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Abstract

We present the crossover line between the quark gluon plasma and the hadron
gas phases for small real chemical potentials. First we determine the effect of
imaginary values of the chemical potential on the transition temperature using
lattice QCD simulations. Then we use various formulas to perform an analytic
continuation to real values of the baryo-chemical potential. Our data set main-
tains strangeness neutrality to match the conditions of heavy ion physics. The
systematic errors are under control up to µB ≈ 300 MeV. For the curvature of
the transition line we find that there is an approximate agreement between val-
ues from three different observables: the chiral susceptibility, chiral condensate
and strange quark susceptibility. The continuum extrapolation is based on Nt =
10, 12 and 16 lattices. By combining the analysis for these three observables we
find, for the curvature, the value κ = 0.0149± 0.0021.

1. Introduction

For heavy ion physics, the most important feature of the phase diagram
of Quantum Chromodynamics (QCD) is the line that separates the hadron gas
phase from the quark gluon plasma, and the conjectured critical end-point along
this line separating cross-over from first order transition [1].

The qualitative form of the phase diagram was sketched four decades ago
[2] as a consequence of Hagedorn’s exponential spectrum of hadron masses [3].
The order of the transition at zero density has been determined much later,
for Nature’s selection of quark masses the two high temperature phases are
connected through a cross-over [4]. In the absence of a real transition the cross-
over temperature can be determined but it is ambiguous [5]. Observables that
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are related to the spontaneous breaking of chiral symmetry (chiral condensate
and its susceptibility) give a temperature around 155 MeV [5–8].

Beyond the transition temperature Tc at vanishing density, the chiral cross-
over line is described by a standard curvature parameter (κ) and higher order
terms:

Tc(µB)

Tc(µ = 0)
= 1− κ

(
µB

Tc(µB)

)2

+ λ

(
µB

Tc(µB)

)4

. . . (1)

Extracting Tc(µB) from first principles is very challenging. Direct Monte-
Carlo calculations are hindered by the sign problem. Attempts to reach non-
vanishing µB on the lattice include reweighting of the generated configurations
[9–13], Taylor expansion in µ [14–18], analytic continuation from imaginary µ
[19–26], use of the canonical ensemble [27–29] and density of state methods [30,
31]. More recent approaches are represented by the use of dual variables [32], and
the complex Langevin equation [33, 34]. However, their application to QCD with
physical parameters and controlled discretization has not yet been achieved.
The phase diagram was frequently studied in various model frameworks, see
e.g. Ref. [1] and references therein. Recently, functional methods have also
been applied to QCD [35–37].

For the first few coefficients in Eq. (1) it is enough to study QCD at small
µB , for which there are several methods. κ can be and has been determined
by calculating the µB-derivative of the chiral condensate using only µB = 0
ensembles [18, 38]. However, the signal/noise ratio of higher µB derivatives is
suppressed with powers of the volume, making this approach impractical beyond
µ2
B order. Lattice calculations are perfectly feasible, though, with imaginary

values of the chemical potential [10, 19, 39]. Setting µB = iµIB one avoids the
sign problem and the transition line can be studied [40–43].

In this study we follow the imaginary-µB approach and go beyond previ-
ous studies by a) performing a continuum approximation with lattices up to
Nt = 16; b) tuning µS(µB , T ) such that the strangeness neutrality condition
is maintained; c) using several observables: chiral condensate, chiral suscepti-
bility and strange susceptibility; d) comparing the Taylor and the imaginary-µ
method for the strange susceptibility; e) calculating the systematic errors from
scale setting, fit ranges, analytic formulas, etc.1

This Letter first gives a brief account of the necessary lattice simulations at
zero and finite temperatures. Then the method for setting strangeness neutrality
is explained. Finally, we give a detailed description of the analysis and present
the continuum results for the curvature.

1During the writing of this manuscript a similar independent analysis, based on Nt =
6, 8, 10, 12 lattices and analytic continuation from imaginary µB appeared in arXiv [44]. Their
findings are similar to ours but the present analysis has finer lattices, smaller pion splittings
and significantly larger statistics.
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2. Simulation setup

This study is part of the 2nd generation staggered thermodynamics program
of the Wuppertal-Budapest collaboration [45]. We use a four times stout [46]
smeared (ρ = 0.125) staggered fermion action with 2+1+1 flavors, i.e. dynam-
ical up, down, strange and charm quarks. The gauge action uses the tree-level
Symanzik improvement. The two light quarks are degenerate, their masses and
the strange quark mass are tuned such that the physical pion and kaon mass
over pion decay constant are reproduced for every lattice spacing. For the zero
temperature runs we kept the volume large Lmπ > 4 in the entire lattice spac-
ing range of interest for this study: a = 0.2 . . . 0.063 fm. The charm mass was
set to mc/ms = 11.85 [47]. The simulation parameters are detailed in Ref [45].
The overall scale was determined from fπ. We used w0 as an alternative scale
setting for the analysis [48].

