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Convergence and Error Propagation Results on a Linear Iterative
Unfolding Method∗
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Abstract. Unfolding problems often arise in the context of statistical data analysis. Such problematics occur
when the probability distribution of a physical quantity is to be measured, but it is randomized
(smeared) by some well-understood process, such as a nonideal detector response or a well-described
physical phenomenon. In such case it is said that the original probability distribution of interest is
folded by a known response function. The reconstruction of the original probability distribution from
the measured one is called unfolding. That technically involves evaluation of the nonbounded inverse
of an integral operator over the space of L1 functions, which is known to be an ill-posed problem.
For the pertinent regularized operator inversion, we propose a linear iterative formula and provide
proof of convergence in a probability theory context. Furthermore, we provide formulae for error
estimates at finite iteration stopping order which are of utmost importance in practical applications:
the approximation error, the propagated statistical error, and the propagated systematic error can
be quantified. The arguments are based on the Riesz–Thorin theorem mapping the original L1

problem to L2 space, and subsequent application of ordinary L2 spectral theory of operators. A
library implementation in C of the algorithm along with corresponding error propagation is also
provided. A numerical example also illustrates the method in operation.
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1. Introduction. In analysis of experimental data one commonly faces the problem that
the probability density function (pdf) of a given physical quantity of interest is to be mea-
sured, but some random physical process, such as the intrinsic behavior of the measurement
apparatus, smears it. The reconstruction of the pertinent unknown pdf of interest based on
the observed smeared pdf and on the known response function of the measurement procedure
is called unfolding.

More specifically, one of the most common unfolding scenarios turning up in experimen-
tal data analysis is the following. Let x 7→ f(x) be the unknown pdf which we intend to
reconstruct, let (y, x) 7→ ρ(y|x) be the known response function of the smearing effect, and
we assume that y 7→ g(y) =

∫
ρ(y|x) f(x) dx is the measured pdf after the smearing effect,
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called folding. In practice, actually often only a statistical estimator of g can be measured.
Or, putting it differently, g often contains an additional error term y 7→ e(y) originating from
statistical counting and unaccounted systematic measurement distortions, in which case one
has y 7→ g(y) =

∫
ρ(y|x) f(x) dx + e(y) as the measured pdf estimator. The task of unfolding

is to provide some close estimate for x 7→ f(x), given y 7→ g(y) and (y, x) 7→ ρ(y|x) along with
some estimate on y 7→ e(y), i.e., to solve the above linear integral equation. It is quite well
known in the literature that such a problem is numerically ill-posed. The primary reason for
this is Banach’s closed graph theorem: due to the pertinent theorem a generic folding operator
maps certain distant pdfs to close ones whose differences after the folding are shadowed by
the contribution of the measurement error term e. That quite well understood phenomenon
is summarized, e.g., in [1, 2, 3, 4, 5, 6, 7, 8].

The problematics of unfolding can also be formulated using a language possibly more
familiar to statisticians [9, 10]. Let x1, . . . , xn be statistical instances of a probability vari-
able x, i.e., independent identically distributed random variables, each having the same but
unknown pdf f . In the experimental setting, merely the random variables yi = xi + εxi,i
(i = 1, . . . , n) are observed, i.e., the original xi (i = 1, . . . , n) random variables corrupted by
an x-dependent, but otherwise independent identically distributed error variable εx, having a
known x-dependent pdf εx 7→ ρ(εx + x|x) for each fixed value of x as a condition. Given all
these, the task of unfolding is to provide an estimator for the pdf f of the undistorted prob-
ability variable x. In some real experimental situation, it also happens that the individual
observed samples yi = xi + εxi,i (i = 1, . . . , n) are not published, only their pdf estimator g is
made available, for instance, because there is some correction procedure on the pdf level, e.g.,
for inefficiencies. Also, our model (y, x) 7→ ρ(y|x) for the response function might be system-
atically inaccurate, for which inaccuracy only an upper bound might be known. Therefore,
often not the sample based observational model but rather the previously discussed pdf esti-
mator based observational model is more practical to handle. But whichever way the problem
is formulated—based on individual samples or on pdfs—the task remains ill-posed.

In order to overcome the ill-posedness of the unfolding problem, all the methods use restric-
tions on the unknown pdf, and in some special cases properties of the response function can
also be used to improve the situation. For instance, in the field of image or signal processing,
the shape of the response function is translationally invariant in an exact manner, i.e., ∀ x, y, z
one has ρ(y|x+ z) = ρ(y− z|x), and thus the unfolding reduces to the problematics of decon-
volution. In the language of statistical samples, this would correspond to the observational
model when yi = xi + εi (i = 1, . . . , n) are observed, with independent identically distributed
random variables εi of a known distribution, not depending on x. Due to the applicational
importance of the special case of deconvolution problems, that branch has a whole stream of
literature [9, 10, 11, 12, 13, 14, 15, 16]. The statistical deconvolution methods heavily rely on
the applicability of convolution theorem for the Fourier transformed pdfs, which is possible
due to the translational invariance of the shape of the response function, i.e., it relies on the
fact that the probability variables εi (i = 1, . . . , n) are independent identically distributed
and are independent from x. The ill-posedness of the problem, similarly to the case of any
generic unfolding method, is regularized by finding and approximative solution. The optimal
approximation is controlled by the application of the minimax principle: for a given estimate
of the true deconvolved pdf, a loss (penalty) function is defined, and the minimum of the worst



CONVERGENCE AND ERROR PROPAGATION RESULTS 1347

case expected loss is looked for as a function of the regularization parameters. It is worth
noting that most of the advanced statistical deconvolution methods can work on unbinned
samples, i.e., they do not need an a priori histograming of the observed data. In section 6 an
illustrative numerical unfolding toy model application is presented, which also tries to clarify
that in an experimental context more general approaches than deconvolution are also needed
in order to handle real measurement situations.

Also in the case of generic—i.e., nondeconvolution—unfolding problems a regularization
method must be applied [1, 3, 4, 5, 6, 7, 8, 16, 17, 18, 19] and an approximate solution of the
folding integral equation within a reduced set of allowed pdfs is searched for. The approxima-
tion is controlled by some regularization parameters whose particular value brings in a certain
degree of arbitrariness to the unfolded pdf (approximation error), which is often difficult to
quantify. There are basically three main widespread ways in the literature addressing the
problem of regularization.

(i) In certain data analysis problems a parametric ansatz for the unknown pdf f is justi-
fied. In that case, one can construct the folded version of f by the response function
ρ numerically, and that can be fitted to the observed folded pdf g, for instance, via a
maximum likelihood method. Such method is used, for instance, in inclusive particle
identification in experimental high energy particle physics (see, for instance, [20]). Due
to the ill-posedness of the unfolding problem, one may run into a situation in partic-
ular cases when the fit is insensitive to some details of the parametrically given f . In
other words, the log-likelihood function (χ2) may be flat in the direction of certain
parameters of the ansatz for f .

(ii) Bin-by-bin fitting of the histogramed f , such that when numerically folding it by ρ
the result gets close to the observed folded pdf g, e.g., in a maximum likelihood sense.
This is very similar to approach (i) with every bin amplitude of the histogramed f
being a fit parameter. This method is basically equivalent to the naive inversion of
the discretized folding operator as a matrix. Due to the ill-posedness of the unfolding
problem, this is not satisfactory in itself. The usual procedure is to add some artificial
penalty function to the log-likelihood function (χ2) in order to suppress the large local
gradients. If that is performed, the method can deliver meaningful answers, but the
introduced systematic bias by the additional penalty function is difficult to quantify. In
addition, similarly to the method (i), the fit can be slightly insensitive to the details
of f due to the ill-posedness of the problem. The so-called SVD methods [17] are
implementations of this idea.

(iii) There are also iterative methods which intend to approximate the true pdf f , given
the measured folded pdf g and the response function ρ. One of the most popular
and most promising methods is the method of convergent weights, also called itera-
tive Bayesian unfolding. It was first discovered and applied by Richardson [21] and
Lucy [22] for image processing. Later it was rediscovered and applied to tomography
problems by Shepp and Vardi [23] and by Kondor [24]. The first serious mathematical
scrutiny of the method was done by Mülthei and Schorr [25, 26]. In the mid 1990s
d’Agostini rediscovered and popularized the algorithm in the high energy physics com-
munity [18]. Recently, Zech [19] studied possible optimal iteration stopping criteria
for the algorithm. One of the main advantages of the method of convergent weights or
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Bayesian unfolding is that it takes into account the nonnegativity and the unitness of
the integral of the true pdf f in an exact manner. Furthermore, if the measured folded
pdf g is a histogram, i.e., its values fluctuate according to Poisson counting statistics,
then the iterative approximants to f have increasing likelihood [25], i.e., the algorithm
is a realization of a maximum likelihood approximation. Most unfortunately, despite
the research efforts [25], there are no results stating that the method is convergent,
although numerical evidence suggests its convergent nature. Moreover, there are no
exact error propagation formulae available.

