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‡Technische Universitaẗ Berlin Fakultaẗ II - Mathematik und Naturwissenschaften Institut für Mathematik, Strasse des 17, Juni 136,
Berlin, Berlin, Germany
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ABSTRACT: We study the tree-tensor-network-state (TTNS) method with variable
tensor orders for quantum chemistry. TTNS is a variational method to efficiently
approximate complete active space (CAS) configuration interaction (CI) wave
functions in a tensor product form. TTNS can be considered as a higher order
generalization of the matrix product state (MPS) method. The MPS wave function is
formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert
space of the original CAS-CI problem. These matrices belong to active orbitals
organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-
like arrangement of the same orbitals. The tree-structure is advantageous since the
distance between two arbitrary orbitals in the tree scales only logarithmically with the
number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be
beneficial from the computational costs point of view to keep strongly correlated
orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better
suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel
algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement.
The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that
the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement.

I. INTRODUCTION

It has been more than a decade ago that the quantum chemistry
version of the density matrix renormalization group (QC-
DMRG) method1,2 has been applied to study the ionic-neutral
curve crossing of LiF in order to demonstrate that it provides a
globally accurate description of the system even if the wave
function changes dramatically transversing the avoided cross-
ing.3 In the following years, various theoretical studies have
been devoted to investigate dissociation curves in diatomic
molecules using QC-DMRG,4−8 and by now the method has
become a rival to the conventional multiconfiguration wave
function approaches.9−11 Inclusion of the concepts of
entanglement from quantum information theory (QIT)12−15

has paved the road for identifying highly correlated molecular
orbitals leading to an efficient construction of active spaces12,16

and for characterizing the various types of correlation effects
relevant for chemical bonding.8,17

In the mean time, a reformulation of DMRG in terms of so-
called matrix product states (MPS)18−21 has shown that it is
only one special case in a much more general set of methods:

the so-called tensor network states (TNS),19,22−32 which in
certain cases is expected to even outperform QC-DMRG in the
near future.33,34 A special form of TNS, the tree tensor network
states (TTNS) approach,35−38 was first applied in quantum
chemistry by some of us33 to present the underlying theoretical
background and scaling properties of the QC-TTNS algorithm,
while an efficient extension of the two-site QC-DMRG using
the tree-like topology has been applied recently to
dendrimers.34 In this latter work, a novel half-renormalization
scheme has also been introduced in order to reduce
computational cost related to the diagonalization of the
effective Hamiltonian. The TTNS approach also plays a
fundamental role in hierarchical tensor decompositions,
recently developed for tensor product approximation,31 see
e.g. refs 29 and 30.
Unlike models with translational symmetry studied usually in

condensed matter physics, the orbital entanglement is non-
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constant in the quantum chemical applications. Therefore, the
optimal arrangement of matrices in MPS-based approaches has
a tremendous effect on their performance and on the required
computational resources to reach a given accuracy.12,15,39

Similar optimization strategies to find the best tensor topology
are also crucial in the case of the TTNS algorithm.15,34

In this paper, we discuss the most general version of the one-
site QC-TTNS algorithm in which the local properties of the
tensors can be different for each orbital. By studying the ionic-
neutral potential curve crossing of the LiF we present an
optimization strategy to set up tensor topologies which reflect
the structure of the entanglement bonds between the molecular
orbitals as the bond length between the Li and F is stretched.
This problem is complicated enough to show that the
optimization of the tree topology and the sweeping procedure
is far from trivial and requires much more care than in the case
of the QC-MPS. Therefore, we also compare the MPS-
(DMRG) and TTNS convergence properties by changing the
order of the tensors only. In our study, we calculate excited
states as well, i.e., the two lowest 1Σ+ states of LiF and the
corresponding one- and two-orbital entropy functions.8,14 We
use this example to demonstrate that the TTNS wave function
is very stable even when the wave function changes dramatically
transversing through an avoided crossing. The localization of
the avoided crossing in terms of orbital entropy is also
discussed.
The setup of the paper is as follows. In Section II we briefly

describe the main steps of the QC-TTNS algorithm and the
details of the numerical procedure used to determine the
optimal tensor arrangements. Section III contains the numerical
results and analysis of the observed trends of the numerical
error. The summary of our conclusions is presented in Section
IV.

