used in the CI^{47-49} MP2, CC, ${ }^{50,51}$ and DMRG calculations. The latter are further characterized by the choice of $M_{\max }, M_{\min }, M_{\min }^{\mathrm{DEAS}}$, and χ, denoted in the following as $\operatorname{DMRG}(14,94)\left[M_{\max }, M_{\min }, M_{\min }^{\mathrm{DEAS}}, \chi\right]$.

FIG. 1. Left: One-orbital entropy profile, s_{i}, calculated at the experimental internuclear distance $r_{e}^{\text {exp }}=1.872 \AA$. The larger the entropy value for a given spinor the larger its contribution to the total correlation energy. Right: Schematic plot of a piecewise orbital entanglement based on the two-orbital mutual information, $I_{i j}$. Entanglement strengths are indicated by different colors.

Figure 1 depicts the one-orbital s_{i} and two-orbital $I_{i j}$ entropy profiles ${ }^{22,52,53}$ at the experimental internuclear distance $r_{e}^{\exp }=1.872 \AA$ computed from an initial DMRG[256,256,256, 10^{-5}] calculation. We first note that the one-orbital entropy profile (left-hand side of Figure 1) is nearly perfectly symmetric with respect to the unbarred (\#1\#47) and barred (\#48-\#94) spinors where any slight deviation is an artefact of the preset low $M_{\min }, M_{\max }$ values. The total quantum information $I_{\text {tot }}$ encoded in the wave function, defined as the sum of one-orbital entropies, $I_{\text {tot }}=\sum_{i} s_{i}$, can be taken as a measure of the importance of dynamic (weak) electron correlation. The lower $I_{\text {tot }}$ (compared to $\left.I_{\text {tot }}^{\max }=\sum_{i} s_{i}^{\max }=N \ln (2)=65.15\right)$, the more important will be an appropriate account of dynamic electron correlation in order to grasp all important correlation effects. In the present case of TlH we have $I_{\mathrm{tot}} \simeq 2.23 \ll I_{\text {tot }}^{\max }$ which points to the fact that TlH is a predominantly single-reference close to its equilibrium structure.

The two-orbital mutual information, $I_{i j}$, confirms this qualitative picture. $I_{i j}$ values are visualized in the right panel of Figure 1, where the degree of entanglement between spinors is marked by a color-coded connecting line. While few spinors are weakly entangled (red) the majority is entangled with even smaller strengths (green). Since several spinors are mutually entangled with the same order of magnitude, we expect that large $M_{\min }, M_{\max }$ values combined with a low quantum information loss threshold χ are required to reach a fully converged DMRG wave function.

To corroborate this hypothesis we compiled in Table I total energy differences for various standard wave-function-expansion methods as well as for our 4 c DMRG(14,94)[4500,1024,2048,10 ${ }^{-5}$] model with respect to a chosen 4 c -CCSDTQ reference at $r_{e}^{\exp }=1.872 \AA$. The 4 c -DMRG wave function was built from an optimized ordering of orbitals based on the entropy profiles given in Figure 1 and by applying high accuracy settings in the initial CI-DEAS sweep (with $\mathrm{CI}_{\text {level }}=4$ and $\chi_{\mathrm{CI}}=10^{-8}$). These initial conditions ensured both a rapid elimination of the environmental error and a fast total convergence towards the global minimum. The 4c-CISDTQ energy is reached after no more than six sweeps of the 4 c -DMRG wave function optimization procedure. Inspection of Table I furthermore
reveals that the 4c-DMRG energy is, although being below our best variational 4c-CISDTQ energy, still 2.57 mH higher than the reference 4 c -CCSDTQ as well as 2.89 mH higher than the single-reference $4 \mathrm{c}-\mathrm{CCSD}(\mathrm{T})$ energies. We recall that DMRG is best suited for static-correlation problems, whereas T1H is dominated by dynamic correlation. The missing dynamic-correlation contributions may be captured by multireference perturbation theory on top of the relativistic DMRG wave function. However, extrapolating the DMRG energy for a given M to the limit $E_{e l}\left(M, \delta \varepsilon_{\text {sweep }}=0\right)$ provides an effective means to eliminate the truncation error. The resulting best estimate of $E_{e l}(M \rightarrow \infty)=-20275.8395 \mathrm{H}$ at $r_{e}^{\exp }=1.872 \AA$ is then as close as +0.7 mH to the CCSDTQ reference energy. Moreover, we found that even a reduced- M 4 c -DMRG[512, $\delta \varepsilon_{\text {sweep }}=0$] potential energy curve does not only effectively reproduce the shape of the 4 c -CCSDTQ potential energy curve but also yields accurate spectroscopic constants-extracted from a fourth-order polynomial fit and compiled in Table II. The 4c-CCSDTQ data are in excellent agreement with experiment for the equilibrium internuclear distance r_{e}, harmonic frequency ω_{e}, and for the anharmonicity constant $\omega_{e} x_{e}$. Our DMRG results also show an excellent agreement with experiment for r_{e}, while predicting slightly too high values for $\omega_{e}\left(+20 \mathrm{~cm}^{-1}\right)$ and $\omega_{e} x_{e}\left(+4 \mathrm{~cm}^{-1}\right)$, respectively.