In case of a consistent method the approximation error should converge to zero when
the regularization parameters are relaxed. In case of an iterative method, an approximating
sequence (fN )N∈N0

to the unknown f is constructed and the regularization parameter is merely
the iteration stopping orderNmax, i.e., a threshold index in the approximating sequence. When
an iterative unfolding method is consistent, the approximation error, i.e., the distance of fN to
the true unknown f , must converge to zero with increasing number of iterations N . Although
the above consistency property is an obvious minimal requirement for any unfolding method,
often this is not easy to show analytically.

In a previous paper [1] we proposed a linear iterative unfolding method, discussed its pros
and cons in comparison to other techniques, provided a detailed description from the practical
point of view for experimentalists, and provided a set of relevant application examples. In the
present paper we provide formal mathematical proofs for the claims therein for the proposed
unfolding method:

(i) proof of consistency, i.e., that the approximation error converges to zero with increasing
number of iterations,

(ii) explicit formula for the approximation error at finite iteration order,
(iii) explicit formula for the propagated statistical errors on the unfolded pdf at finite

iteration order given the statistical errors of the measured folded pdf,
(iv) explicit formula for the propagated systematic errors on the unfolded pdf at finite

iteration order given the systematic errors of the measured folded pdf or of the response
function.

Because of (ii)–(iv) the competing error terms become calculable, and therefore these can be
used to define an optimal iteration stopping criterion. In addition, the pertinent error terms
can be determined at this optimum. The quantification of these are of utmost importance
when presenting unfolded experimental results and is generally an unresolved task for other
widely used unfolding methods. The key mathematical ingredient of the proofs is mapping
our originally L1 problem to the L2 space using the Riesz–Thorin theorem and using spectral
representation of the operators therein. The actual iteration formula is formally motivated
by a preconditioned Neumann–Landweber–Richardson series, but these are not automatically
convergent in the case of L1 problems: our specific preconditioning makes the iteration con-
vergent in the L1 setting, given some quite generic conditions. The proposed method also
does not rely on an inherent discretization of the pdfs: it does work also in the continuum
limit or with any type of density estimators.1

1Some unfolding methods rely on an inherent discretization of pdfs in the problem and use the assumed
discretization as an implicit regularization. Our method does not use such a trick.
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The obtained results can be particularly interesting as the proposed method can be con-
sidered as the “linearized” version of the method of convergent weights or iterative Bayesian
unfolding [18, 19, 21, 22, 23, 24, 25, 26]. By understanding the convergence conditions and
error propagation for the proposed method, the studies of Mülthei and Schorr [25] could even-
tually be completed on the Bayesian iteration, which would be a significant improvement in
the field.

The paper is organized as follows. In section 2 the problem of unfolding is introduced
in a mathematically rigorous way, and the basic properties of generic folding operators are
discussed. In section 3 our proposed unfolding method is introduced and proofs are provided
for its above listed properties. In section 4 we generalize a bit our results for the case of
probability measures which are not described by pdfs. In section 5 we restrict our results
to the special case when the unfolding problem is discrete: this presentation may be better
understood by statisticians or experimental physicists not specialized in functional analysis.
In section 6 a concrete numerical example is shown. Finally, in section 7 we summarize.

2. Mathematical properties of folding operators and the unfolding. In the text cpdf is
the notion of conditional probability density function. We shall rely on the usual terminology
in functional analysis and measure theory [27, 28]. As such, the notion of Lebesgue almost
everywhere or Lebesgue almost every shall be abbreviated by a.e.

Let X and Y be finite dimensional real vector spaces equipped with the Lebesgue
measure—unique up to a global positive normalization factor. Let L1(X) and L1(Y ) denote
the Banach spaces of X → C and Y → C Lebesgue integrable function equivalence classes,
respectively, where the equivalence of functions is defined by being a.e. equal. As usual in
functional analysis texts, we shall call these function equivalence classes simply functions. We
shall also use the notion of essential bound for such a function which is the smallest upper
bound valid a.e.

Definition 2.1. Let ρ : Y ×X → R+
0 , (y, x) 7→ ρ(y|x) be a cpdf over the product space Y ×X,

i.e., a nonnegative Lebesgue measurable function which satisfies ∀x ∈ X :
∫
ρ(y|x) dy = 1.

Then, the linear operator

Aρ : L1(X)→ L1(Y ), (x 7→ f(x)) 7→
(
y 7→

∫
ρ(y|x) f(x) dx

)
(2.1)

is called the folding operator by ρ, where the function ρ is called the response function of the
folding.

Remark 2.1. The following basic properties of folding operators are direct consequences
of the definition.

(i) A possible usual generalization of the notion of folding operator is when inefficiencies
are also allowed, i.e., the less restrictive condition ∀x ∈ X :

∫
ρ(y|x) dy ≤ 1 is required

for the response function ρ of the folding operator Aρ. The results throughout the
paper are also valid for that case.

(ii) By Fubini’s theorem, a folding is a well-defined linear operator.
(iii) It is also quite evident [2] that such operator is continuous in the L1 operator norm (i.e.,

in the probabilistic sense); moreover ‖Aρ‖L1(X)→L1(Y ) = 1, while ‖Aρ‖L1(X)→L1(Y ) ≤ 1
whenever inefficiencies are allowed.
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It is seen that such a folding operator Aρ is quite well behaved: it is linear and is continuous
in the probabilistic sense, i.e., close pdfs are mapped to close pdfs in the L1 sense [1].

A quite important class of folding operators is convolutions, in which case the shape of
the response function is translationally invariant.

Definition 2.2. A folding operator Aρ is called convolution whenever the response function ρ
is translationally invariant in the sense that Y = X and ∀x, y, z ∈ X : ρ(y|x+z) = ρ(y−z|x).

Remark 2.2. The following properties of convolution operators are well-known results [2,
29, 30].

(i) In case a folding operator Aρ is a convolution, the response function ρ may be expressed
by the single pdf η := ρ(·|0) in the form ∀x, y ∈ X : ρ(y|x) = η(y−x). The alternative
notation η ? f := Aρf is often used in such case (f ∈ L1(X)). Note that convolution
is commutative, i.e. one has η ? f = f ? η ∀η, f ∈ L1(X).

(ii) A convolution operator is not onto, and its image is not closed.
(iii) The image of a convolution operator is dense if and only if the Fourier transform of

the convolver function is nowhere zero (Wiener’s approximation theorem).
(iv) A convolution operator is one-to-one if and only if the Fourier transform of the con-

volver function is a.e. nonzero.
(v) Consequently, the inverse of a convolution operator, whenever it exists, cannot be

continuous. This is because a convolution is everywhere defined on the closed set
L1(X), it is continuous, and therefore it has closed graph by Banach’s closed graph
theorem, but since the inverse operator’s domain is not closed, again by Banach’s
closed graph theorem, it cannot be continuous.

Since the convolution operators form a quite large example class of folding operators, we
can state that a generic folding operator’s inverse, whenever it exists, is not continuous. This
finding is often referred to as follows: the inversion of a generic folding operator is ill-posed.
The argument goes as follows: we have an unknown pdf f , a known response function ρ, and
a measured pdf g = Aρf + e, where e represents a small measurement error term. Then,
when one would set A−1ρ g = f +A−1ρ e, the error term e contains modes not in the domain of
A−1ρ , in which case A−1ρ e is not meaningful, or when approximated numerically, this term shall
diverge. Note that even if all modes of e were in the domain of A−1ρ , the smallness of A−1ρ e is
not guaranteed even though e is small. The ill-posedness of a generic unfolding problem may
also be stated as follows: if f1 and f2 are distant pdfs, then g1 := Aρf1+e1 and g2 := Aρf2+e2
may be close pdfs, i.e., we lose discrimination power on pdfs after a folding [1]. The presented
argument also warns us against relying solely on the so-called closure test when verifying an
unfolding algorithm: whenever some unfolding method gives some estimate f̂ for the unknown
pdf f , it is usually argued that Aρf̂ ≈ Aρf confirms the validity of the estimate f̂ . Clearly, in

light of our observations this is not enough, as f̂ may still be far from f in the probabilistic
distance.

Due to the ill-posedness of the unfolding problem, any unfolding method needs to use some
kind of regularization—some assumption on the original (unknown) pdf—and a way to search
for an approximative solution depending on some regularization parameters. Furthermore,
the convergence to the original pdf when relaxing these parameters can usually be achieved
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only in some weak sense, not in the probabilistic norm of L1(X). The most commonly applied
unfolding strategies are summarized in [1, 3, 4, 5, 6, 7, 8, 16, 17, 18, 19].