The chiral susceptibility as well as the chiral condensate require renormal-
ization. The additive divergence is removed by subtracting the vacuum expec-
tation value, the multiplicative divergence canceled by the same factor in the
bare quark mass [5, 6]. The renormalized condensate and its susceptibility are
dimensionful quantities, we use the fourth power of the pion mass to form a
dimensionless observable. We do not restrict the chiral susceptibility to the dis-
connected part. The third observable that we use to identify the µ-dependent
transition temperature is the strange susceptibility: thanks to the exact quark
number conservation it does not require renormalization.

At finite temperature, we have collected data at zero and at imaginary baryo-
chemical potentials. The µB = 0 data are used to perform a Taylor expansion
on one of our studied observables, and also to obtain a “baseline” for the shifted
transition temperatures at other µB values. The zero density configurations are
listed in Ref. [45].

The range of imaginary baryo-chemical potentials is limited by the Roberge-
Weiss transition at µB = iπT [49]. Below a limiting temperature TRW there is
no transition as Im [µB/T ] crosses π, but there is a first order transition above
TRW , where the imaginary density is non-vanishing and flips sign at µIB/T = π.
The nature of the transition at TRW depends on the quark masses [50–52]. For
intermediate masses the system at T = TRW and µIB/T = π will be critical,
and then in the entire range of smaller imaginary chemical potentials we will
see a crossover in temperature. Our data suggests that, for physical masses, the
latter scenario is realized, namely we are working with a cross-over for all used
µIB/T .

We selected six imaginary chemical potential values:

µ
(j)
B = iT

jπ

8
, j = 1, 2, 3, 4, 5, 6 (2)

We have all six j values for our Nt =8, 10 and 12 lattices and only j = 3 . . . 6
for Nt =16. The reason for this is the following: j = 0 . . . 5 data are needed to

determine the simulation parameters at finite imaginary µ
(j+1)
B such that the
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strangeness neutrality condition is fulfilled (see later). The continuum extrap-
olation for this analysis can be carried out using Nt =8, 10 and 12 lattices.
For the determination of the curvature κ of the phase diagram we also need
the finest Nt = 16 lattices. Since j =1 and 2 do not give a statistically very
significant contribution to κ we decided not to have these two points in our most
expensive Nt = 16 ensembles. Therefore, in order to have the same setup for
all lattice spacings, the κ determination is based on j = 3, 4 and 5. The j = 6
point is used to estimate higher order effects.

This range to find the κ coefficient (µIB/T . 2) is narrower than in ear-
lier studies (e.g. µIB/T . 2.36 in Ref. [42] and µIB/T . 2.6 in Ref. [43]).
A broader range of chemical potentials has the advantage that the numerical
derivative [Tc(µB) − Tc(0)]/µ2

B has a larger signal/noise ratio. However, more
non-linearities appear in a broader range and the results are more prone to sys-
tematic errors as the singularity at µIB ≈ πT is approached. This is the reason
(to avoid unwanted systematic uncertainties) why we have taken a smaller µIB
range and we use other methods to increase the signal/noise ratio.

We performed simulations on 323 × 8, 403 × 10, 483 × 12 and 643 × 16
lattices, at sixteen temperatures in the temperature range 135. . . 210 MeV. We
have generated between 10000-15000 Hybrid Monte Carlo updates, analyzing
every 5th of them (every 10th for Nt = 16). The configurations have been
evaluated for up to fourth order generalized quark number susceptibilities [53]
and for the chiral condensate and susceptibility. For µB = 0 we have 5 . . . 10
times more statistics, this ensures a solid guidance to the fitting procedure.

3. Strangeness neutrality

The most popular representation of the QCD phase diagram is in the tem-
perature vs. chemical potential plane. The baryo-chemical potential axis leaves
room for various interpretations. Ref. [42] used the full baryo-chemical poten-
tial including the strange quarks, i.e. µu = µd = µs = µB/3. In Ref. [43] both
µu = µd = µs = µB/3 and µu = µd = µB/3, µs = 0 were studied.

