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Abstract 

 

The atypical form of the kidney disease hemolytic uremic syndrome (aHUS) is associated 

with defective complement regulation. In addition to mutations in complement regulators, 

factor H (FH)-specific autoantibodies have been reported for aHUS patients. The aim of the 

present study was to understand the role of these autoantibodies in aHUS. First, the binding 

sites of FH-autoantibodies from five unrelated aHUS patients were mapped using 

recombinant FH fragments and competitor antibodies. For all five autoantibodies the binding 

site was localized to the FH C-terminus. In a functional assay, isolated patient IgG inhibited 

FH binding to C3b. In addition, autoantibody positive patient’s plasma caused enhanced 

hemolysis of sheep erythrocytes, which was reversed by adding FH in excess. These results 

suggest that aHUS-associated FH-autoantibodies mimic the effect of C-terminal FH 

mutations, as they inhibit the regulatory function of FH at cell surfaces by blocking its C-

terminal recognition region. 

 

Introduction 

 

Hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia 

and acute renal failure. HUS is most often caused by bacterial infection and is associated with 

diarrhea (D+ HUS), or arises rarely as atypical HUS (aHUS).1 Mutations identified in 

complement genes in aHUS patients indicate that complement dysregulation is involved in 

disease development.2 In addition, factor H (FH)-autoantibodies have been reported for three 

aHUS-patients.3 

 

 FH is a major regulator of the alternative complement pathway. FH is composed of 20 

short consensus repeats (SCRs). The four N-terminal domains (SCR1-4) mediate cofactor and 
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decay accelerating activity, and the C-terminal domains (SCR19-20) form a recognition 

region, which contains binding sites for C3b, glycosaminoglycans and endothelial cells.4-6 

SCR19-20 represent a hot spot for aHUS-associated FH mutations,2 several of which have 

been shown to impair FH binding to C3b and to cellular surfaces.7-9 Thus suggesting that by 

affecting the C-terminal domains aHUS-associated mutations reduce FH regulatory activity 

on cells. Indeed, reduced FH binding leads to enhanced complement activation on host cells 

and results in cell lysis as shown by analysis of a mutant FH protein lacking most of SCR20,10 

by using blocking monoclonal antibodies (mAbs),11 or recombinant SCR19-20 fragment.12 

 

In contrast to the FH mutations, aHUS-associated FH-autoantibodies have not yet been 

analyzed in detail. In the present report we describe how five FH-autoantibodies affect FH 

function. 

 

Materials and Methods 

 

Identification and domain mapping of FH-autoantibodies  

Patients’ plasma was analyzed for FH-autoantibodies by ELISA.3 For domain mapping, 

microtiter plates were coated with recombinant FH fragments at 5 µg/ml.7,11 For inhibition 

experiments, immobilized FH was preincubated with FH-specific mAbs.6,11 

 

C3b binding assay 

IgG was isolated from plasma according to standard protocols. Microtiter plate wells were 

coated with 5 µg/ml FH (Merck Biosciences, Schwalbach, Germany). After blocking, the 

wells were preincubated with purified IgG, then C3b (2 µg/ml) was added and binding was 

measured using C3-specific antiserum (Merck Biosciences). 
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Hemolysis assay 

Hemolysis assays were performed in 100 µl buffer (20 mM HEPES, 7 mM MgCl2, 10 mM 

EGTA, 144 mM NaCl, 1% BSA, pH 7.4) containing 5×106 sheep erythrocytes (SRBC, 

BioTrend Chemikalien GmbH, Cologne, Germany) and 10-40% plasma. After incubation at 

37°C for 30 min, optical density of the supernatants was measured at 414 nm.  