3. A linear iterative unfolding method. Since the folding equation (2.1) is linear, it is
quite natural to try applying some iterative inversion methods known in functional analysis
when approximating the true solution f . One such self-suggesting method is the Neumann
series [27, 28], which guarantees that whenever for a continuous linear operator A over a
Banach space one has ‖I − A‖ < 1 (I being the identity operator), then A−1 =

∑∞
n=0(I −

A)n, where the convergence holds in the operator norm. That convergence requirement,
however, cannot be satisfied in case of a probability theory folding operator because for such
an operator one has ‖I − Aρ‖L1→L1 = 2 as shown in [2]. The Richardson iteration, based
on similar requirements, does not work for the same reason. Another evident choice would
be the Landweber iteration [31] known in the theory of Fredholm integral equations [27, 28].
This assumes, in the first place, that the unknown function f and the result of the folding g
resides in the space of square integrable functions L2(X), and furthermore that the response

function ρ satisfies the regularity condition
∫ ∫ ∣∣ρ(y|x)

∣∣2 dy dx < ∞. The latter regularity
condition, unfortunately, is violated in case of a generic cpdf, contrary to the common belief
in the literature.2

Despite the fact that neither the Neumann series nor the Richardson iteration nor the
Landweber iteration can be directly applied to an unfolding problem, they provide a possible
starting point. Motivated by these algorithms we proposed a linear iterative unfolding method
for a probability theory context, i.e., for the L1 space [1]. The section is continued by recalling
notions necessary for studying the pertinent algorithm.

In the following we shall denote by Lp(X) the Banach space of X → C functions [27, 28]
which are Lebesgue integrable of the pth power (1 ≤ p ≤ ∞). The special case L∞(X) for
p =∞ is defined as the Banach space of the X → C essentially bounded functions with their
norm being the essential bound.

Remark 3.1. The argument in the following relies on some known results.
(i) The Riesz–Thorin theorem [32] states that if 1 ≤ q ≤ r ≤ ∞ and F ⊂ Lq(X) ∩Lr(X)

is a dense linear subspace in both Lq(X) and Lr(X), and furthermore a linear operator
T : F → Lq(X) ∩ Lr(X) is bounded both in the Lq(X) and Lr(X) norm, then
∀q ≤ p ≤ r values F ⊂ Lp(X), it is dense in Lp(X), T [F ] ⊂ Lp(X) and T is bounded
in the Lp(X) norm. Thus, T is uniquely extendable as an Lp(X) → Lp(X) bounded
linear operator. In addition we have that

‖T‖Lp→Lp ≤ max (‖T‖Lq→Lq , ‖T‖Lr→Lr)(3.1)

holds for the operator norms.
(ii) An important consequence of the Riesz–Thorin theorem is that a convolution operator

η ? (·) by a function η ∈ L1(X) is well-defined and continuous in Lp(X) ∀1 ≤ p ≤ ∞
and its operator norm is bounded by ‖η‖L1 . This obviously holds for the p = 1 and

2It is evidently seen that this regularity condition does not hold for any convolution. It is also seen at the
price of some calculation that this situation cannot be repaired by a compactification mapping, i.e., if we map
the support set of our pdfs and response function into a compact region of Y and X.
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p = ∞ case due to Hölder’s inequality, and then it is implied ∀1 < p < ∞ as well by
the pertinent theorem. As a consequence, using the commutativity of convolution, it
also follows that if ϕ ∈ Lp(X) and η ∈ L1(X), then ϕ ? η ∈ Lp(X), i.e., pdfs may be
mapped into Lp(X) via convolution by pdfs integrable on the pth power.

(iii) We shall use in the following the spectral representation [28] of normal operators over
complex separable Hilbert spaces. Let T be a normal operator over the pertinent
space, i.e., a densely defined linear operator with closed graph, satisfying T ∗T = TT ∗,
(·)∗ being the adjoint. Then there exists a unique projection valued measure P over
the Borel sets of the spectrum set of T , Sp(T ), such that

T =

∫
λ∈Sp(T )

λ dP (λ)(3.2)

holds, where the integral is defined in the weak sense. That is, for all elements f, g in
the Hilbert space one has a complex valued Borel measure 〈f, P (·)g〉 such that

〈f, Tg〉 =

∫
λ∈Sp(T )

λ d 〈f, P (λ)g〉 .(3.3)

In addition, one has that if M is a polynomial, then M(T ) is also normal operator,
and furthermore

M(T ) =

∫
λ∈Sp(T )

M(λ) dP (λ)(3.4)

is satisfied in the same sense.

Throughout the argument we will need the notion of transpose folding which is introduced
below.

Definition 3.1. If Aρ is a folding operator such that the response function ρ(·|x) is square-
integrable ∀x ∈ X, then ∀k ∈ L2(Y ) the expression

ATρ k :=

(
x 7→

∫
k(y) ρ(y|x) dy

)
(3.5)

is meaningful and defines a linear map from L2(Y ) to the Lebesgue measurable functions
X → C. We call the linear operator ATρ the transpose folding.

3.1. The iterative approximation. Equipped with the listed notions, we can introduce
the following approximating sequence for solution of the unfolding problem. Let g = Aρf be
our unfolding problem where f is to be determined, with g and ρ being known. We try to
approximate the solution in the form

Kρ := sup
x∈X

∫ ∫
ρ(y|z) ρ(y|x) dy dz,

f0 := K−1ρ ATρ g,

fN+1 := fN +
(
f0 −K−1ρ ATρAρfN

)
(N ∈ N0).(3.6)
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This is, formally, the iterative expression for Neumann series after preconditioning by K−1ρ ATρ ,

i.e., for the composite operator K−1ρ ATρAρ.

3.2. Convergence conditions. The following theorem shows that under quite generic
conditions the approximating sequence (fN )N∈N0

in terms of (3.6) is well defined and converges
to f whenever Aρ is one-to-one, and it converges to the closest possible function to f whenever
Aρ is not one-to-one.

Theorem 3.2 (convergence). Let Aρ be a folding operator and assume that its response
function ρ has the property that ∀x ∈ X the function ρ(·|x) is square-integrable, and fur-
thermore Kρ < ∞. Assume that the unknown pdf f in the unfolding problem g = Aρf is
square-integrable. Then,

(i) for any compact set U ⊂ X,

lim
N→∞

1

Volume(U)

∫
x∈U

(
f − PKer(Aρ)f − fN

)
(x) dx = 0,(3.7)

where PKer(Aρ) is the L2 orthogonal projection onto the kernel set of Aρ;
(ii) we have that

lim
N→∞

∥∥f − PKer(Aρ)f − fN
∥∥
L2 = 0(3.8)

and the convergence is monotone.

Proof. It is seen that whenever the regularity condition ∀x ∈ X : ρ(·|x) ∈ L2(Y ) holds,
the function

α : X ×X → R+
0 , (z, x) 7→ α(z, x) :=

∫
ρ(y|z)ρ(y|x) dy(3.9)

is well defined. By construction, it is symmetric, i.e., ∀z, x ∈ X : α(z, x) = α(x, z). Further-
more, because of Kρ <∞ and symmetricity,

sup
x∈X

∫
z∈X

α(z, x) dz = sup
z∈X

∫
x∈X

α(z, x) dx = Kρ <∞(3.10)

holds. With this, we see that the operator ATρAρ is well defined as L1(X) → L1(X) and is
bounded, its L1 → L1 operator norm being Kρ. This is because for any f ∈ L1(X)

∥∥ATρAρf∥∥L1 =

∫ ∣∣∣∣∫ α(z, x)f(x) dx

∣∣∣∣ dz

≤
∫ ∫

α(z, x) |f(x)| dx dz =

∫ (∫
α(z, x) dz

)
|f(x)| dx

≤ sup
x∈X

(∫
z∈X

α(z, x) dz

) ∫
x∈X
|f(x)| dx = Kρ ‖f‖L1(3.11)

due to monotonicity of integration, Fubini’s theorem, and Hölder’s inequality. It is also seen
that the operator ATρAρ is well defined as L∞(X) → L∞(X) and is bounded, its L∞ → L∞
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operator norm being Kρ. That is because for any f ∈ L∞(X)∥∥ATρAρf∥∥L∞ = sup
z∈X

∣∣∣∣∫ α(z, x)f(x) dx

∣∣∣∣
≤ sup

z∈X

∫
α(z, x) |f(x)| dx ≤ sup

z∈X

(∫
α(z, x) dx sup

x∈X
|f(x)|

)
= sup

z∈X

(∫
x∈X

α(z, x) dx

)
sup
x∈X
|f(x)| = Kρ ‖f‖L∞(3.12)

due to monotonicity of integration and Hölder’s inequality.
Now, using the Riesz–Thorin theorem we have that the operator ATρAρ is well defined as

L2(X) → L2(X) and is bounded, its L2 → L2 operator norm being bound by Kρ. It is also
easily seen that for any f ∈ L2(X) one has

〈
f,ATρAρf

〉
= 〈Aρf,Aρf〉 ≥ 0; therefore it is a

self-adjoint and positive operator in L2(X). Thus, its spectrum lies within the interval [0,Kρ].
For brevity, we introduce the notation A := K−1ρ ATρAρ for the renormalized composite folding
operator.

Let us observe that the iterative formula (3.6) may also be written in the series expansion
form fN =

∑N
n=0(I−A)nf0, where we have that f0 = Af , f being the unknown pdf. This form

is particularly useful because then we see by induction that
∑N

n=0(I−A)nA = I−(I−A)N+1,
i.e., we have the explicit formula f − fN = (I −A)N+1f for the residual term.