However, neither of the recipes µs = 0 or µs = µB/3 maps consistently to
the situation that is realized in experiment. In heavy ion collisions, non-strange
particles are colliding. Although ss̄ are generated in the collision, the net-
strangeness is zero. Therefore we want to tune the chemical potentials to such
values which guarantee strangeness neutrality. The light chemical potentials
are kept identical (µu = µd), which ensures isospin symmetry also at finite µB .
This corresponds to an experimental situation where Z = 0.5A. Alternatively,
one can achieve a different Z/A ratio corresponding to heavy nuclei by tuning
µu and µd appropriately. This possibility will be discussed later. Requiring
strangeness neutrality and fixing the value of Z/A (or alternatively the electric
charge/baryon number ratio) uniquely determines all three quark chemical po-
tentials as functions of µB . For the isospin symmetric case µu = µd = µB/3
so the only non-trivial task is to find the strange quark or strangeness chemical
potential.
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The strange quark chemical potential (µs) is related to the strangeness (µS)
and baryo-chemical potential (µB) as µs = µB/3 − µS . Then µs = µB/3
approximates strangeness neutrality at low temperature, and µs = 0 at high
temperature. In this work we determine the strangeness neutral trajectory
µS(µB , T ) from lattice simulations.

It is relatively straightforward to perform Taylor expansions from µB = 0
on the trajectory that respects strangeness neutrality. For the equation of state
[54, 55] and for fluctuations relevant for calculating freeze-out parameters in
heavy ion collisions [53, 56] this procedure is already standard.

For actual simulations at finite µIB the strange chemical potential has to be
fine tuned for every temperature, baryo-chemical potential and lattice spacing.
We solved this challenge by solving the

d

dµIB

∂ logZ

∂µS
= 0 , (3)

differential equation discretized in µB with the trivial initial condition ∂ logZ/∂µS =
0 at µIB = 0. This equation simply states that the µIB derivative of strangeness
is zero. Using the 2nd order explicit Runge-Kutta scheme, we determine µIS(µIB)
using the prescription:

µIS(µIB + ∆µIB) = µIS(µIB −∆µIB)− 2
χ11
SB

χ2
S

∣∣∣∣
µI
B

∆µIB , (4)

with the step size ∆µIB/T = π/8 (see Eq. 2). For the initial step (µIB/T =
∆µIB/T ) we used the high-statistics µB = 0 runs and NLO Taylor expan-
sion. Each step using Eq. (4) requires a simulation at µIB and the evalua-
tion of the 2nd order fluctuations: χ11

SB = 1/(TV )∂2 logZ/∂µS∂µB and χS2 =

1/(TV )∂2 logZ/∂µ2
S . This method would be O(∆µIB

2
) accurate only, but as an

additional correction, we do a small extrapolation for both terms on the RHS
of Eq. (4) after each simulation so that the remaining strangeness neutrality
violation is not propagated to the next step. For this extrapolation, we need

higher order fluctuations [53]. This combination is O(∆µIB
3
) accurate in the

complete µIB range. The resulting µS(µB , T ) function is interpolated in T and
extrapolated in 1/N2

t and the resulting smooth function is used to start the
simulations at µIB + ∆µIB . In Fig. 1 we show the resulting strangeness chemical
potential.

4. Analysis details

We calculate the curvature of the phase diagram from three observables. We
calculate statistical and systematic errors for all three.

1) Our first observable is the chiral susceptibility χψ̄ψ/m
4
π. As discussed

previously, it requires additive and multiplicative renormalization. For details
on this procedure see Ref. [7]. The chiral susceptibility forms a peak at the
transition temperature. With increasing imaginary chemical potential this peak
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Figure 1: The imaginary strangeness chemical potential that realizes strangeness neutrality.
Here we show a continuum extrapolation based on 323 × 8, 403 × 10, 483 × 12 lattices for
µIB/T = 0.39 and 0.79 and also using 643 × 16 for the larger chemical potentials. The error
is statistical only.

is shifted towards higher temperatures, approximately maintaining its height
and width. For other normalizations (e.g. χψ̄ψ/T

4) the shape of the function
changes more significantly while varying the chemical potential.