II. NUMERICAL PROCEDURE
A. Hamiltonian and Target States. In the QC-DMRG

and QC-TTNS applications, the electron−electron correlation
is taken into account by an iterative procedure that minimizes
the Rayleigh quotient corresponding to the Hamiltonian of the
system:
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This Hamiltonian determines the exact states of the given
molecule. In eq 1, ciσ

† and cjσ create and annihilate an electron
with spin σ, respectively. Tij denotes the matrix elements of the
one-particle Hamiltonian, which is comprised of the kinetic
energy and the external electric field of the nuclei, and Vijkl
stands for the matrix elements of the electron repulsion
operator, defined as
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The matrix elements Tij and Vijkl are expressed in a molecular
orbital (MO) basis obtained by CASSCF optimizations. The
benchmark energies are computed with the same set of MO’s.
(For more details, see section Basis states.)
In the present version of our TTNS method non-Abelian

symmetries40−44 are not implemented yet, thus in order to
specify the eigenstates we have fixed the number of electrons
with up and down spins and shifted the triplet levels from the
low lying spectrum by adding a term ∑i,j

δ (Si
+Sj

− + Si
−Sj

+) with Si
+

= ci↑
† ci↓ and δ = 1 to the Hamiltonian given in eq 1.

Nevertheless, we have also checked the total spin of each state
by calculating the expectation value of the S2 = ∑i,jSi

−Sj
+ +

∑i,jSi
zSj

z + ∑iSi
z operator which is equal to S(S + 1) in Hartree

atomic units, i.e., zero for a singlet state and two for a triplet
state.
In the MPS-based approaches, several eigenstates can be

calculated within a single calculation. Therefore, we have
formed the reduced density matrix of the target state, ρ, from
the reduced density matrices of the lowest n eigenstates as ρ =
∑γpγργ with γ = 1...n and pγ = 1/n at each bond length. In the
case of our QC-DMRG code the orbital spatial symmetry of the
target state can also be fixed39 in which case the first two lowest
lying 1Σ+ states can be calculated directly by using only n = 2
eigenstates of the related subspace of the Hamiltonian. In the
present version of our TTNS method, however, orbital spatial
symmetry is not implemented yet. Therefore, we had to target
the four lowest lying states with n = 4 due to the fact that there
are two additional eigenstates between the two lowest 1Σ+

states. For more detailed descriptions of target states we refer
to the original works and reviews.1,3,45

B. Basis States. Atomic orbital (AO) basis was adopted
from the work of Bauschlicher and Langhoff46 in order to
match with previous DMRG computations.3 The AO basis set
of ref .46 is suitable to describe the ionic and covalent LiF states
as well. It consists of 9s and 4p functions contracted to 4s and
2p functions on the Li atom and 9s, 6p, and 1d functions
contracted to 4s, 3p, and 1d on the F atom. For more details of
the AO basis set we refer to the original publication.46

The two lowest 1Σ+ states of LiF around the equilibrium
bond length can be qualitatively described by the
1σ22σ23σ24σ21π4 and 1σ22σ23σ24σ15σ11π4 configurations.46

For this reason, the MO basis was obtained by CASSCF
optimizations, with two active electrons on two active orbitals
(4σ and 5σ) (CAS(2,2)). MO’s were optimized simultaneously
for both 1Σ+ states. Tij and Vijkl matrix elements of eq 1 are
expressed in this MO basis. CASSCF optimizations were
carried out with the GAMESS-US quantum chemistry pack-
age.47

Orbitals 1σ, 2σ, and 3σ were kept frozen in all presented
configurational interaction (CI), MPS(DMRG), and TTNS
computations. Six of the valence electrons were excited to all
orbitals in the CI calculation, which we use as reference to
compare the TTNS results to. Therefore, the active space in all
CI, MPS(DMRG), and TTNS consists of 6 electrons and 25
orbitals: CAS(6,25). A smaller active space was also formulated
for illustration purposes (Figure 11), that consists of 6 electrons
and 18 orbitals: CAS(6,18). In this active space, besides the
above-mentioned three occupied σ orbitals, the highest lying
seven virtual orbitals were also kept frozen. CI results were
obtained by utilizing the determinant-based full-configuration
interaction (full-CI) program of Z. Rolik (Budapest), which is
based on the CI algorithm of Olsen et al.48 C2v point group
symmetry constraints were assigned during this study.