By the observed properties of A it is quite evident that Sp(A) ⊂ [0, 1]. Thus, there exists
a unique projection valued measure P on the Borel sets of [0, 1] such that

A =

∫
λ∈[0,1]

λdP (λ)(3.13)

in the weak sense. This implies that for any h ∈ L2(X) we have

〈h, f − fN 〉 =

∫
λ∈[0,1]

(1− λ)N+1 d 〈h, P (λ)f〉

=

∫
λ∈{0}

(1− λ)N+1 d 〈h, P (λ)f〉

+

∫
λ∈]0,1]

(1− λ)N+1 d 〈h, P (λ)f〉 .(3.14)

Since
∫
λ∈{0}(1− λ)N+1 dP (λ) = PKer(Aρ)∀N ∈ N0, we arrive at the identity

〈
h, f − PKer(Aρ)f − fN

〉
=

∫
λ∈]0,1]

(1− λ)N+1 d 〈h, P (λ)f〉 ,(3.15)

and by the monotonicity of integration∣∣〈h, f − PKer(Aρ)f − fN
〉∣∣ ≤ ∫

λ∈]0,1]
|1− λ|N+1 d |〈h, P (λ)f〉|(3.16)

also holds, where the symbol | · | when applied to complex valued measures denotes variation,
which is analogous to absolute value of complex valued functions. The measure 〈h, P (·)f〉 on
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[0, 1] has finite variation and the function sequence λ 7→ (1 − λ)N+1 (N ∈ N0) is bounded
independently of N and converges pointwise to zero on ]0, 1]; therefore by Lebesgue’s theorem
of dominated convergence [27, 28] we have that the sequence of integrals converges to zero.
Thus, the first part of the theorem is proved by setting h := 1

Volume(U) χU .
The second part of the theorem is proved by observing that∥∥f − PKer(Aρ)f − fN

∥∥2
L2 =

〈
f,
(
(I −A)N+1 − PKer(Aρ)

)2
f
〉

=

∫
λ∈]0,1]

(1− λ)2N+2 d 〈f, P (λ)f〉 ,(3.17)

where 〈f, P (·)f〉 is a nonnegative valued finite measure and the integrand, which is also non-
negative, has a bound independent of N ; furthermore it monotonically decreases at each point
to zero with increasing N . Therefore, by Lebesgue’s theorem of dominated convergence and
by the monotonicity of integration we have that the pertinent expression converges to zero
with increasing N in a monotonically decreasing way.

Remark 3.2. The following remarks clarify the meaning of Theorem 3.2 in the context of
a probability theory setting.

(i) For any folding operator Aρ the response function may be conditioned to have the reg-
ularity condition ∀x ∈ X : ρ(·|x) ∈ L2(X) by convolving it with a square-integrable
pdf η whose Fourier transform is nowhere vanishing. Namely, one can solve the modi-
fied problem η ?g = Aη?ρf for f instead of the original form g = Aρf . In that way, the
transpose folding operator can always be made well defined. When such a treatment
is applied, the iteration modifies as

Kη?ρ := sup
x∈X

∫ ∫
(η ? ρ)(y|z) (η ? ρ)(y|x) dy dz,

f0 := K−1η?ρA
T
η?ρ η ? g,

fN+1 := fN +
(
f0 −K−1η?ρATη?ρAη?ρfN

)
(N ∈ N0)(3.18)

with the very same convergence properties as in the previous theorem.
(ii) The regularity condition Kρ < ∞ (or Kη?ρ < ∞) holds for a quite large class of

response functions in a probability theory context. Namely, it is easy to check that
if Aρ is a convolution, then Kρ = 1. For other practical cases, this condition may be
checked numerically as done in [1]. It is shown, e.g., that for the response function
of particle energy measurement with a typical calorimeter device, one has Kρ ≈ 1.4.
Also the response function of particle momentum measurement using bending in a
magnetic field has the pertinent regularity property.

(iii) The regularity condition for the unknown pdf f , i.e., that it has to be square-integrable,
holds for a quite generic class of pdfs. This is automatic, for instance, for any pdf which
is known to be essentially bounded.

(iv) When the convergence condition is satisfied, it is seen that if Aρ is one-to-one, the
approximating functions (fN )N∈N0

converge to the original unknown pdf f . When Aρ
is not one-to-one, then (fN )N∈N0

converge to the closest possible function f−PKer(Aρ)f .
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(v) The meaning of convergence result (i) in the context of probability theory is that
the approximating functions (fN )N∈N0

converge in the sense that the probability of
each compact set U ⊂ X is restored to the maximum possible extent, but the rate
of convergence might be different for different sets. When the pdfs are measured or
modeled by histograms, as is usual in statistical data processing, this means binwise
convergence of the restored histograms, the convergence rate being possibly different
for different histogram bins. The more global convergence result (ii) does not have
a direct probability theory interpretation but shall have a role in the estimation of
approximation error at finite iteration order N .

(vi) Note that whenever our pdfs are modeled by histograms, the operation of histogram
binning may also be regarded as part of the folding operator as described in [1], and
thus it is wise to include its effect in the folding operator Aρ. This might be done,
for instance, by modeling the true (unknown) pdf f and its iterative approximates fN
as histograms binned on a much wider domain with larger binning density than the
measured pdf g. In such approximation the folding operator Aρ may be thought of as
a real matrix which is not square.

3.3. Estimation of approximation error. The convergence result means that the residual
term (approximation error) f − PKer(Aρ)f − fN of the approximating sequence defined by
(3.6) decreases to zero with increased iteration order N in the sense that it decreases to zero
when averaged over any compact set, i.e., we have binwise convergence in the language of
histograms. However, it would be very useful to quantify the approximation error at finite N
in order to define some stopping criterion. To achieve this, we need to recall a result from the
theory of projection valued measures.

Remark 3.3. Let P be a projection valued measure of some separable Hilbert space over
the Borel sets of C. Then, whenever α and β are C → C measurable functions, while h and
f are elements of the Hilbert space, one has

∣∣∣∣∫
λ∈C

α(λ)β(λ) d 〈h, P (λ)f〉
∣∣∣∣ ≤

√∫
λ∈C
|α(λ)|2 d 〈h, P (λ)h〉

√∫
λ∈C
|β(λ)|2 d 〈f, P (λ)f〉

(3.19)

and the same inequality also holds when α and β are interchanged [28]. This upper bound is
in the analogy of the Cauchy–Schwarz inequality.

The following theorem helps to quantify the approximation error at a finite iteration order
N ∈ N0.

Theorem 3.3 (approximation error). Take the iterative solution for the unfolding problem as
in (3.6) and assume that the convergence conditions of Theorem 3.2 hold. Then, the distance
of an N th iterate fN from the closest possible function to the true unfolded pdf f in the average
over a compact set U ⊂ X has the following upper bounds:

(i) One has

∣∣∣∣ 1

Volume(U)

∫
x∈U

(
f − PKer(Aρ)f − fN

)
(x) dx

∣∣∣∣ ≤ 1√
Volume(U)

∥∥f − PKer(Aρ)f − fN
∥∥
L2 .

(3.20)



CONVERGENCE AND ERROR PROPAGATION RESULTS 1357

(ii) Similarly, when Ker(Aρ) is not projected out,∣∣∣∣ 1

Volume(U)

∫
x∈U

(f − fN ) (x) dx

∣∣∣∣ ≤ 1√
Volume(U)

‖f − fN‖L2 .(3.21)

(iii) In addition,∣∣∣∣ 1

Volume(U)

∫
x∈U

(
f − PKer(Aρ)f − fN

)
(x) dx

∣∣∣∣ ≤ ∥∥f − PKer(Aρ)f
∥∥
L2 ‖ξU

− PKer(Aρ)ξU − ξU,N
∥∥
L2(3.22)

is valid, where ξU := 1
Volume(U)χU and ξU,N is the N th iterative approximation of ξU in

terms of (3.6). Namely, ξU,0 := K−1ρ ATρ ξU and ξU,N+1 := ξU,N +
(
ξU,0 −

K−1ρ ATρAρξU,N
)
.

(iv) Similarly, one has∣∣∣∣ 1

Volume(U)

∫
x∈U

(f − fN ) (x) dx

∣∣∣∣ ≤ ‖f‖L2

∥∥ξU − ξU,N∥∥L2(3.23)

when Ker(Aρ) is not projected out.
(v) The identity∣∣∣∣ 1

Volume(U)

∫
x∈U

(f − fN ) (x) dx

∣∣∣∣ =

∣∣∣∣∫ (ξU − ξU,N ) (x) f(x) dx

∣∣∣∣(3.24)

also holds.

