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Abstract 

An important role of the electrochemical impedance spectroscopy (EIS) is the characterization of the 

electrical double layer formed at the electrode/electrolyte interfaces. The phenomenological double layer 

studies with an aqueous and ionic liquid electrolytes are reviewed with a conclusion that the double layer 

capacitance is frequency dependent as the rule rather than the exception. We discuss the impedance 

consequences of the nonuniform current distribution along the electrochemical interface, which also 

contributes to the apparent frequency dependence of the capacitance. Finally we show recent articles on 

nonconventional EIS techniques with high lateral resolution or enabling fast measurements. 

1. Introduction 

A principal role of the electrochemical impedance spectroscopy (EIS) – in the context of interfaces – is the 

characterization of the double layer structures on the electrode/electrolyte interfaces; the key concept of 

the double layer capacitance is in the focus of this review. Accordingly, the first section deals with related, 

mostly phenomenological, studies with aqueous and ionic liquid electrolytes. We summarize the 

experimental evidences that the double layer's differential capacitance, in general, is frequency dependent; 

this dependence - often named as capacitance dispersion – is an important aspect in studies of electrode 

processes and electrode materials. Non-uniform current distribution along the interface also leads to a 

capacitance dispersion, however, this effect is not related to the inherent properties of the interface. For the 

possible causes of the dispersion, see Table 1. Since various causes of the dispersion may coexist in real 

experimental systems in a hardly separable way, we concentrate the measurements done with systems of 

well-defined interfaces of single crystalline metals in contact with ionic liquids or aqueous solutions.  

Finally we show recent articles related to non-conventional EIS methods since the development of such 

techniques can also contribute to the elucidation of the complex nature of the double layer.  

Because the impedances, 𝑍(𝜔), of capacitive systems are typically very large at low frequencies, the 

interfacial capacity can be preferably visualized in a complex plane, in which the imaginary part of the 

complex capacitance is plotted against the real part by analogy to representation used in studies of 

dielectrics [1]. However, in this representation the electrochemical impedance has to be corrected for serial 

(typically electrolyte) resistance 𝑅𝑠 ≡ Re(𝑍(𝜔 → ∞)), so that by the definition equation  

𝐶(𝜔) ≡ 1/[𝑗𝜔(𝑍(𝜔) − 𝑅𝑠)] where j and ω are the imaginary unit and the angular frequency, respectively. 

Note that in the absence of faradaic reactions, charging of an ideal "electrostatic" double layer yields to 

𝑍(𝜔) as if C were frequency-independent. Hence, the frequency dependence of 𝐶(𝜔) is a good measure of 

the deviation from the ideal capacitive behaviour. However, parameters of the equivalent circuits should be 

fitted to actually measured immittance (typically impedance), rather than to 𝐶(𝜔). 
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2. Double layer capacitance measurements 

Metal/Ionic liquid interfaces 
The double layer studies of the metal|ionic liquid (IL) interface started about a decade ago with the question 

of how the interfacial differential capacitance depends on the electrode potential, E, and whether or not this 

C(E) function fits to the Kornyshev’s respective theory [2]. Despite quite intensive studies described in about 

dozens of related papers, we still cannot give a convincing answer. Beside experimental difficulties this is 

because we have faced the problem associated with the frequency dependence of measured capacitances, 

C(ω). The related – mostly phenomenological – studies can be summarized as follows: 

1. Silva and coworkers [3,4] measured impedance spectra for polycrystalline Au, Pt, glassy carbon and 

Hg electrodes in three different ILs. From these spectra the C(E) functions were evaluated as if the 

interfacial impedance were constant phase elements (CPEs), which makes these C(E) functions 

difficult to be interpreted. 

2. Gnahm et al. measured impedance for Au(100) electrode in BMIPF6 [5] and other ILs. The 

capacitance spectra (Fig.1) were two-arcs shaped, corresponding to a three-branched equivalent 

circuit shown in Fig. 1. When repeating these measurements with HOPG electrode, the low-

frequency arc disappears and therefore the Z2 element in the equivalent circuit can be omitted. As 

evidenced by in-situ STM imaging, contrary to a rigid and inert structure of the HOPG surface, the 

Au(100) surface in contact with ILs undergoes a slow rearrangement phenomena and a distinct 

corrosion processes. These findings explain the presence and absence of of Z2 in the equivalent 

circuit for Au(100) and HOPG, respectively [6].  

3. Anderson et al. measured impedance for Bi(111) in EMIBF4 [7]. These spectra could be fitted to a 

two-branched equivalent circuit similar to that shown in the inset to Fig.2.  