TABLE I. Total electronic energy differences $\Delta \mathrm{E}_{e l}(\mathrm{in} \mathrm{mH}$) for different correlation approaches with respect to the $4 \mathrm{c}-\operatorname{CCSDTQ}(14,94)$ reference energy of -20275840.24233 mH for TlH computed at the experimental equilibrium internuclear distance $1.872 \AA$.

Method	$\Delta E_{\text {el }}$
4c-CISD $(14,94)$	41.55
4-CISDT $(14,94)$	32.80
4c-CISDTQ(14,94)	2.63
4c-MP2(14,94)	-13.49
4c-CCSD $(14,94)$	10.58
4c-CCSD(T)(14,94)	-0.32
4c-CCSDT(14,94)	0.33
4c-CCSDT(Q)(14,94)	-0.07
4c-DMRG(14,94)[4500,1024,2048,10-5]	2.57
4c-DMRG(14,94)[M $\rightarrow \infty$ extrapolated]	0.7

TABLE II. Spectroscopic constants of ${ }^{205} \mathrm{TlH}$ obtained from 4cDMRG[512, $\left.\left.\delta \varepsilon_{\text {sweep }}=0\right)\right], \mathrm{CI}$, and CC calculations in comparison with other theoretical and experimental work.

Method	$\mathrm{r}_{e}(\AA \mathrm{~A})$	$\omega_{e}\left(\mathrm{~cm}^{-1}\right)$	$\omega_{e} x_{e}\left(\mathrm{~cm}^{-1}\right)$
4c-DMRG(14,94)[512]	1.873	1411	26.64
4c-CISD $(14,94)$	1.856	1462	23.11
4c-CISDTQ(14,94)	1.871	1405	20.11
4c-MP2(14,94)	1.828	1546	47.27
4c-CCSD $(14,94)$	1.871	1405	19.36
4c-CCSD(T)(14,94)	1.873	1400	23.52
4c-CCSDT(14,94)	1.873	1398	22.28
4c-CCSDT(Q)(14,94)	1.873	1397	21.01
4c-CCSDTQ(14,94)	1.873	1397	22.24
CCSD(T)	1.876	1385	n / a
CCSD(T)	1.877	1376	n / a
MRD-CI ${ }^{\mathrm{c}}$	1.870	1420	n / a
SO-MCQDPT ${ }^{\mathrm{d}}$	1.876	1391	29.42
Experiment $^{\mathrm{e}}$	1.872	1390.7	22.7

${ }^{\mathrm{a}} 4 \mathrm{c}-\mathrm{DC} \operatorname{CCSD}(\mathrm{T})$ [14 electrons], see Ref. 35 .
${ }^{\mathrm{b}} 4 \mathrm{c}$-DC-Gaunt CCSD(T) [36 electrons], see Ref. 35.
${ }^{\mathrm{c}}$ GRECP spin-orbit MRD-CI, see Ref. 34.
${ }^{\mathrm{d}}$ Model-core potential spin-orbit MCQDPT, see Ref. 40.
${ }^{\mathrm{e}}$ Experimental data taken from Refs. 34 and 55-57.

We conclude with a note on the computational demands of our 4 c -DMRG implementation in comparison to CCSDTQ. The benchmark DMRG[4500,1024,2048, $\left.10^{-5}\right]$ calculation required $\approx 50 \mathrm{~GB}$ of core memory to represent all operators of the left and right blocks of the most expensive local optimization step while the relativistic MRCC code ${ }^{54}$ had similar memory requirements for the optimization of the various t amplitudes.