Proof. These are direct consequence of spectral representation of the operator A :=
K−1ρ ATρAρ as in the proof of Theorem 3.2 from which

∣∣〈h, f − PKer(Aρ)f − fN
〉∣∣ =

∣∣∣∣∣
∫
λ∈]0,1]

1 (1− λ)N+1 d 〈h, P (λ)f〉

∣∣∣∣∣
≤
√∫

λ∈]0,1]
|1|2 d 〈h, P (λ)h〉

√∫
λ∈]0,1]

|(1− λ)N+1|2 d 〈f, P (λ)f〉(3.25)

and

∣∣〈h, f − PKer(Aρ)f − fN
〉∣∣ =

∣∣∣∣∣
∫
λ∈]0,1]

1 (1− λ)N+1 d 〈h, P (λ)f〉

∣∣∣∣∣
≤
√∫

λ∈]0,1]
|1|2 d 〈f, P (λ)f〉

√∫
λ∈]0,1]

|(1− λ)N+1|2 d 〈h, P (λ)h〉(3.26)

follows with arbitrary h ∈ L2(X). These may be rewritten as∣∣〈h, f − PKer(Aρ)f − fN
〉∣∣ ≤ ∥∥h− PKer(Aρ)h

∥∥
L2

∥∥((I −A)N+1 − PKer(Aρ)

)
f
∥∥
L2(3.27)



1358 ANDRÁS LÁSZLÓ

and ∣∣〈h, f − PKer(Aρ)f − fN
〉∣∣ ≤ ∥∥f − PKer(Aρ)f

∥∥
L2

∥∥((I −A)N+1 − PKer(Aρ)

)
h
∥∥
L2 .(3.28)

Then by using the fact that
(
(I −A)N+1 − PKer(Aρ)

)
f = f −PKer(Aρ)f −fN and ((I−A)N+1

−PKer(Aρ))h = h−PKer(Aρ)h− hN , where hN is the iterative approximation of h in terms of
(3.6), we see that∣∣〈h, f − PKer(Aρ)f − fN

〉∣∣ ≤ ∥∥h− PKer(Aρ)h
∥∥
L2

∥∥f − PKer(Aρ)f − fN
∥∥
L2(3.29)

and ∣∣〈h, f − PKer(Aρ)f − fN
〉∣∣ ≤ ∥∥f − PKer(Aρ)f

∥∥
L2

∥∥h− PKer(Aρ)h− hN
∥∥
L2 .(3.30)

By using
∥∥h− PKer(Aρ)h

∥∥
L2 ≤ ‖h‖L2 and setting h := 1

Volume(U)χU we have proved (i) and (iii).
Quite obviously, the same argument can be repeated with the projection operator PKer(Aρ)

excluded from the equations, which proves (ii) and (iv).
Point (v) is proved by observing that for any h ∈ L2(X) one has 〈h, f − fN 〉 =〈

h, (I −A)N+1f
〉
, since f − fN = (I − A)N+1f . Due to the self-adjointness of the com-

posite folding operator A, one has that 〈h, f − fN 〉 =
〈
(I −A)N+1h, f

〉
. Since the identity

(I−A)N+1h = h−hN holds, one arrives at 〈h, f − fN 〉 = 〈h− hN , f〉 and thus |〈h, f − fN 〉| =
|〈h− hN , f〉| is valid. Then, (v) is proved by simply substituting h := ξU .

Remark 3.4. The following remarks clarify the usability of Theorem 3.3.
(i) By statements (i) and (ii) it is implied that the residual error averaged over a compact

set U ⊂ X scales as 1√
Volume(U)

. In the language of histograms it means that it scales

as one per square-root of the histogram bin size.
(ii) The upper bounds (i), (iii) decrease monotonically to zero with increasing N . The up-

per bounds (ii) and (iv) decrease monotonically to the corresponding limits
1√

Volume(U)

∥∥PKer(Aρ)f
∥∥
L2 and ‖f‖L2

∥∥PKer(Aρ)ξU
∥∥
L2 , respectively. Since

∥∥ξU − ξU,N∥∥L2

is fully calculable, upper bound (iv) can be used to test whether the inverse of Aρ exists,
i.e., whether PKer(Aρ) = 0 holds, or if not, it may be used to quantify the contribution
of the irrecoverable part PKer(Aρ)f .

(iii) Via spectral representation it is easy to see that ‖fN‖L2 converges to the limit∥∥f − PKer(Aρ)f
∥∥
L2 in a monotonically increasing way, i.e., may be used to approxi-

mate this unknown coefficient from below.
(iv) Again via using spectral representation, one can see that with fixed N and M > N ,

the expressions ‖fM − fN‖L2 and
∥∥ξU,M − ξU,N∥∥L2 tend to the corresponding limits∥∥f − PKer(Aρ)f − fN

∥∥
L2 and

∥∥ξU − PKer(Aρ)ξU − ξU,N
∥∥
L2 with increasing M , respec-

tively, in a monotonically increasing way. Therefore, they can be used for approxima-
tion of these unknown coefficients from below.

(v) As a consequence, the approximation error may be estimated for a fixed iteration
order N in the following way. For any ε > 0 there exists an iteration index threshold
Mε,N > N such that ∀M > Mε,N
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∣∣∣∣ 1

Volume(U)

∫
x∈U

(
f − PKer(Aρ)f − fN

)
(x) dx

∣∣∣∣ ≤ 1√
Volume(U)

(1 + ε) ‖fM − fN‖L2(3.31)

is valid. In addition, a closer, U -dependent estimate may be calculated: for any ε > 0
there exists an iteration index threshold Mε,U,N > N for which ∀M > Mε,U,N the
upper bound∣∣∣∣ 1

Volume(U)

∫
x∈U

(
f − PKer(Aρ)f − fN

)
(x) dx

∣∣∣∣ ≤ (1 + ε) ‖fM‖L2

∥∥ξU,M − ξU,N∥∥L2(3.32)

holds. Alternatively,∣∣∣∣ 1

Volume(U)

∫
x∈U

(f − fN ) (x) dx

∣∣∣∣ ≤ (1 + ε) ‖fM‖L2

∥∥ξU − ξU,N∥∥L2(3.33)

is also valid whenever Aρ is known to be one-to-one, which expression is slightly cheaper
to calculate.

(vi) The identity (v) is particularly useful. In order to constructively evaluate it, one needs
to use the fact that the sequence (fN )N∈N0 converges to f −PKer(Aρ)f in the L2 sense.
Thus, whenever Aρ is invertible, it converges to f in the L2 sense. In that case, the
identity (v) can be rewritten as∣∣∣∣ 1

Volume(U)

∫
x∈U

(f − fN ) (x) dx

∣∣∣∣ = lim
M→∞

∣∣∣∣∫ (ξU − ξU,N ) (x) fM (x) dx

∣∣∣∣ .(3.34)

Technically, the right side of this identity may be approximated by the integral∣∣∫ (ξU − ξU,N ) (x) fM (x) dx
∣∣ with large enough M . For large N , even M := N may be

used for evaluation of this expression.

3.4. Estimation of statistical error. Armed with the approximation error estimates of
Theorem 3.3 one can construct penalty functions which define optimal stopping criterion of
the iteration, and one can quantify the error of the approximation at finite iteration order
which decreases with increasing iteration order.

In practice, however, the unfolding problem g = Aρf+e may also contain a small statistical
error term e whose expectation value is zero; its exact value is unknown, but an estimate to
the behavior of the random variable e(x) for each x ∈ X is available. Normally, the statistical
covariance matrix Cov(e) is known along with the measured pdf g and the known response
function ρ. If, for instance, g was a result of a measurement in the form of a histogram,
then Cov(e) = Cov(g) will be nothing but the diagonal matrix composed of the histogram
bin entries. The question naturally arises: how can one quantify the propagated statistical
error of the Nth iterative approximation of f , i.e., of fN . In the following we show an exact
formula for the case when g is measured as a histogram, i.e., when g can be regarded as an
n-component vector of real probability variables with known covariance.

Remark 3.5. The following simple facts in probability theory will aid the argumentation
of the statistical error propagation.

(i) If v is an n-component vector of real probability variables, then its covariance Cov(v)
is an n×n real symmetric positive matrix. Therefore, for any m ≥ n there exists (not
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necessarily uniquely) a real n×m matrix Err(v) such that

Cov(v) = Err(v)Err(v)T(3.35)

holds, the symbol (·)T denoting matrix transpose. Indeed, because of realness, sym-
metricity, and positivity of Cov(v) there exists uniquely a real symmetric positive n×n
matrix satisfying (3.35), the square-root of Cov(v), and therefore Err(v) =

√
Cov(v)

may be chosen. Then, this may be extended to be n ×m (m ≥ n) by zeros without
affecting (3.35). In some special cases, however, there also exists such n×m (m ≤ n)
real matrix Err(v) such that (3.35) still holds.

(ii) If v is an n-component vector of real probability variables and M is a real m × n
matrix, then the standard error propagation formula

Cov(Mv) = MCov(v)MT(3.36)

holds.
(iii) As a consequence of the previous observations, one can express the standard error

propagation formula also in the form

Err(Mv) = MErr(v),(3.37)

where Err(v) is any real n × n matrix satisfying (3.35), and the resulting real m × n
matrix Err(Mv) shall obey Err(Mv)Err(Mv)T = Cov(Mv).