We fit χψ̄ψ(µIB , T )/m4
π in a global fit function where for each µB a different

width, height and peak position is allowed, but the other parameters that de-
scribe the peak shape are µB-independent. We use two different modifications
to the Lorentzian peak form:

χr
ψ̄ψ

(µ, T )

m4
π

=

{
C +A2(µ)

(
1 +W 2(µ)(T − Tc(µ))2

)α
for T ≤ Tc

C +A2(µ)
(
1 +B2W 2(µ)(T − Tc(µ))2

)α
for T > Tc

(5)

and

χr
ψ̄ψ

(µ, T )

m4
π

= C +
A(µ)

1 +W 2(µ)(T − Tc(µ))2 +BW 3(µ)(T − Tc(µ))3
(6)

The µ dependent parameters A(µ), W (µ) and Tc(µ) describe the change in
the height, width and the position of the curve as µ increases. For the zero
temperature data which are required for renormalization we use two different
interpolations in the inverse gauge coupling: a 6th order polynomial and a
simple rational function. We have two options for the scale setting using fπ or
w0 and we apply three possible fit windows to select the transition range. In
order not to interfere with the shifted temperature dependence the fit windows
constrain the value of the susceptibility, not the temperature.

The effect of the µ dependent parameters is a shift in T , and a rescaling in
T and χ. Applying the inverse transformation to the finite µIB data points all of
them should collapse on the µB = 0 curve. This is demonstrated in Fig. 2. The
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Figure 2: The chiral susceptibility at several imaginary chemical potentials on our 483 ×
12 lattice. After a µIB-dependent shifting and stretching, data from all chemical potentials
collapse on one curve. The fitted curve corresponds to eqn.(5) at µB = 0.

advantage of this procedure is that the µ independent parameters can be fitted
using the the high-statistics runs at µB = 0 and the non-vanishing µIB runs are
needed to determine the relative position and rescaling compared to this more
complicated functional form. This allows the precise determination of ∆Tc(µ

I
B)

with an error below 0.25 MeV, while Tc(µB) itself has an error of several MeV.
We extract κ by a linear fit of ∆Tc vs. µ2

B in the range 1.2 . µIB/T . 2, and
extrapolate κ to the continuum. Since the continuum extrapolation of κ had
a large χ2 when all four lattices were used we included only Nt = 10, 12 and
16 in the final result, resulting in a good χ2 for all analyses. In an alternative
analysis we made a combined continuum and µ2

B fit again using only the finest
three lattice spacing, and found acceptable χ2 values again.

2) The chiral condensate 〈ψ̄ψ〉r = mq(d logZ/dmq)/m
4
π is a remnant order

parameter of the chiral transition. Its inflection point (though it is hard to
locate in a finite precision data set) is very close to the peak position of χψ̄ψ/m

4
π.

At finite µIB the temperature dependence of 〈ψ̄ψ〉r is shifted and very slightly
stretched.

We find that the data at µB = 0 (see Ref. [7]) can be very accurately
described by simple fit functions. The µ dependence in this case is well described
by just two µB-dependent parameters describing a shifting and rescaling of the
renormalized condensate. We use the following parameterizations:

〈ψ̄ψ〉r(µ, T ) = A(µ) (1 +B tanh [C (T − Tc(µ))] +D (T − Tc(µ))) (7)

and

〈ψ̄ψ〉r(µ, T ) = A(µ) (1 +B arctan [C (T − Tc(µ))] +D (T − Tc(µ))) . (8)

Similarly to the chiral susceptibility, we use two possible zero temperature in-
terpolations (6th and 7th order polynomials of the inverse gauge coupling), two
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scale settings, four fit windows. κ is obtained either from a combined µ2
B and

continuum fit, or separately.
3) The analysis of the strange susceptibility χS2 goes along the lines of the

chiral condensate. A simplification here is the absence of renormalization. Since
this quantity is the most sensitive to the actual value of strangeness, before the
analysis we correct for the inaccuracies of the strangeness neutrality condition
using the higher µS fluctuations. Although its inflection point does not have to
agree with that of the chiral condensate, we find that the shifting effect of the
chemical potential is very similar.

For all three quantities we make a histogram of the results from all analyses.
For the chiral susceptibility we have two T > 0 fit forms, two T = 0 interpola-
tions, two scale settings, three fit windows and either separate or combined κ
extraction and continuum limit. This results in 2 · 2 · 2 · 3 · 2 = 48 analyses. For
the condensate we have the same choices but with four fit windows resulting in
64 analyses. For the strange susceptibility there is no renormalization, thus no
T = 0 interpolation is needed which leads to 32 analyses. The central 68% of
the histograms estimates our systematic error. The statistical error is obtained
from 1000 bootstrap samples. The two errors are of similar magnitude and they
are added in quadrature resulting in our final uncertainties.

We summarize our results for the curvature in Table 1.