4. Atkin et al [8] measured impedance for Au(111) electrode in two ionic liquids obtaining apparently 

good quality data. However, by fitting Cole-Cole functions to the frequency normalized admittances 

of the electrodes instead of the interfaces, the electrolyte resistance blurred the determined 

capacitances. The same applies also for other impedance measurements from the same group [9] 

and to the measurements of Li et al [10] for Ag(111) electrode in EMITFSI.  

5. Small and Wheeler [11] raised important questions regarding the impedance measurements of 

metal|ILs interfaces as well as the assumptions underlying analysis of the results. They compared 

capacitance functions obtained for one and the same system by using four different methods of 

capacitance measurement and data analysis – yielding four different sets of results. This is a loud 

warning that proper experiments and appropriate analyses are crucial in impedance studies. 

With the exception of capacitances influenced by slow corrosion/rearrangement processes of the 

electrodes, a frequency dependent double layer capacitance, C(ω), represents a single arc on the complex 

capacitance plane as illustrated in Fig.2. Such a spectrum can be modelled by the two-branched circuit 

shown in the inset. As the interfacial capacitance has a complicated frequency dependence, C(ω), the results 

of the numerous single-frequency capacitance measurements of the past decade are misleading. The same 

statement applies for the studies, in which the capacitance has been extracted from the impedance spectra 

by an oversimplified model, like in Refs [3] and [4]. It should be also mentioned that the impedance data for 

the Au electrodes measured at low frequencies (<100 Hz) are particularly dubious because these 

capacitances are additionally affected by the corrosion processes of the gold surfaces. 
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Fig.1: a. Interfacial capacitance spectra (1kHz-1Hz) of Au(100) and HOPG in BMIPF6: measured data points (open 

symbols) combined with fitted ones (solid lines). The HOPG spectrum is shifted along the ordinate for clarity. The 

interfacial capacitance spectra, C(ω ) is calculated from the measured Z(ω) impedance spectra as C(ω)≡1/{Z(ω)-Rs)}= 

1/{Z(ω)-Z(ω→∞)}. Inset: empirical equivalent circuit, for metal/ionic liquid interfaces. Z1 was often found to be a serial 

R-W (Warburg element) combination; Z2 is typically a R-W-C series or its absent (see text for explanation). 

 

 
Fig.2: Illustration of capacitance spectra of metal/IL interfaces, and the corresponding empirical equivalent circuit. For Z1 

see the legend of Fig.1. For comparison, the point-like spectrum of an ideal capacitance and the straight line spectrum of 

a CPE are also included. 
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With these considerations the double layer capacitance has been found to be similar for Au(100) and HOPG 

in the same ionic liquid. The high frequency limit of C(ω) is about 4-6 uF/cm2 for the ionic liquids studied; for 

ILs with smaller ions it is larger. Neither Chf (the high frequency limit) nor Chf+C1 (the low frequency limit) 

appeared similar to what predicted by Kornyshev's model [2]. 

Semiconductor/aqueous solution interfaces 
The double layer on semiconductor-electrolyte junctions is traditionally analyzed in terms of the Mott-

Schottky theory yielding a certain C(E) relation for the depletion region potentials. In principle, this theory 

applies for weakly doped semiconductors in contact with high concentration electrolytes in the absence of 

interfacial processes. In practice, this theory is often used for any semiconductor electrodes; with many and 

diverse corrections yielding complicated equivalent circuits introduced to eliminate the apparent frequency-

dependence of the Mott-Schottky lines. A rare exception is a recent characterization of the boron-doped 

diamond (BDD) samples [12] in neutral aqueous solution: In case of boron-doped diamond with low doping 

(<=2000 ppm) and hydrogen-terminated surface, within the water stability range the interfacial impedance 

was found to be a CPE of almost-unity exponent (>0.95) and the Mott-Schottky plot exhibited a fairly broad 

(approx 0.4 V) potential range of linearity. Acceptor concentration obtained from the slope of the Mott-

Schottky plot was in order-of-magnitude agreement with the values obtained from neutron depth profiling 

and Raman spectroscopy. With higher doping levels and for oxygen terminated samples the Mott-Schottky 

analyses yielded less coherent results.  

BDD's surface is hydrogen terminated and oxygen terminated at sufficiently negative and positive potential, 

respectively. The change between these states can be followed by measuring EIS while slowly scanning the 

potential. Such a "dynamic EIS", (DEIS, see Section 3) series, performed in sulphuric acid solution has been 

shown in [13]. Along with the results of various surface analyses the authors could demonstrate that the 

oxidation of termination bonds is a multistep process, with each step starting at different polarization 

potential. 