(iv) In our unfolding problem the Nth iterative approximation of f , i.e., fN , may be
expressed in the form

fN =

(
N∑
n=0

(
I −K−1ρ ATρAρ

)n)
K−1ρ ATρ g,(3.38)

which is manifestly linear in the measured pdf g. This fact may be used in order to
construct statistical error propagation formula in terms of the previous observations.

Armed with these equalities, we are ready to state the statistical error propagation formula
for our unfolding method.

Theorem 3.4 (statistical error). Take the iterative solution for the unfolding problem as in
(3.6) and assume that the convergence conditions of Theorem 3.2 hold. Let Cov(g) be the n×n
statistical covariance matrix of the measured pdf g, where g is given in the form of an n-bin
histogram. If f and fN are modeled as an m-bin histogram, then the m×m covariance matrix
of fN , Cov(fN ), may be obtained by the following iterative formula along with fN :

E0 := K−1ρ ATρ Err(g),

EN+1 := EN +
(
E0 −K−1ρ ATρAρEN

)
(N ∈ N0),(3.39)

where ENEN
T = Cov(fN ) holds for each N .

Proof. This is a simple consequence of the linearity of the unfolding method (3.6) and of
Remark 3.5(iv) combined with (iii) and then reexpressing it via iterative form.
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Remark 3.6. The following remarks add some pieces of information about the practical
usage of the statistical error propagation theorem.

(i) If the measured pdf g is a histogram, then each component obeys Poisson distribu-
tion, and thus Cov(g) = diag(g). Furthermore a real n × n matrix Err(g), satisfying
Err(g)Err(g)T = Cov(g), may be constructed by taking the componentwise square-root
of diag(g). This can directly be used in calculation of E0 in Theorem 3.4.

(ii) If f is modeled as a histogram with m bins, then for each iteration order N the real
matrix EN is of m× n type, i.e., Cov(fN ) = ENEN

T shall be of m×m type.
(iii) The square-root of the diagonal elements of the covariance matrix Cov(fN ) give the

exact statistical errors of fN , which then may be used to define an iteration stopping
criterion, for instance, the sum of the statistical errors may be required to be under a
predefined threshold. One should not forget, however, that this unfolding method—
just as any other unfolding method—introduces pretty strong correlations and thus
the nondiagonal elements of Cov(fN ) also play an important role when describing the
characteristics of the statistical fluctuations of fN .

3.5. Estimation of systematic error. It was shown that in the case of a statistical un-
folding problem of the form g = Aρf + e the quantification of the two competing error terms
is possible: close upper bound to the convergent approximation error term was given, whereas
exact error propagation formula to the divergent statistical error term was shown. A com-
bination, such as the sum of these terms, may be considered as a penalty function and the
iteration may be stopped when the penalty function is minimal; furthermore these terms may
be quantified at this optimal iteration order with the shown formulae. In practice, however,
one often faces the problem of systematic errors whenever the measured pdf contains some
systematic distortion not accounted for in our model of response function, or equivalently,
whenever our model of response function is slightly inaccurate. Formally we may write in
such case that the actually measured pdf is g + δg = A(ρ+δρ)f + e, where δρ is the deviation
of the true response function ρ+ δρ from our model response function ρ. Since by definition
g = Aρf + e would be the measured pdf in the absence of δρ, one arrives at the relation
δg = Aδρf between δg and δρ. When applying the iterative solution (3.6) using ρ to the actu-
ally measured pdf g+ δg, the Nth iterative estimate of the true unknown pdf f shall contain
a propagated contribution δfN which needs to be quantified. In experimental practice, the
systematic error of the actually measured pdf is given in terms of some close upper estimate
sg for which |δg| ≤ sg holds, or similarly as a close upper estimate sρ for which |δρ| ≤ sρ is
valid. Our aim is to provide some upper estimate to |δfN | based on sg or sρ, for any given
iteration order N ∈ N0. For this, let us introduce the normalization factors

Cρ,sg :=

√∫ (
K−1ρ ATρ sg

)2
(x) dx(3.40)

if the systematic errors are known in terms of sg and

Dρ,sρ :=

√
sup
x∈X

∫ ∫ (
K−1ρ ATρ sρ

)
(y|z)

(
K−1ρ ATρ sρ

)
(y|x) dy dz(3.41)

if the systematic errors are known in terms of sρ.
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Theorem 3.5 (systematic error). Take the iterative solution for the unfolding problem as in
(3.6) and assume that the conditions of convergence hold. Then, the following upper bounds
are valid on the systematic deviation δfN of the Nth iterative approximation of f , fN .

(i) For the average of δfN over any compact set U ⊂ X one has∣∣∣∣ 1

Volume(U)

∫
x∈U

δfN (x) dx

∣∣∣∣ ≤ ∥∥ΞU,N

∥∥
L2 Cρ,sg,(3.42)

where ξU := 1
Volume(U)χU and ΞU,N is defined by the iteration

ΞU,0 := ξU ,

ΞU,N+1 = ΞU,N +
(
ΞU,0 −K

−1
ρ ATρAρΞU,N

)
(N ∈ N0).(3.43)

(ii) Alternatively,∣∣∣∣ 1

Volume(U)

∫
x∈U

δfN (x) dx

∣∣∣∣ ≤ ∥∥ΞU,N

∥∥
L2 Dρ,sρ ‖f‖L2 .(3.44)

(iii) The upper bound∣∣∣∣ 1

Volume(U)

∫
x∈U

δfN (x) dx

∣∣∣∣ ≤ ∫ ∣∣K−1ρ AρΞU,N

∣∣ (y) sg(y) dy(3.45)

also holds.
(iv) Alternatively,∣∣∣∣ 1

Volume(U)

∫
x∈U

δfN (x) dx

∣∣∣∣ ≤ ∫ (K−1ρ ATsρ
∣∣AρΞU,N

∣∣) (x) |f | (x) dx.(3.46)

(v) More specifically,∣∣∣∣ 1

Volume(U)

∫
x∈U

δfN (x) dx

∣∣∣∣ ≤ ‖f‖L1 sup
x∈X

(
K−1ρ ATsρ

∣∣AρΞU,N

∣∣) (x).(3.47)

Here, whenever f is a pdf, then ‖f‖L1 = 1 automatically holds.

Proof. We begin the proof by recalling that because of (3.38) and its modified form

fN + δfN =

(
N∑
n=0

(
I −K−1ρ ATρAρ

)n)
K−1ρ ATρ (g + δg)(3.48)

in the presence of systematic distortions, we have that

δfN =

(
N∑
n=0

(
I −K−1ρ ATρAρ

)n)
K−1ρ ATρ δg(3.49)

holds, where δg is the unaccounted systematic distortion of the measured pdf, which is related
to the unaccounted systematic distortion of the response function δρ by δg = Aδρf .
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Again, we use the notation A := K−1ρ ATρAρ and use its spectral representation as in the
proof of Theorem 3.2. With this, one has

〈h, δfN 〉 =

∫
λ∈[0,1]

1
N∑
n=0

(1− λ)n d
〈
h, P (λ)K−1ρ ATρ δg

〉
(3.50)

for any h ∈ L2(X). From that, using Remark 3.3 we arrive at

|〈h, δfN 〉| ≤

√√√√∫
λ∈[0,1]

∣∣∣∣∣
N∑
n=0

(1− λ)n

∣∣∣∣∣
2

d 〈h, P (λ)h〉
√∫

λ∈[0,1]
|1|2 d

〈
K−1ρ ATρ δg, P (λ)K−1ρ ATρ δg

〉
=

∥∥∥∥∥
N∑
n=0

(I −A)nh

∥∥∥∥∥
L2

∥∥K−1ρ ATρ δg
∥∥
L2 = ‖HN‖L2

∥∥K−1ρ ATρ δg
∥∥
L2 ,(3.51)

where the notation HN :=
∑N

n=0(I −A)nh is introduced. It is quite evident that HN may be
calculated using the iterative form

H0 := h,
HN+1 := HN + (H0 −AHN )

(N ∈ N0)(3.52)

in order to evaluate ‖HN‖L2 .
An upper bound for

∥∥K−1ρ ATρ δg
∥∥
L2 may be readily constructed using the inequality∥∥K−1ρ ATρ δg
∥∥2
L2 ≤

∥∥K−1ρ ATρ sg
∥∥2
L2 = C2

ρ,sg,(3.53)

which is seen to hold using Fubini’s theorem and monotonicity of integration, where non-
negativity of ρ and sg is tacitly assumed as previously.

Now, by setting h := ξU , part (i) of the theorem is proved.
Part (ii) may be proved by using the relation δg = Aδρf , which implies that∥∥K−1ρ ATρ δg

∥∥2
L2 =

∥∥K−1ρ ATρAδρf
∥∥2
L2 ≤

∥∥K−1ρ ATρAsρf
∥∥2
L2(3.54)

again because of Fubini’s theorem and monotonicity of integration, where one should note
that ρ, sρ, and f are assumed to be nonnegative as previously. Then, we see that

∥∥K−1ρ ATρAsρf
∥∥2
L2 =

〈
f,K−1ρ ATsρAρK

−1
ρ ATρAsρf

〉
≤ ‖f‖2L2

∥∥K−1ρ ATsρAρK
−1
ρ ATρAsρ

∥∥
L2→L2

(3.55)

holds. Realizing that the L2 operator norm of the positive self-adjoint operator K−1ρ
ATsρAρK

−1
ρ ATρAsρ can be bound via the Riesz–Thorin theorem similarly as for K−1ρ ATρAρ

in the proof of Theorem 3.2 we conclude that the pertinent operator norm is bound by D2
ρ,sρ.