C. The QC-TTNS Method. In this section, we present the
brief overview of the most general QC-TTNS algorithm. For
the full description of the method we refer to the original
work.33 In our implementation, we allow tensors to have orbital
dependent coordination number, zi, in contrast to the
implementation of Nakatani et al.34 which is an efficient
extension of the DMRG method using fixed number of blocks.
Our main motivation is to develop an algorithm which reflects
the entanglement structure of the molecule under study as
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much as possible (see Figure 9). The computational cost in one
step of the algorithm scales as Dz

i
+1 where D is the dimension

of the auxiliary space (in the DMRG community referred as
block states), while the long-range correlation deviates from the
mean-field value only polynomially with distance. Therefore,
there is a trade-off between entanglement localization and
increased order of the tensors. The construction of the optimal
tensor network is thus a far more complex task than it is in the
case of the MPS based approaches.
In a full-CI treatment, a given eigenfunction of eq 1 can be

written in a full tensor form as

∑ α α|Ψ⟩ = | ⟩
α α

α αU , ..., N
,...,

... 1

N

N

1

1
(2)

where Uα1...αN is a tensor with order N, and |αi⟩ represents basis
states at molecular orbital i. In our study, a molecular orbital
can be empty, singly occupied with up or down spins, or doubly
occupied, thus the dimension of the local Hilbert space, d, is
four. Since the number of independent parameters in U scales
exponentially with N it is mandatory to approximate such high
dimensional tensor with a proper factorization in terms of lower
dimensional tensors. In the MPS representation, U describes a
matrix network, i.e., it emerges from contractions of a set of
matrices {A1,...,AN}, where

α
−

A [ ]i
i m m,i i1 (3)

is a matrix at each vertex i of the network, with 2 virtual indices
mi−1,mi of dimension D and one physical index αi of dimension
d, thus

∑ α α α|Ψ⟩ = | ⟩| ⟩ | ⟩
α α

α α αA A A... ...
d

N
N

,...,

1 2
1 2

N

N

1
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The schematic plot of the matrix product state (MPS) network
is shown in Figure 1.

A natural extension of the MPS approach is to use higher
order tensors. In this work, we form a tree tensor network in
which all sites in the tree represent physical orbitals and in
which entanglement is transferred via the virtual bonds that
connect the sites as shown in Figure 2.
Our motivation is to treat models in which orbitals have

varying degrees of entanglement; positions closer to the center
of the tree should be better suited to represent more entangled
sites. An additional motivation is to take advantage of the
property of the tree tensor network ansatz that the long-range
correlations differ from the mean-field value polynomially with
distance rather than exponentially with distance as for MPS. In
our algorithmic approach to optimize the tree tensor network,
we use tools similar to those used in refs 35, 36, 37, and 38 and
optimize the network site-by-site as in the DMRG. Therefore,

Uα1...αN can describe a tree tensor network, i.e., they emerge
from contractions of a set of tensors {A1,...,AN}, where

αA [ ]i
i m m... z1 (5)

is a tensor with z + 1 indices, at each vertex i of the network
according to Figure 3. Each tensor has z virtual indices m1...mz

of dimension D and one physical index αi of dimension d, with
z being the coordination number of that site. The coefficients
Uα1...αN are obtained by contracting the virtual indices of the
tensors according to the scheme of a tree tensor network (see
Figure 3). The structure of the network can be arbitrary, and
the coordination number can vary from site to site. The only
condition is that the network is bipartite, i.e., by cutting one
bond, the network separates into two disjoint parts. Therefore,
the TTNS network does not contain any loop (see Figure 3)
which allows an exact mathematical treatment.29,31 For z = 2,
the one-dimensional MPS-ansatz used in DMRG is recovered.
Since entanglement is transferred via the virtual bonds that

connect the sites, it is preferable to put strongly correlated sites
close together, i.e. to minimize the number of bonds between
them. For z > 2 the number of virtual bonds required to

Figure 1. Schematic plot of the matrix product state (MPS) algorithm.
Each node is represented by a tensor of order 2 and the vertical line
the physical index α.

Figure 2. Schematic plot of a higher dimensional network, for
example, the tree tensor network state (TTNS) algorithm. Each node
is represented by a tensor of order zi, where zi is an orbital dependent
coordination number. The network supposed to reflect the
entanglement structure of the molecule as much as possible. The
vertical red lines denote physical indices αi, i ∈{1,N}. Entanglement is
transferred via the virtual bonds that connect the orbitals shown by
black lines. The central node is indicated by red contour.

Figure 3. Top view of the tree tensor network (TTNS) algorithm with
fixed coordination number, (a) zi = 3 and (b) zi = 4. The structure of
the tensors is shown in (c) and (d). The bonds indicate the virtual
indices m1,...,mz and the circle the physical index α.
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connect two arbitrary orbitals scales logarithmically with the
number of orbitals α, whereas the scaling is linear in N for z =
2. This can be seen by considering a Cayley-tree of depth Δ, as
shown in Figure 3. The number of sites in the tree is