Our new 4 c - and 2 c -DMRG approach (no 2 c -results shown here) bears the potential to become a new powerful tool for the theoretical chemistry and photophysics of heavyelement molecules dominated by strong static electron correlation as observed, for instance, in lanthanide and actinide complexes.
M.R. has been financially supported by SNF (No. 200020_144458/1) and O.L. by OTKA (Nos. K100908 and NN110360).

[^1]${ }^{12}$ K. H. Marti and M. Reiher, Z. Phys. Chem. 224, 583 (2010).
${ }^{13}$ G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465 (2011).
${ }^{14}$ P. Tecmer, K. Boguslawski, Ö. Legeza, and M. Reiher, Phys. Chem. Chem. Phys. 16, 719 (2014).
${ }^{15}$ G. Moritz, A. Wolf, and M. Reiher, J. Chem. Phys. 123, 184105 (2005).
${ }^{16}$ T. Saue, Chem. Phys. Chem. 12, 3077 (2011).
${ }^{17}$ T. Saue and H. J. A. Jensen, J. Chem. Phys. 111, 6211 (1999).
${ }^{18}$ J. Thyssen, Ph.D. thesis, University of Southern Denmark, 2001.
${ }^{19}$ Ö. Legeza, T. Rohwedder, R. Schneider, and S. Szalay, "Tensor product approximation (DMRG) and coupled cluster method in quantum chemistry," preprint arXiv:1310.2736 (2013).
${ }^{20}$ Ö. Legeza, J. Röder, and B. A. Hess, Phys. Rev. B 67, 125114 (2003).
${ }^{21}$ U. Schollwöck, Ann. Phys. 326, 96 (2011).
${ }^{22}$ Ö. Legeza and J. Sólyom, Phys. Rev. B 70, 205118 (2004).
${ }^{23}$ U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
${ }^{24}$ G. Moritz and M. Reiher, J. Chem. Phys. 124, 034103 (2006).
${ }^{25}$ Ö. Legeza and G. Fáth, Phys. Rev. B 53, 14349 (1996).
${ }^{26}$ Ö. Legeza and J. Sólyom, Phys. Rev. B 68, 195116 (2003).
${ }^{27}$ Ö. Legeza and J. Sólyom, see www.itp.uni-hannover.de/~jeckelm/dmrg/ workshop/proceedings.html.
${ }^{28}$ G. Barcza, Ö. Legeza, K. H. Marti, and M. Reiher, Phys. Rev. A 83, 012508 (2011).
${ }^{29}$ G. Moritz, B. Hess, and M. Reiher, J. Chem. Phys. 122, 024107 (2005).
${ }^{30}$ G. Barcza, Ö. Legeza, M. R. Noack, and J. Sólyom, Phys. Rev. B 86, 075133 (2012).
${ }^{31}$ L. Seijo, J. Chem. Phys. 102, 8078 (1995).
${ }^{32}$ E. van Lenthe, J. G. Snijders, and E. J. Baerends, J. Chem. Phys. 105, 6505 (1996).
${ }^{33}$ Y.-K. Han, C. Bae, and Y. S. Lee, J. Chem. Phys. 110, 9353 (1999).
${ }^{34}$ A. V. Titov, N. S. Mosyagin, A. B. Alekseyev, and R. J. Buenker, Int. J. Quantum Chem. 81, 409 (2001).
${ }^{35}$ K. Fægri and L. Visscher, Theor. Chem. Acc. 105, 265 (2001).
${ }^{36}$ M. Mayer, S. Krüger, and N. Rösch, J. Chem. Phys. 115, 4411 (2001).
${ }^{37}$ Y. J. Choi, Y.-K. Han, and Y. S. Lee, J. Chem. Phys. 115, 3448 (2001).
${ }^{38}$ M. Ilias, V. Kellö, L. Visscher, and B. Schimmelpfennig, J. Chem. Phys. 115, 9667 (2001).
${ }^{39}$ Y. J. Choi and Y. S. Lee, J. Chem. Phys. 119, 2014 (2003).
${ }^{40}$ T. Zeng, D. G. Fedorov, and M. Klobukowski, J. Chem. Phys. 132, 074102 (2010).
${ }^{41}$ DIRAC12 (2012), see www.diracprogram.org for further information.
${ }^{42}$ K. G. Dyall, Theor. Chem. Acc. 108, 335 (2002); 109, 284 (2003), erratum; 115, 441 (2006), revision.
${ }^{43}$ K. G. Dyall, Theor. Chem. Acc. 131, 1217 (2012).
${ }^{44}$ T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
${ }^{45}$ Ö. Legeza, QC-DMRG-BUDAPEST, 2000-2013, HAS Wigner Budapest.
${ }^{46}$ Option .MP2 NO in the wave function section of Dirac12.
${ }^{47}$ T. Fleig, J. Olsen, and L. Visscher, J. Chem. Phys. 119, 2963 (2003).
${ }^{48}$ T. Fleig, H. J. Aa. Jensen, J. Olsen, and L. Visscher, J. Chem. Phys. 124, 104106 (2006).
${ }^{49}$ S. Knecht, H. J. Aa. Jensen, and T. Fleig, J. Chem. Phys. 132, 014108 (2010).
${ }^{50}$ MRCC, a string-based quantum chemical program suite written by M. Kállay. See also Ref. 51 as well as http://www.mrcc.hu/.
${ }^{51}$ M. Kállay and P. R. Surján, J. Chem. Phys. 115, 2945 (2001).
${ }^{52}$ K. Boguslawski, P. Tecmer, Ö. Legeza, and M. Reiher, J. Phys. Chem. Lett. 3, 3129 (2012).
${ }^{53}$ K. Boguslawski, P. Tecmer, G. Barcza, Ö. Legeza, and M. Reiher, J. Chem. Theory Comput. 9, 2959 (2013).
${ }^{54}$ M. Kallay, H. Nataraj, B. Sahoo, B. Das, and L. Visscher, Phys. Rev. A 83, 030503(R) (2011).
${ }^{55}$ B. Grundström and P. Valberg, Z. Phys. 108, 326 (1938).
${ }^{56}$ Molecular Spectra and Molecular Structure Constants of Diatomic Molecules, edited by K. Huber and G. Herzberg (Van Nostrand, New York, 1979).
${ }^{57}$ R.-D. Urban, A. H. Bahnmaier, U. Magg, and H. Jones, Chem. Phys. Lett. 158, 443 (1989).
${ }^{58}$ M. Seth, P. Schwerdtfeger, and K. Fægri, J. Chem. Phys. 111, 6422 (1999).