Part (iii) is proved by using the self-adjointness of A and that the adjoint of ATρ is Aρ.
Due to that, for any h ∈ L2(X), one has

〈h, δfN 〉 =
〈
K−1ρ AρHN , δg

〉
(3.56)
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with the previous notation. Due to the monotonicity of integration, the identity |〈h, δfN 〉| ≤〈∣∣K−1ρ AρHN

∣∣ , sg〉 is obtained, since |δg| ≤ sg holds. When setting h := ξU and correspond-
ingly HN := ΞU,N , this is nothing but (iii).

Part (iv) is proved by using (3.56) and δg = Aδρf and furthermore that the adjoint of
Aδρ is ATδρ. With that, one has 〈h, δfN 〉 =

〈
K−1ρ ATδρAρHN , f

〉
. Using |δρ| ≤ sρ and the

monotonicity of integration, one arrives at |〈h, δfN 〉| ≤
〈
K−1ρ ATsρ |AρHN | , |f |

〉
. The upper

bound (iv) is obtained whenever h := ξU and HN := ΞU,N is set.
Part (v) is a consequence of (iv), applying Hölder’s inequality, in addition.

Remark 3.7. The following remarks provide some more explanation about the usability
of the above results on upper estimation of the systematic errors of fN originating from the
systematic errors of the measured pdf g or of the response function ρ.

(i) For any given iteration order N ∈ N0 the upper estimate (i) of Theorem 3.5 bounds
the systematic deviation of the unfolded pdf fN averaged over any compact set, in a
manifestly calculable way if the systematic errors of the measured pdf are given. In the
language of histograms this means that a bin-by-bin upper bound to the systematic
error of the unfolded pdf is available in terms of the systematic error of the measured
pdf.

(ii) The upper estimate (ii) of Theorem 3.5 provides an alternative bound for the same
quantity for the case when the systematic errors are known in terms of the systematic
error of the response function. This, similarly to Theorem 3.3(iv), needs the unknown
value of ‖f‖L2 which may be circumvented in the analogy of Remark 3.4(v). Namely,
for any ε > 0 there exists an iteration index threshold Mε ∈ N0 such that ∀M > Mε

one has ∣∣∣∣ 1

Volume(U)

∫
x∈U

δfN (x) dx

∣∣∣∣ ≤ ∥∥ΞU,N

∥∥
L2 Dρ,sρ (1 + ε) ‖fM‖L2(3.57)

whenever Aρ is one-to-one, because then in light of Remark 3.4(iii), ‖fM‖L2 as a
function of M converges to ‖f‖L2 in a monotonically increasing way.

(iii) The right side of (3.46) may be approximated by∫ (
K−1ρ ATsρ

∣∣AρΞU,N

∣∣) (x) |fM | (x) dx(3.58)

due to |f | = f and because fM converges to f as M → ∞ in the L2 sense, whenever
Aρ is invertible. For large N , the approximative formula with M := N may be used.

4. Generalization to the context of probability measures. In rare cases one faces the
problem that the distributions in question cannot be described in terms of pdfs, only in terms
of probability measures instead.3 Such practical cases may arise, for instance, when the folding
operator represents kinematics of particle decays [2]. Therefore, it is interesting to ask the
question whether the iterative unfolding method (3.6) applies in the framework of probability
measures.

3A measure is a set function of the subsets of the probability base space. A common example of measures
is the Dirac delta.
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Remark 4.1. Let us recall some notions in measure theory [33].
(i) A complex measure F over X is a complex valued σ-additive set function on the Borel

σ-algebra of the subsets of X. The variation of the complex measure F is the non-
negative valued measure |F | defined by the following requirement: for a Borel set E
the value of |F |(E) is the supremum of

∑K
k=0 |F (Ek)| for any splitting E1, . . . , EK of

E, i.e., for all such finite system of disjoint Borel sets E1, . . . , EK whose union totals up
to E. The measures with finite variation, i.e., which have |F |(X) <∞, form a Banach
space with the norm being ‖F‖ := |F |(X). We shall denote this space by M(X).

(ii) A probability measure F on X is a nonnegative measure on the Borel σ-algebra of X
with the requirement F (X) = 1. Thus, quite naturally, a probability measure on X
resides in M(X).

We continue with the formal definition of folding operators whose response function is
described by a measure rather than a function.

Definition 4.1. A mapping Q : X → M(Y ), x 7→ Q(·|x) is called a folding measure if for
every x ∈ X the measure Q(·|x) is a nonnegative measure on Y with Q(Y |x) = 1 (i.e., Q(·|x)
is a probability measure ∀x ∈ X), and for every Borel set E in Y the function x 7→ Q(E|x) is
measurable.

Remark 4.2. A possible usual generalization is when inefficiencies are also allowed, i.e.,
the less restrictive condition Q(Y |x) ≤ 1 is required ∀x ∈ X. The results throughout this
paper also hold for that case.

It follows from the definition that a folding measure Q may be viewed as a conditional
probability measure over the product space Y ×X. Quite evidently, if ρ is a response function,
then Qρ(E|x) :=

∫
y∈E ρ(y|x) dy defines a folding measure.

Definition 4.2. Let Q be a folding measure. Then, the linear map

AQ : M(X)→M(Y ), F 7→
(∫

Q(·|x) dF (x)

)
(4.1)

is called the folding operator by Q.

Remark 4.3. The remarks below follow from the definition [2].
(i) A folding operator AQ is well-defined as for all points x ∈ X and Borel sets E of Y

the inequality Q(E|x) ≤ 1 holds; thus the function x 7→ Q(E|x) is integrable by any
measure with finite variation.

(ii) The monotonicity of integration implies that a folding operator is continuous and
‖AQ‖M(X)→M(Y ) = 1, just as in the case of L1 theory. If inefficiencies are allowed,
‖AQ‖M(X)→M(Y ) ≤ 1 holds.

(iii) The folding operators defined by folding measures is a generalization of the folding
operators by response functions.

As in the L1 theory, the convolutions represent an important class of folding operators.

Definition 4.3. A folding operator AQ is called a convolution if its folding measure is trans-
lationally invariant in the sense that Y = X and ∀x, z ∈ X and Borel sets E one has
Q(E|x+ z) = Q(E − z|x).
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Remark 4.4. The following are important properties of convolution operators with mea-
sures [2].

(i) Whenever the folding operator AQ by a folding measure Q is a convolution, Q may
be expressed by a single probability measure R := Q(·|0) in the form of Q(E|x) =
R(E − x)∀x ∈ X and Borel set E. The alternative notation R ? F := AQF is often
used in such case (F ∈ M(X)). Note that the convolution is commutative, i.e., one
has R ? F = F ? R ∀R,F ∈M(X).

(ii) Fourier transformation of measures in M(X) can also be defined and has similar prop-
erties as in the L1 case, except that the Fourier transform functions do not decay at
infinity, i.e., the Riemann–Lebesgue lemma does not hold. Only the boundedness of
Fourier transforms are guaranteed.

(iii) Properties of convolution operators are similarly related to the Fourier transform of
the underlying probability measure, as in the L1 theory. For instance, a convolution
operator is one-to-one if and only if its Fourier transform is nonzero almost everywhere.

(iv) It is easily seen that if ϕ ∈ L1(X) and F ∈M(X), then ϕ ? F is a function in L1(X).
Combining this with Remark 3.1(ii) we conclude that if ϕ ∈ Lp(X) ∩ L1(X) then
∀F ∈ M(X) the function ϕ ? F ∈ Lp(X) ∩ L1(X) (1 ≤ p ≤ ∞). That is, probability
measures may be mapped into pdfs in Lp(X) via convolution by a pdf integrable on
the pth power.

Armed with the introduced notions we may try to ask the question whether one can
generalize the results in section 3 to probability measures.

Remark 4.5. The following results are generalization of the results in section 3 for proba-
bility measures.

(i) The naive application of Neumann series fails to work similarly as in the L1 framework.
This is because as proved in [2] one has ‖I −AQ‖M(X)→M(X) = 2 whenever Q({y}|y) =
0 for any point y—which is the generic case.