 

Results and Discussion 

 

FH-autoantibodies of aHUS patients bind to the C-terminus of FH 

Plasma samples from 60 patients with hemolytic uremic syndrome (51 with aHUS and 9 with 

D+ HUS) were screened for the presence of FH-autoantibodies. Five positive cases, children 

diagnosed with aHUS at 4-12 years of age, were identified using an ELISA assay. This 

corresponds to ~10% of the patients, which is similar to the ~6% reported recently.3 FH 

specificity of the autoantibodies was verified by demonstrating dose-dependent binding to 

FH, reduced binding after IgG depletion, and by analyzing FH-specific IgG isotypes 

(Supplementary Figure 1).  

 

In order to localize the binding domain of the FH-autoantibodies, their reactivity with 

recombinant FH fragments was measured. All five autoantibodies bound to FH fragments that 

include SCR20, i.e. SCR15-20 and SCR19-20 (Figure 1A). No specific binding of the 

autoantibodies to the N-terminal or middle region of FH was observed. A weak binding of 

plasma #503 to SCR8-11 was also detected, which was not further analyzed. To confirm the 

autoantibody binding site, a competition assay using domain mapped mAbs was 

performed.6,11 In all five cases, binding of the autoantibody to FH was reduced by mAbs 

which bind to the FH C-terminus, namely mAbs C02 (binding in SCR19), C14 and C18 (both 

binding within SCR20). By contrast, mAbs that recognize the N-terminus (mAb N11) or the 
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middle region of FH (mAbs M12, M13, M15) did not affect autoantibody binding (Figure 

1B). Moreover, binding was competed with FH SCR15-20 fragment (Supplementary Figure 

2). 

 

FH-autoantibody inhibits C-terminus mediated function of FH 

Reduced C3b binding of FH and impaired C3b processing on the cell surface, which results in 

enhanced complement activation and cell damage, is caused by the mAbs C18 and C14,11 

which share binding epitopes with the autoantibodies of all five analyzed aHUS patients 

(Figure 1C). Therefore we measured whether FH-autoantibody has the same effect as mAbs 

C18 and C14.  

 

To this end, the IgG fraction was isolated from plasma of three patients. Purified 

patient derived IgG showed the same reactivity with FH as the whole plasma (Supplementary 

Figure 3). C3b binding was strongly reduced when FH was preincubated with patient derived 

IgG, which contained FH-autoantibodies, whereas control IgG had no effect (Figure 2A). A 

previous report found no effect of the autoantibody on FH binding to C3b, which is likely due 

to the different experimental conditions.3 

 

Sera derived from aHUS patients with heterozygous C-terminal FH mutations cause 

SRBC lysis.13 When performing a similar assay, incubation with the autoantibody-positive 

plasma of patient #564 resulted in enhanced hemolysis of SRBC (Figure 2B). Furthermore, 

the hemolytic activity was reversed in a dose-dependent manner by addition of excess FH to 

the patient’s plasma, and thus increasing the concentration of autoantibody-free FH (Figure 

2C). This effect of the autoantibody is in line with the observation, that the C-terminally 

binding mAbs C18 and C14 cause enhanced SRBC lysis when added to normal human 

plasma (data not shown). 
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That the autoantibodies of all five patients do not bind to the N-terminus of FH, where 

the complement regulatory domains are localized, is in agreement with a previous report, and 

explains the normal FH activity in fluid phase in the presence of autoantibody (data not 

shown).3 

 

The presence of C-terminally binding FH-autoantibodies, which influence FH activity, 

has relevance for diagnosis and treatment of aHUS patients. FH-autoantibody titer can be 

decreased by plasma exchanges,3 which in the case of patient #564 were accompanied with 

improvement of clinical parameters (data not shown). However, for the autoantibody positive 

patients kidney transplant is likely at high risk, as the autoreactive antibodies will remain in 

plasma. 

 

Domain mapping and functional analysis of additional aHUS-associated FH-

autoantibodies are required to assess whether the mechanism suggested here applies in 

general. Other autoantibodies may have different binding site and affect e.g. FH stability or 

conformation. However, it is striking that all five FH-autoantibodies identified in the present 

study bind predominantly to the FH C-terminus. Thus, in aHUS FH dysfunction of 

autoimmune origin, i.e. caused by autoantibodies, seems analogous to the C-terminal 

mutations, and both scenarios result in an impaired recognition of host cells by FH during 

complement attack. 
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Figure legends 

 

Figure 1. Autoantibodies bind to the C-terminus of FH. 