[^0]: ${ }^{\text {a) }}$ Electronic mail: stefan.knecht@phys.chem.ethz.ch
 ${ }^{\text {b) }}$ Electronic mail: legeza.ors@ wigner.mta.hu
 ${ }^{\text {c) }}$ Electronic mail: markus.reiher@phys.chem.ethz.ch

[^1]: ${ }^{1}$ J. Autschbach, J. Chem. Phys. 136, 150902 (2012).
 ${ }^{2}$ K. G. Dyall and K. Fægri, Introduction to Relativistic Quantum Chemistry (Oxford University Press, Oxford, 2007).
 ${ }^{3}$ M. Reiher and A. Wolf, Relativistic Quantum Chemistry (Wiley-VCH, Weinheim, 2009).
 ${ }^{4}$ C. M. Marian, WIREs Comput. Mol. Sci. 2, 187 (2012).
 ${ }^{5}$ D. Roca-Sanjuan, F. Aquilante, and R. Lindh, WIREs Comput. Mol. Sci. 2, 585 (2012).
 ${ }^{6}$ P. Pyykkö, Chem. Rev. 88, 563 (1988).
 ${ }^{7}$ T. Fleig, Chem. Phys. 395, 2 (2012).
 ${ }^{8}$ D. Ganyushin and F. Neese, J. Chem. Phys. 138, 104113 (2013).
 ${ }^{9}$ I. Kim and Y. S. Lee, J. Chem. Phys. 139, 134115 (2013).
 ${ }^{10}$ S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
 ${ }^{11}$ Ö. Legeza, R. Noack, J. Sólyom, and L. Tincani, Computational ManyParticle Physics, Lecture Notes in Physics Vol. 739, edited by H. Fehske, R. Schneider, and A. Weibe (Springer, Berlin, 2008), pp. 653-664.