∑= + − = − −
−=

Δ
−

Δ
N z z

z z
z

1 ( 1)
( 1) 2

2j

j

1

1

and thus, the maximal distance between two orbitals, 2Δ, scales
logarithmically with N for z > 2. Because of this logarithmic
scaling, the expectation value of a long-range correlations differs
from the mean-field result by a quantity that scales
polynomially with distance. This contrasts the MPS ansatz (z
= 2) that shows an exponential decay of the difference with
distance.33

The TTNS algorithm consists in the variational optimization
of the tensors Ai in such a way that the energy is minimized
(with the constraint that the norm of the state remains
constant). This is equivalent to optimizing the functional

= ⟨Ψ| |Ψ⟩ − ⟨Ψ|Ψ⟩ −F H E( 1)

where Ψ = Ψ(A1,...,AN). This functional is nonconvex with
respect to all parameters {A1,...,AN}. However, fixing all tensors
Ak except Ai, due to the tensor network structure of the ansatz,
it is quadratic in the parameters Ai associated with one lattice
site i. Because of this, the optimal parameters Ai can simply be
found by solving a generalized eigenvalue problem

⃗ = ⃗A E Ai i i i. For a bipartite network, it is always possible
to assume a gauge condition so that = 1i and thus reduce the
generalized eigenvalue problem to an ordinary one.33 The
concept of the algorithm is to do this one-site optimization site-
by-site until convergence is reached. The challenge that remains
is to calculate the effective Hamiltonian i of the eigenvalue
problem. In principle, this is done by contracting all indices in
the expression for the expectation value ⟨Ψ|H|Ψ⟩ except those
that connect to Ai. By interpreting the tensor Ai as a qDz-
dimensional vector A⃗i, this expression can be written as

⟨Ψ| |Ψ⟩ = ⃗ ⃗†
H A Ai i i. Since ⟨Ψ|Ψ⟩ = ⃗ ⃗†

A Ai i i and = 1i , the
functional F attains its minimum when

⃗ = ⃗A EAi i i

Due to the bipartite structure of the tensor network, the
calculation of i can be performed efficiently, i.e., on a time
that scales polynomially with N and D.
This TTNS algorithm is similar to a DMRG calculation with

z blocks instead of two, where a block consists of all of the sites
within one of the branches emerging from site i (see Figure
4(a)). The wave function is then formed as

∑ ϕ φ φ|Ψ⟩ = | ⟩ ⊗ | ⟩ ⊗ ··· ⊗ | ⟩
=m m

D

m m m m
z

,..., 1
...

1

z

z z

1

1 1
(6)

where |ϕm
γ ⟩ (m = 1,...,D) is the basis in environment block γ (γ

= 1,...,z) and | φα1...αz ⟩ is the state of site i. Matrix i is equal to
the identity if the basis |ϕm

j ⟩ in each environment block is
orthonormal. This can always be achieved, because of a gauge
degree of freedom in a TTNS:21,33,49 it is possible to insert at
any bond a resolution of the identity 1 = VW and contract the
matrices V and W with the adjacent tensors Ai (see Figure 4b).
This does not change the state but changes the tensors Ai and
the basis states |ϕm

j ⟩ of the environment blocks. It can be shown

that it is always possible to find gauge transformations that
orthonormalize the basis states of the environment blocks.33

Thus, by assuring that the gauge condition is always satisfied
in the course of the algorithm, the only term that must be
calculated is the effective Hamiltonian i. This term is
obtained by contracting all tensors except Ai in the expectation
value ⟨Ψ|H|Ψ⟩ as shown in Figure 6. Indices (α̃i, m̃i) form the
row indices and (αi,mi) the column indices of i, such that

⟨Ψ| |Ψ⟩ = ⃗ ⃗†
H A Ai i i is fulfilled. Hamiltonian H is a sum of

O(N4) two-point and four-point Fermionic interaction terms
ciσ
† cjσ and ciσ

† cjσ′
† ckσ′clσ (σ,σ′ ∈ {↑,↓}), as defined in eq 1. The

Fermionic nature of the terms can be handled by mapping
them to nonlocal bosonic operators via Jordan-Wigner
transformations. Writing H = ∑rhr with hr denoting the
Jordan-Wigner transformed two- and four-point interaction
terms, the effective Hamiltonian i transforms into a sum

= ∑i r i r, , where

⟨Ψ| |Ψ⟩ = ⃗ ⃗†
h A Ar i i r i,

Due to the structure (6) of the TTNS, each effective
Hamiltonian i r, factorizes into a tensor product of z matrices

= ⊗ ··· ⊗i r i r i r
z

, ,
1

,

where each matrix γ
i r, corresponds to the matrix elements of hi

with respect to the basis in environment block γ:

φ φ= ⟨ | | ⟩γ γ γh[ ]i r mn m r n,

Graphically, the evaluation of ⟨ϕm
γ |hr|ϕn

γ⟩ corresponds to the
contraction of a three-layered tensor network according to the
structure of the branch in block γ, as depicted in Figure 5. This
network can be contracted efficiently by starting from the leaves
and working in the inward direction.
With TTNS we can easily enforce the U(1) symmetry that is

fulfilled by Hamiltonian (1), i.e. the conservation of the number
of particles. For this, the tree graph has to be made directed
(see Figure 4a), such that all sites (except site i that is
optimized) have z−1 incoming and one outgoing bond. Thus,
each virtual index of a tensor Ai is equipped with the additional
information on whether it is “incoming” or “outgoing”. Each

Figure 4. (a) Separation of the state into z blocks plus the site under
optimization, as described by eq 6. (b) Natural freedom in the tensor
network: insertion of a matrices V andW fulfilling VW = 1 at one bond
leaves the state invariant. The contraction of A with V forms the new
tensor A′ on the left-hand side; the contraction of B with W forms the
new tensor B′ at the right-hand side.
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virtual index connecting to block γ (γ = 1,...,z) is split into an
index tuple (mγ, nγ

↑, nγ
↓). Assuming that the index connecting to

block γ = 1 is the outgoing index, we require that n1
↑ = n2

↑ + ...
+nz

↑ + n↑ (α) and n1
↓ = n2

↓ + ... + nz
↓ + n↓ (α). n↑(α) (n↓(α))

denotes the number of electrons with spin up (down)
corresponding to the physical index α. Thus, for γ = 2,...,z, nγ

↑

(nγ
↓) counts the number of up-electrons (down-electrons)

within branch γ. The index n1
↑ (n1

↓), on the other hand, is equal
to the number of electrons with spin up (down) in all the
branches plus the number of electrons at site i.
Besides the ability of targeting a state with a specific total

number of up- and down-electrons N↑ and N↓ utilization of
symmetries also gives a performance boost to the algorithm
since the virtual dimension effectively increases from D to D(N↑
+ 1)(N↓ + 1), and even further if spatial symmetry is also
utilized. As an example, for the problem considered in the
paper D = 4 would correspond to M = 64 DMRG block states.

Furthermore, if spatial symmetry is also exploited this increases
to M = 256 in the C2v point group. In addition, the inclusion of
the particle-number conservation also simplifies the treatment
of the Fermionic nature of the electrons. The main idea is
depicted in Figure 7 for the interaction c7

†c15: with an

appropriately chosen numbering of the Fermions, each sub-
branch that has no Fermionic support either has only identities
acting on the sites or only matrices Z stemming from the
Jordan-Wigner transformation (Zαβ = δαβ(−1)n↑(α)+n↓(α)). The
sub-branches including only identities simplify to the identity
because we work in a gauge in which the basis in each
environment block is orthonormal. As shown in ref 33, the Z
operators can be “moved” to the virtual bonds and, since Z2 =
1, all of them except one cancel (see Figures 5 and 7). What
remains is a sub-branch that includes only identities, which
reduces to the identity because of the orthonormalization of the
state. Thus, for a Fermionic two-site interaction, it is sufficient
to take into account the path connecting the two sites. In this
way, the treatment of long-range Fermionic interactions is
feasible with the same numerical effort as the treatment of long-
range spin interactions.
The numerical effort of the algorithm has two major

contributions. On the one hand, the bond-dimension (tensor
rank) D is crucial: the numerical effort for calculating one term
of the effective Hamiltonian by tensor contraction scales as
Dz+1. On the other hand, this calculation has to be performed
for each term in the Hamiltonian, such that naively a scaling
N4Dz+1 is expected. Fortunately, the same summation tricks as
described in refs 2 and 50 can be applied, such that the scaling
reduces to N2Dz+1. Since O(N) iteration steps are required for
convergence, the overall time of the algorithm will scale as
N3Dz+1. Therefore, in general tensor ranks decrease by going
from MPS to TTNS, but the order of the tensors increases.
However, the number of tensors with z = 1 lying on the
boundary of the network increases exponentially when larger
and larger systems are considered, and there is an expected
crossover in CPU time between the full sweep of the MPS and
TTNS. It is worth mentioning that if D ≥ d, orbitals lying on
the boundary are excluded automatically from the optimization.

D. Network Optimization by Entanglement Local-
ization. The amount of contribution to the total correlation
energy of an orbital can be detected qualitatively by the single-

F igure 5 . Forma t i on o f t he effe c t i v e Hami l t on i an
= ⊗ ⊗i r i r i r i r, ,

1
,

2
,

3 with respect to the Fermionic interaction hr
= c7

†c15. Between sites 7 and 15 a chain of Z-matrices appears due to
the Jordan-Wigner transformation. The sites on which the interaction
has support are marked in red. Each open (filled) circle in the tensor
network corresponds to the contraction of the layered structure of
tensors shown in (b).