Chiral susceptibility 0.0158± 0.0013
Chiral condensate 0.0138± 0.0011
Strange susceptibility 0.0149± 0.0021
Susceptibility at Z = 0.4A 0.0149± 0.0017

Table 1: The curvature (κ) of the QCD phase diagram in the continuum limit from various
observables. κ is fitted in the range 1.2 . µIB/T .< 2.

The histograms of the three quantities can be joined into a single one lead-
ing to our combined result based on our three observables with strangeness
neutrality:

κ = 0.0149± 0.0021 . (9)

We also consider the curvature for the case when not only the strangeness
neutrality, but also proper charge/baryon density ratio is reproduced (for lead
and gold ions: Z ≈ 0.4A). We achieve this by Taylor-extrapolating the strange
susceptibility for every finite µB ensemble to leading order, and fitting as be-
fore. We conclude that the difference between Z = 0.4A and Z = 0.5A phase
diagrams is negligible for small µB .

For small enough imaginary chemical potential the analytical and the Taylor
method have to give the same curvature at every lattice resolution. In the
Taylor method one expands the observables in µB , the leading coefficients are
calculated from µB = 0 simulations and then used to extrapolate to finite µB .
Fig. 3 shows how this expansion compares to the direct simulations for our j = 5
chemical potential which is the largest one used to extract κ. A comparison in
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Figure 3: Comparison of the strange susceptibility obtained from direct simulation and
extrapolation for µIB/T = 5π/8. The blue circles and squares correspond to the strangeness
neutral case obtained via extrapolation from µ = 0 and direct simulations, respectively. The
green triangles show the full baryo-chemical potential case obtained via extrapolation from µ =
0. There are no direct simulations in this case but one can extrapolate from the strangeness
neutral direct point (green dots). As a reference the µ = 0 data are also shown (red crosses).

the case of full baryo-chemical potential is also shown. The extrapolated data
are then fitted for κ as if they were simulated at finite µIB . At Nt = 10 we find
κ = 0.0131(9) from the direct simulations and κ = 0.0115(10) from the Taylor
expansion. The agreement indicates that we are still in the linear regime and
the extraction of κ using j = 3, 4, 5 is safe.

Finally we estimate the systematics of the extrapolation to real µB . We
include the j = 6 data points into the analysis and allow for non-linear Tc(µ

2
B)

fits. We consider fitting Tc(µ
2
B)/Tc with the functions 1 + ax, 1 + ax + bx2,

(1 + ax)/(1 + bx) and (1 + ax+ bx)−1 with x = µ2
B/T

2. All these functions are
analytic in x and they represent various analytic continuations of the Tc(µ

I
B)

imaginary µ phase diagram. The difference between these ansatzes provides a
systematic uncertainty for the real µ phase diagram.

Our main results are depicted in Fig. 4. Since the curvature from both the
strange susceptibility and from the chiral condensate/susceptibility are consis-
tent with each other we show only one curve. The curvature from the chiral
condensate is our most precise result, therefore we present the transition line
coming from this observable. The corresponding transition temperature at µ=0
is at 157 MeV. At intermediate real µB we observe a significant rise in the un-
certainty due to the statistical error on the non-linear µ2

B-dependence and the
ambiguity of the analytic ansatz. This sets the range of validity for this study.

The present result indicates a stronger curvature than the one presented
in Ref. [38]. There are, however a couple differences between the definitions/
approaches of the curvature of the present analysis and Ref. [38]. Note that
the transition is a smooth cross-over, thus different definitions obviously lead to
different results.
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Figure 4: The phase diagram based on the µ-dependent Tc from the chiral condensate,
analytically continued from imaginary chemical potential. The blue band indicates the width
of the transition. The shaded black region shows the transition line obtained from the chiral
condensate. The widening around 300 MeV is coming from the uncertainty of the curvature
and from the contribution of higher order terms, thus the application range of the results
is restricted for smaller µ values. For completeness, on the right panel we also show some
selected non-lattice results: the Dyson-Schwinger result of Ref. [37] and the freeze-out data
of Refs. [57–63].

a. In Ref. [38] we used a vanishing strangeness chemical potential. In the
present analysis we use instead vanishing strange density. The reason for this
change is to be as close to the experimental situation as possible. In heavy ion
collisions the net strangeness is zero.

b. It is emphasized in the discussion of Figure 5 of [38] that only statistical
uncertainties were provided. The present analysis estimates systematic uncer-
tainties coming from various aspects of the analysis as discussed earlier. These
are comparable to or in some cases even larger than the statistical uncertainties.
A similar assumption on the systematics of Ref. [38] would make the tension
between the results much weaker.
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