Metal/aqueous solutions interfaces 
Ion adsorption often causes frequency-dependent interfacial capacitances as in the classical cases of the 

reaction rate controlled hydrogen adsorption [14], diffusion-controlled adsorption of organic substances [15] 

or dense anion adlayer formation [16]. Tymoczko et al [17] showed a new application of the EIS for detecting 

very slow adlayer transformations on Pt(111) electrode in sulphuric acid solutions within the 0.5 V < E vs RHE 

< 1 V potential range. Although, the cyclic voltammograms for this system is generally featureless, a small 

asymmetric hump appears at the potential about 0.7 V; in this region bisulphate anions form the co-existing 

(√3x√7) and (1x3) superstructures and the hump is attributed to a phase transition between these two 

superstructures [18]. At E<0.55 V (negative with respect to the „butterfly peak”) the interface is ideally 

capacitive, whereas at positive potentials to the peak, the interface behaves as a CPE of with an exponent 

significantly smaller than unity; the CPE exponent has a minimum of < 0.9 close to the location of the hump. 

The CV hump and the less-than-unity CPE exponent are the manifestation of one and the same surface 

process, i.e. to the slow rearrangements of the above two superstructures. 

Formation and structure of organic adlayers of 4,4’-bipyridine on Cd(0001) in a neutral aqueous sulphate 

solutions has been studied by Pikma et al [19]. On Cd(0001) there is a potential region between that of the 

surface oxide formation and the hydrogen evolution where 4,4’-bipyridine is adsorbed as demonstrated by 

voltammetry and capacitance measurements. In this potential range the impedance spectra was interpreted 

in terms of the diffusion-controlled adsorption impedance theory with certain modifications [15]. In a 

narrow potential range almost full coverage was observed and the presence of adlayer was nicely 

demonstrated by in-situ STM images displaying bipyridine rows.  
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3. Origin of the frequency dependence of the interfacial capacitance  

Disregarding the rare exceptions, double layer capacitance is a frequency-dependent quantity, often 

approximated by a constant-phase element (CPE). This empirical element, however, gives little if any 

information on the physical origin of the dispersion. As summarized in Table 1, the frequency dependence 

can be attributed solely to the double layer or to a coupling between solution resistance and an interfacial 

(frequency-independent) capacitance. The C(ω) dependencies discussed in the previous section has to be 

ascribed to a double layer rearrangement process since it was observed on a planar and energetically 

uniform surface of single crystals. In this section the other cases will be analyzed when the conditions of 

infinite planar surface and/or energetic homogeneity do not hold, yielding to current density inhomogeneity 

along the electrode surface. 

 

Frequency dispersion of the interfacial capacitance 

Nature Physicochemical Apparent 

Location Interface Interface and bulk 

Origin 
Adsorption or rearrangement processes  

in the interfacial layer 
Coupling of electrolyte resistance 

with interfacial impedance 

Scale atomic microscopic macroscopic 

Surface energy homogeneous inhomogeneous 
  

Typical case(s) 

reaction rate or diffusion 
controlled adsorption [13,14]; 
rearrangement of almost 
complete adlayers [15,16] 
and of the double layer in 
ionic liquids [5] as studied on 
well-defined surfaces 

CPE-like interfacial 
capacitance of 
rough surfaces  

[24-26] 

porous electrode 
[19,20] 

embedded disk 
[22,23] 

Table 1: Classification of the physicochemical and apparent frequency dependence of the interfacial 

capacitances discussed in this work. 

Current density non-uniformities on the microscopic and macroscopic scales 
Frequency dependence of the capacitance might be the result of a purely physical effect caused by the cell 

or the electrode geometry: current density is not uniform because the "effective solution resistance" varies 

along the surface. This is the case for the two archetypes: for porous electrodes and for the embedded disk 

electrode (often used as RDE). 

(i) Impedance behaviour of porous electrodes has traditionally been theorized by the finite transmission line 

model of de Levie [20]. This year a general theory of impedance of porous electrodes has been published, 

[21], in which many and diverse possible Faradaic processes within the porous system had been taken into 

account. This theory has been claimed to be appropriate for various practical porous electrode systems. 

Accordingly, the fairly complicated result should be simplified to yield special cases of porous electrodes 

with blocking surfaces, with faradaic reactions and with insertion reactions, respectively.  

(ii) On the embedded disk, especially at its edges, current density is not uniform along the surface as was 

shown in Newman’s analysis just fifty years ago [22] for a dc case. Non-uniformity appears also with ac 

currents, causing that the impedance spectra is not simply the sum of a solution resistance and the 

interfacial impedance but they are somewhat coupled; in other words: non-trivial frequency dependences of 

the equivalent circuit elements appear. This effect has been analyzed in two recent papers in the same issue 

of the J. Electroanal. Chem. dedicated to B.Tribollet's contribution to EIS. The authors of Ref. [23], give an 
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analytical solution for the electric field distribution (hence also for the impedance function) for the cases 

when the disk is covered with an intercalation or a porous layer. In the other paper, [24], the same (or 

similar) problems are simulated numerically - calculating the field distribution mostly by finite element 