Figure 6. Construction of the effective Hamiltonian with respect to
site i. (a) Ket- and Bra-TTNS with tensor Ai singled out. Ai has
physical index αi and connects with its virtual indices mi to the
remaining network with tensors A1,...,Â,...,AN indicated by the blue box.
(b) Expectation value ⟨Ψ|H|Ψ⟩ with respect to the TTNS written in
(a). The effective Hamiltonian i is obtained by contracting all
tensors except Ai (the tensors surrounded by the green polygon).

F igure 7 . Forma t ion o f the effe c t i v e Hami l ton i an
= ⊗ ⊗i r i r i r i r, ,

1
,

2
,

3 with respect to the Fermionic interaction hr
= c7

†c15 with particle number conservation taken into account. The sites
on which the interaction has support are marked in red. All branches
marked by dotted lines and circles yield the identity when contracted.
The parity operator Z̃ is contracted to the virtual bond.
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orbital entropy, si = −Trρi ln ρi where ρi is the reduced density
matrix at orbital i. The two-orbital entropy is constructed
similarly using the reduced density matrix, ρij, of a subsystem
built from orbitals i and j, and the mutual information Iij = sij −
si − sj describes how orbitals are entangled with each other as
they are embedded in the whole system. For more detailed
derivations we refer to the original papers.8,12,14,15 Therefore,
these quantities provide chemical information about the system,
especially about bond formation and nature of static and
dynamic correlation.8,16,17,51 As an example, si and Iij are shown
in Figures 8 and 9, respectively, for the equilibrium bond length

r = 3.05 and at large separation r = 13.7. The total quantum
information encoded in the wave function is given by the sum
of the orbital entropy, i.e., Itot = ∑isi, which is twice as large for
the stretched geometry as compared to the equilibrium case.
It is clear from Figure 9 that some orbitals are strongly

entangled with several other orbitals, while some orbitals are

entangled with only a few others and some are almost
disentangled from the system. Therefore, the obvious choice is
to allow the coordination number, zi, to vary from orbital to
orbital. In the following analysis, however, we restrict ourselves
to a fixed zi = 3 case in order to allow a more direct analysis
when data are compared to the zi = 2 MPS case.
Since both DMRG and TTNS rely on the systematic

application of the Schmidt-decomposition, the required
computational resources to reach a given error margin is
determined by the amount of entanglement in the system.39

This can be manipulated by changing the basis functions33,52 or
by changing the tensor topology. For the latter case, the
entanglement length

∑= ×η
ηI dCost

ij
ij ij

(7)

should be minimized in order to localize the entanglement in
the system, where dij is the distance function between orbital i
and j depending on the tensor topology, and η is some
exponent that we set to 1 or 2. For the one-dimensional case,
i.e., for DMRG and MPS dij = |i − j|. For the tree topology dij
can be computed as the distance from the center to i, plus the
distance from the center to j, minus twice the distance from the
center to their lowest common ancestor. The lowest common
ancestor can be obtained within a linear preprocessing time
O(N) and a constant query time using the Berkman’s
algorithm.53 As an example, the optimized tensor topologies
at the equilibrium bond length r = 3.05 are shown in Figure 10
for the one-dimensional topology and for the tree topology.

In practice, first we performed a quick and fast DMRG full
sweep with a fixed small number of block states (M ≃ 16,...,64)
using the ordering of orbitals for which the Tij and Vijkl integral
files were generated by the GAMESS-US program in order to
determine the one- and two-orbital entropy profiles qual-
itatively. For all subsequent calculations we rendered orbitals
with descending orbital entropy values to form the Complete
Active Space CAS-vector that was used during the config-
uration interaction based dynamic extended active space (CI-
DEAS) procedure.12 We also determined the mutual
information, Iij, and the orbitals were reordered by minimizing
the entanglement length given by eq 7. In the one-dimensional
case either the graph Laplacian can be used or by other
heuristic methods to reduce the spectral envelope of Iij, i.e., to
make it as diagonally dominant as possible.54,55 In the case of
the tree network, the optimization is less straightforward, but as
a rule of thumb we placed orbitals with largest entropy values
close to the center of the network while keeping orbitals with
large Iij values close together (see Figure 10(c)). In the

Figure 8. One orbital entropy profile for the LiF molecule at bond
length (a) r = 3.05 and at (b) r = 13.7. Symbols label the irreducible
representations of the molecular orbitals in the C2v point group.