(A) Reactivity of autoantibodies of five aHUS patients was tested with recombinant FH 

fragments, covering all domains of FH. BSA was used as negative control and FH as positive 

control. Normal human serum was included as additional control. Data are representative of 

three experiments with similar results. (B) Autoantibody binding to FH was blocked with 

mAbs (25 µg/ml) specific to the C-terminal domains SCR19-20 of FH, i.e. C02, C14 and C18, 

whereas mAbs N11, M12, M13 and M15, which bind in the N-terminal and middle regions of 

FH, did not inhibit autoantibody binding. Representative data of three experiments are shown. 

(C) Binding domains of the identified FH-autoantibodies and the mAbs used in this study. 

Important functional domains of FH are highlighted. 

 

Figure 2. FH-autoantibody blocks C-terminal recognition function of FH. 

(A) Patient derived IgG, added in the indicated concentrations, reduced binding of human C3b 

to immobilized FH in an ELISA assay, when compared with control IgG. Data represent 

mean ± SD from three experiments. Difference between samples was analyzed by Student’s t 

test. *, p<0.05. (B) Plasma of patient #564 (filled circles) caused dose-dependent lysis of 

sheep erythrocytes, whereas normal human plasma (open circles) showed no effect. 

Hemoglobin release was measured as described in Methods. Mean ± SD of data from five 

measurements is shown. (C) Addition of excess FH rescued sheep erythrocytes from 

complement mediated lysis. Cells were incubated in 40% #564 plasma without FH added and 

in the presence of the indicated amounts of purified FH, and hemoglobin release was 

measured as above. Erythrocyte lysis in the absence of FH was set to 100%. Mean ± SD of 

data from four independent experiments is shown. 
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Legends to Supplementary Figures

Supplementary Figure 1. Identification of autoantibody positive patients.

(A) Plasma samples of aHUS (n = 51) and D+ HUS (n = 9) patients as well as  healthy donors 

(n = 30) were analyzed for binding on immobilized purified FH in an ELISA assay. The 

samples having an OD value above the mean + 2 SD of those in the control group were 

considered positive. (B) Dose-dependent binding of the autoantibody positive plasma samples 

of  five  aHUS  patients  to  immobilized  FH,  indicating  different  autoantibody  titers.  (C) 

Adsorption of IgG from the patients’ plasma by incubation with Protein G beads removed FH 

autoreactivity. (D) Isotypes of FH-specific IgG in the plasma samples were determined using 

mouse antibodies specific to human IgG1, IgG2, IgG3 and IgG4.

Supplementary  Figure  2.  Competition  assays  show  C-terminal  specificity  for 

autoantibody binding.

C-terminally binding mAbs,  i.e.  C02, C14 and C18 (dotted lines),  but not  mAbs binding 

outside  SCR19-20  (continuous  lines),  exhibited  dose-dependent  inhibitory  activity  on 

autoantibody binding to FH as shown for plasma of patients #564 (A) and #520 (B). (C) The 

FH SCR15-20 fragment (dotted lines), but not the SCR15-18 fragment (continuous lines), 

inhibited autoantibody binding to FH in a dose-dependent manner as shown for three patients.

Supplementary Figure 3. Characterization of the IgG fraction purified from patient’s 

plasma

(A) Purified IgG of  patient  #564 bound specifically  to  the  FH fragments  SCR15-20  and 

SCR19-20,  i.e.  those  containing  the  most  C-terminal  domains  (filled  bars).  Control  IgG 

purified from a healthy donor showed no specific binding (open bars). (B) Dose-dependent 

binding of purified IgG from patients #422, #520 and #564 to immobilized FH.
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