methods. Ref. [24] is, in fact, the summary of the authors many papers on these simulations done in the past 

decade for many and diverse types of boundaries. As both group of authors conclude, coupling of electrolyte 

resistance and the interfacial impedance causes a little effect on impedance; this effect should be considered 

in certain special cases. As a thumb’s rule for capacitive disks: the larger the disk and smaller the 

electrolyte’s conductivity, the lower the frequency range of the dispersion. Hence, for reduction of this 

effect use small electrodes, preferably in hanging meniscus configuration. In the same vein, this effect, for 

electrodes with microscopic roughness on the micron and sub-micron scale, yields to complex frequency 

dependence of capacitance at high frequencies only, as it was discussed decades ago by de Levie [25] and 

Pajkossy [26] and was again demonstrated by numeric simulations recently [27]. 

Geometrical irregularities on atomic scale  
Frequency dependence of the capacitance is often observed for polycrystalline surfaces; in particular, if the 

surface is rough. The dominant explanation in the second half of the past century was a purely physical one, 

just like for porous electrodes: solution resistance and interfacial capacitance are coupled to each other. 

Twenty years ago Pajkossy hypothesized that microscopic roughness affects capacitance dispersion in an 

indirect way, through energetic inhomogeneities; results of a few experiments supported that hypothesis 

[26,28]. Now Cordoba-Torres et al [29] re-checked this hypothesis: They analyzed the EIS response of a well-

controlled electrochemical reaction taking place on a surface electrode that was progressively modified by 

electrodissolution. In addition, a complete characterization of the surface structure was done by means of 

various physical methods. Their results support the view that the CPE behavior (or in general: frequency 

dependence of capacitance) results from the energetic inhomogeneities which in turn affect kinetics of the 

omnipresent ion adsorption processes. 

4. New or non-conventional experimental methods of EIS 

Various scanning methods exist for the characterization of lateral inhomogeneities of electrodes. In these 

techniques, the investigated electrode surface is scanned with a test microelectrode at a close proximity. 

During the scans some electric quantity is measured; for a recent development and nice EIS version see [30]. 

Lateral resolution is determined not only by the microelectrode distance but also by the activity of the 

neighborhood of the locally probed area. This problem has been circumvented by the arrangement of 

droplet cell developed by Lohrengel and coworkers about two decades ago [31]. Using this cell, the 

electrochemical measurements (typically current, CV or EIS) is confined to a well-defined spot in the order of 

magnitude of 0.1 mm in diameter. A microscopic imaging technique is based on the lateral scanning of this 

cell, called scanning droplet cell microscopy (SDCM). This technique, focused on the localized version of EIS is 

overviewed in a recent publication [32]. Illustration examples of the method are the determination of 

dielectric properties of oxides of various valve metal alloys. 

The usual – commercially available – method of impedance measurement employs sinusoidal perturbation 

of potential or current and the resulting sinusoidal signals of current and potential are analyzed. For 

measuring the spectra, the frequency is varied stepwise. This method is precise though somewhat time-

consuming. An alternative method employs steady state multi-frequency perturbation in the form of sum of 

harmonics [33]. The potential and current signals are Fourier-transformed and impedances are calculated for 

each frequencies. We note that methods employing other forms of multi-frequency perturbation like white 

noise [34], wavelets [35], or square-waves [36] also exist. These multiple-fequency variants of EIS - are much 
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faster than the conventional one (on the expense of lower precision) and thus can be used to track temporal 

changes at constant potential. Such a study has been reported on the temporal changes of the kinetics of the 

ferrocyanide/ferricyanide reaction on gold at the equilibrium potential [37] – the finding is that an iron-

cyanide layer is formed slowly on the gold making the charge transfer slower.  

Due to the fast nature of multiple frequency EIS, it can be performed also when the potential is scanned 

(with certain conditions on the relation of minimum frequency and scan rate). With this method called 

dynamic EIS (DEIS) the advantages of CV and EIS can be coupled; for details see [38]. With such a 

simultaneous CV and EIS the danger of surface contaminations can be decreased. This was the case when 

the rearrangement of sulphate adlayer on Pt(111) has been studied [17]; and at the determination of the 

capacitance at the gold-ionic liquid interface [11].  

5. Concluding comments 

1. In general, double layer capacitance is frequency dependent, revealed as arc(s) – or as a CPE 

approximation: a line – on the complex plane plot of C(ω). It stems from the physicochemical nature of the 

processes therein, rather than from electrostatics only. Physicochemical models should be developed in 

order to get deeper insight in the dynamics of the double layer rearrangements. 

2. Development of dynamic impedance spectroscopy and local impedance techniques can contribute to the 

elucidation of the nature of studies when the systems get spoiled fast or topographic information is needed. 

Improvements are welcome. 
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