Figure 9. Mutual information represented as a two-dimensional
weighted graph for the LiF molecule at bond length (a) r = 3.05 and at
(b) r = 13.7. Colors indicate different strengths of Iij, and the symbols
label the irreducible representations of the molecular orbitals in the C2v
point group.

Figure 10. Optimization of tensor topology by minimizing the
entanglement length in the system at the equilibrium bond length r =
3.05. (a) and (b) are for the one-dimensional MPS like topology for
the original ordering and for the optimized ordering, respectively. (c)
Shows the optimized topology on the tree (small dots indicate not
used grid points of the tree). The total quantum information Itot does
not change, but the entanglement length calculated with η = 1 and 2
indicated by Cost1 and Cost2 drops significantly.
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subsequent step, accurate DMRG (with optimized CAS vector)
or MPS/TTNS calculations were performed.

III. NUMERICAL RESULTS
In this work we have used two codes. Our QC-DMRG program
has been developed for a long time, and it includes advanced
features like the dynamic block state selection (DBSS)
approach,13,39 the CI-DEAS procedure,12 and the treatment
of orbital spatial symmetries which are not implemented yet in
the TTNS code. Therefore, the entropy functions were
calculated by the QC-DMRG code to provide initial data
quickly for network optimizations.
A. Variable Tensor Orders and Convergence Proper-

ties. In order to present a more systematic analysis on the
separated and combined effects of the network optimization
with orbital dependent coordination number and the
permutation of the orbital ordering in a given network, we
calculated the ground state energy of CAS(6,18) with D = 4 for
three different network topologies shown in Figure 11. Gradual
increase in the rate of convergence can be achieved by
optimizing the number of components with zi = 3 together with
the ordering of the orbitals in that given network topology as it
is shown in Figure 11(d).
B. Ground State and Excited States. The rest of the

analysis for a fair treatment is based on the TTNS code alone
using fixed zi = 2 (MPS) and zi = 3 (TTNS) coordination
number (except for the boundaries) while keeping all other
parameters of the algorithm the same.
The potential energy curve (PES) can be calculated for an a

priory set error margin using the DBSS procedure.3 Therefore,
we have easily reproduced the full-CI energies up to 10−8 au in
absolute error. In the following, however, we have used a small
fixed number of block states, i.e., fixed bond dimension, in
order to demonstrate the benefits underlying the TTNS
geometry. The four lowest lying eigenstates (γ = 1,...,4) are
shown in Figure 12 calculated by the QC-DMRG method using
M = 64 block states or alternatively by the TTNS approach
with zi = 2 and D = 4. We have confirmed that each state is a
singlet with S2 = 0.
The relative error of the ground state (γ = 1) and the third

excited state (γ = 4), ΔEγ = |Eγ − EFCIγ|/EFCIγ, are shown in
Figure 13. The open symbols stand for the MPS solution, while
the filled symbols indicate the TTNS result. It is clear from the
figure that the accuracy of the energy dropped for both states
by at least an order of magnitude. For the ground state close to
the equilibrium bond length the change is almost 2 orders of
magnitude. It is important to emphasize again that all
parameters of the calculations were kept fixed except that we
used the optimized one-dimensional MPS-like topologies or the
two-dimensional optimized TTNS-like topologies. The net-
work topologies for both cases were optimized for each bond
length using the procedure outlined in Section II.
In the MPS based DMRG method the matrices of the one-

dimensional tensor network are optimized iteratively by
traversing through the network starting from the left boundary
until the right boundary is reached. In the following steps the
same procedure is repeated but in the reverse direction. This
systematic optimization procedure is called as sweeping. The
relative error of the two 1Σ+ states as a function of iteration
steps is shown in Figure 14 for the MPS case with zi = 2 and D
= 4. It can be seen in the figure that the relative error of the
ground state energy drops quickly as a function of iteration
steps, and it saturates after some 20 iterations. In contrast to

this, the convergence of the third excited state is somewhat
slower. In addition, the method lost the target state for certain
interaction steps, i.e., for certain network configurations. This is
due to the very low bond dimension used in the test
calculations. When we used larger bond dimension or included
point group symmetries, this problem was fully eliminated.
In the case of the tree-network, there is more freedom to

choose the optimal sweeping procedure, i.e., to choose the
optimal path through which the network is traversed. In the
present work, we have swept through the network by going

Figure 11. The ground state energy for LiF CAS(6,18) with D = 4 at r
= 3.05 for three different network topologies using orbital dependent
coordination numbers.
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recursively back and forth through each branch. Therefore,
according to the labeling of the orbitals on the lattice shown in
Figure 15 one sweep goes through the orbitals as 1 2 3 4 5 4 6 4
3 7 8 7 3 2 9 10 9 11 9 2 1 12 13 14 13 15 13 12 16 17 16 18 16
12 1 19 20 21 20 22 20 19 23 24 23 25 23 19. The main
advantage of this path is that highly entangled orbitals located
close to the center of the network are optimized several times

in a full sweep. The relative error of the two 1Σ+ states as a
function of iteration steps obtained by the TTNS method with
zi = 3 and D = 4 is shown in Figure 16. It can be seen that the

relative error of the ground state energy reached the saturation
value of the MPS calculation (shown in Figure 14) after a few
iteration steps. However, unlike the MPS result the error
dropped further for subsequent iteration steps until a much
lower saturation value was reached. The overall improvement
compared to the MPS case was almost 2 orders of magnitude.
Similar improvement was observed for the excited state,
although, due to the low bond dimension the target state was
lost again for certain interaction steps, i.e., for certain network
configurations.

C. Locating Avoided Crossing by Entanglement. Since
the one- and two-orbital entropy functions were calculated to
optimize network topologies, they can also be used to locate
the avoided crossing. For problems in condensed matter
physics the one- and two-orbital entropy functions and the
block entropy are used to locate quantum phase transitions.56,57

For translationally invariant systems the single-orbital entropy
function is the same for all sites, while in a chemical system it is
orbital dependent. Therefore, the behavior of Itot as a function
of bond length can be used to detect and locate transition
points where the wave function changes dramatically. In Figure
17 Itot is shown as a function of bond length. It can be seen that
Itot has a cusp-like structure at r = 11.86 indicating the position
of the avoided crossing.

Figure 12. The energy of the four lowest lying states as a function
bond length.

Figure 13. The relative error of the energy of the two lowest lying 1Σ+

states as a function of bond length using the Tree-TNS with z = 2 and
z = 3 with D = 4. For z = 2, the one-dimensional MPS-ansatz used in
DMRG is recovered.

Figure 14. The relative error of the energy of the ground state and the
third excited state as a function of iteration step with zi = 2 and D = 4
for a few selected bond lengths.

Figure 15. The figure shows how the tree network is traversed through
in a full sweep.

Figure 16. Similar to Figure 14 but for the TTNS method with z = 3.
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IV. CONCLUSION
The present paper has been devoted to the application of the
quantum-chemistry tree tensor network state (QC-TTNS)
method to calculate the potential energy curve in the vicinity of
the ionic−covalent avoided crossing in LiF. We have discussed
the main features of the most general version of the QC-TTNS
algorithm in which the local properties of the tensors can be
different for each orbital. The optimized tensor topologies,
which reflect the structure of the entanglement bonds between
the molecular orbitals, were determined by minimizing the
entanglement length in the system as the bond length between
the Li and F was stretched. In order to compare tensor
topology effects only, we have kept all parameters of the
algorithms fixed and used a very small bond dimension or
alternatively a very small number of block states. By comparing
the MPS(DMRG) and TTNS convergence properties we have
demonstrated that the TTNS approach can converge to a
significantly lower energy. Although the tensor contraction
scales as Dz+1, the TTNS topology offers a more optimal
network structure since the number of components with zi = 1
lying on the boundary scales exponentially with the system size.
As a consequence we have found that the relative error of the
energy of the ground state as well as the excited states can be
improved by an order of magnitude or more for the same value
of D. This also indicates that the MPS result can be reproduced
with a significantly lower bond dimension using the TTNS
method.
Our QC-TTNS approach seems to be a promising direction

reflected by the stability and fast convergence of the new
method even for systems in which the wave function character
changes as a function of bond length, especially in the region of
an avoided crossing. The underlying benefits of TTNS is,
however, far from fully exploited and the optimization of the
method is far more complicated. Due to the more advanced
topology, several optimization tasks and problems arise which
do not have counterparts in the MPS formulation.
Extension of this work using more complex systems and

orbital dependent coordination number is under progress.
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(3) Legeza, Ö.; Röder, J.; Hess, B. A. QC-DMRG study of the ionic-
neutral curve crossing of LiF. Mol. Phys. 2003, 101, 2019−2028.
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(13) Legeza, Ö.; Soĺyom, J. Quantum data compression, quantum
information generation, and the density-matrix renormalization-group
method. Phys. Rev. B 2004, 70, 205118.
(14) Rissler, J.; Noack, R. M.; White, S. R. Measuring orbital
interaction using quantum information theory. Chem. Phys. 2006, 323,
519−531.
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