(ii) The convergence and error propagation results of Theorems 3.2, 3.3, 3.4, and 3.5 may
be generalized in a similar manner to Remark 3.2(i)–(ii). Namely, instead of the
original problem G = AQF one may consider the modified version η ? G = Aη?QF to
be solved for F , where η is a square-integrable pdf whose Fourier transform is nowhere
vanishing. In this case, the folding operator AQ is mapped to be a folding operator by
a response function Aη?Q instead, as we have η ? AQF = Aη?QF for any F ∈ M(X).
Furthermore, for each x ∈ X the pdf η?Q(·|x) is square-integrable. Then, the iteration

Kη?Q := sup
x∈X

∫ ∫
(η ? Q)(y|z) (η ? Q)(y|x) dy dµ(z),

F0 := K−1η?QA
T
η?Q η ? G,

FN+1 := FN +
(
F0 −K−1η?QA

T
η?QAη?QFN

)
(N ∈ N0).(4.2)

obeys the very same convergence and error propagation properties as stated in The-
orems 3.2, 3.3, 3.4, and 3.5, whenever Kη?Q <∞ and when the unknown probability
measure F corresponds to a square-integrable pdf with respect to some a priori given
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non-negative valued measure µ over X. This latter requirement means that F = fµ
needs to be satisfied with some nonnegative measure µ over X and with some µ-
measurable function f : X → R+

0 for which
∫
|f |2 (x) dµ(x) <∞ needs to hold.

The previous observations conclude that whenever the unknown distribution is described
by a pdf which is square-integrable with respect to some volume measure, then the folding
measure may be conditioned in a way that the iterative unfolding (3.6) applies to it.

5. The discrete case. For better illustration, we specialize our results in sections 3 and 4
to the case when the unknown probability distribution along with the response function and
the measured probability distribution are discrete. In that case the measured pdf g and the
unknown pdf f are a finite dimensional vector of nonnegative entries, and the folding operator
Aρ is simply a finite dimensional matrix with nonnegative entries as well. Our equation to
solve is then the matrix equation g = Aρf for f , or in the case of presence of measurement
errors e, the matrix equation g = Aρf + e. We also assume that the entries of f , Aρ, and g
are probabilities, i.e., they are normalized such that

∑
i gi = 1,

∑
i fi = 1, and

∑
j (Aρ)ji = 1,

or
∑

j (Aρ)ji ≤ 1 in case of presence of inefficiencies.
Then, the iterative solution of our discrete unfolding problem reads as

Kρ := max
i

∑
j

∑
k

(Aρ)ji (Aρ)jk ,

f0 := K−1ρ ATρ g,

fN+1 := fN +
(
f0 −K−1ρ ATρAρfN

)
(N ∈ N0),(5.1)

where ATρ is the matrix transpose of Aρ. A simple observation shows that (5.1) is nothing but
an iterative form of

Kρ := max
i

∑
j

∑
k

(Aρ)ji (Aρ)jk ,

fN :=
N∑
n=0

(I −K−1ρ ATρAρ)
nK−1ρ ATρ g

(N ∈ N0),(5.2)

I denoting the identity matrix. Due to the results of sections 3 and 4, the convergence of this
approximation is monotonic in the l2 vector norm and also holds entrywise, however, with
possibly quite different convergence rates for different vector entries. Along with this, all the
convergence and error propagation properties listed in sections 3 and 4 hold, independently of
the fineness of the discretization. This decoupling from the discretization is quite important,
as it shows that in the presented method the discretization does not become an important
ingredient of the regularization procedure itself in the case when f , g, and ρ are in reality
continuum distributions, modeled and measured as histograms.

6. Numerical example. In this section the performance of the proposed method is illus-
trated by a numerical example. The example calculation is implemented via the C library
libunfold [34], also including the automatic approximation, statistical, and systematic error
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propagation formulae presented in the paper. The shown example is also shipped with the
pertinent library. The illustrative case was deliberately chosen in a way when the response
function is not translationally invariant, i.e., when ordinary deconvolution methods are not
sufficient.

Our simulated measurement scenario is the following. We would like to measure the true
pdf of a quantity, namely, of the energy of produced charged particles in a high energy particle
collision experiment. This true pdf used in our toy Monte Carlo shall be a parametrization of
a real measurement at the LHC accelerator [35] at CERN. It is of the form

E 7→ f(E) := χ
[0,∞[

(E) |E| (n− 1)(n− 2)

(nT )2

(
1 +
|E|
nT

)−n
(6.1)

with parameters n = 6.6 and T = 0.145 GeV. The response function

(Emeasured, Etrue) 7→ ρ(Emeasured |Etrue)(6.2)

shall be such a cpdf that for each fixed value Etrue > 0 the pdf

Emeasured 7→ ρ(Emeasured |Etrue)(6.3)

shall be a Gaussian pdf with a mean of Etrue and standard deviation of a+
√
bEtrue + cEtrue,

with parameter values a = 0.150 GeV, b = 0.7174 GeV, c = 0.074. This response function
models the behavior of a calorimeter device used for the energy measurement of particles,
namely, of the HCAL calorimeter [36] of the CMS experiment at the LHC accelerator at
CERN. In the simulated measurement scenario 104 Monte Carlo samples according to the pdf
(6.1) was generated, and its corresponding smeared response according to (6.2) was generated.
These responses were assumed to be collected with an inefficiency of

Emeasured 7→
1

2

(
1 + tanh

(
Emeasured − E

∆

))
d(6.4)

with parameters E = 1 GeV, ∆ = 1 GeV, and d = 0.05, i.e., with an inefficiency not greater
than 5% on the overall measurement domain. The collected responses were histogramed,
providing the measured pdf g with our nonideal detector. By construction, the statistical
covariance matrix of the histogram g shall be diag(g). The inefficiency profile (6.4) causing a
systematic deviation of the measured pdf from the folded pdf by (6.2) is assumed to be not
known quantitatively and therefore is not corrected for. It is assumed, however, that an overall
5% upper bound to this systematic deviation is known, being the systematic error of the mea-
sured pdf, i.e., one has sg = 0.05 g. With these inputs, the linear iterative unfolding according
to (3.6) was performed. The approximation errors were quantified using Remark 3.4(vi). The
propagated statistical errors were calculated according to (3.39). The propagated systematic
errors were quantified using Theorem 3.5(iii). The iteration was stopped when the combined
statistical, approximation, and systematic error exceeded a predefined threshold of 7%. The
result of the numerical test is shown in Figure 1. Note, that more optimalized stopping criteria
can also be invented, using the estimates for the approximation error, statistical error, and
systematic error. A natural candidate can be a double-threshold criterion: the approxima-
tion error needs to be below a threshold (sufficient shape restoration), whereas the combined
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Response function of the test system
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Figure 1. (Color online) Top left: illustration of the response function of our test example. The color
intensity indicates the probability density of the response function. Top right: illustration of the unaccounted
systematic distortion applied to the folded pdf in our test example. The solid curve indicates the systematic
distortion (an inefficiency, in our example) on the unfolded pdf, which is assumed to be not exactly quantifiable
and therefore is not corrected for in the simulated measured pdf. Only an upper bound for the systematic
distortion, called the systematic error, is assumed to be known for the simulated measured pdf. That is taken
to be a constant 5% upper bound in the example. Bottom left: the true input pdf (solid line), the simulated
measured pdf (squares), and the unfolded pdf (triangles) by the proposed method. The pdfs are shown together
with their bin-by-bin statistical errors (error bars), systematic errors (error bands), and approximation errors
(narrow error bands). Bottom right: evolution of the bin-by-bin maximum of the approximation error (circles),
statistical error (diamonds), and systematic error (flipped triangles) as a function of the number of iterations.
Note that the binwise approximation errors converge to zero, but not in a monotonic manner, which explains
the slight increase of that term after about 300 iterations. If the iteration was continued, that term indeed
converged to zero, but with several local minima, i.e., “waves” or “jumps” are seen in the convergence curve.
On the other hand, the binwise statistical and systematic error terms are seen simply to diverge, as expected.
The competition of these three error terms gives a possibility to define a stopping criterion.

statistical and systematic error must stay below an upper bound (divergence regularization).
Also, the iteration might be stopped at the error optimum: at the minimum of the combined
approximation, statistical, and systematic error. Note, however, that one often might require
a better shape reconstruction at the expense of increased statistical and systematic errors, as
also seen in the example.

7. Concluding remarks. In this paper we presented mathematical proofs of convergence
and error propagation formulae for a linear iterative unfolding method [1] in the probability
theory context. It was shown that the pertinent method is convergent in the “binwise” sense
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under quite generic conditions, which does hold in the case of many practical applications.
Furthermore, explicit formulae for the three important error terms, the approximation error,
the statistical error, and the systematic error, were derived. These can be used to define
optimal iteration stopping criterion and quantification of errors therein. The key element
of the proofs is the Riesz–Thorin theorem mapping the original L1 problem to L2 with a
subsequent usage of spectral theory of L2 operators. The typical use-cases of the method
are those unfolding problems which cannot be handled by statistical deconvolution [9, 10],
due to the absence of translational invariance of the response function. The possibility for
propagation of the systematic errors is a special advantage, which deserves to be emphasized
for experimental applications.

The pertinent method is also available as a C numerical library [34]. Using that, the
method was demonstrated in a numerical example. The algorithm could be included in the
ROOUnfold package [37] in the future or in the GNU Scientific Library [38].

The present paper can serve also as a good motivation to perform similar convergence and
error propagation studies on another iterative unfolding method [18, 19, 21, 22, 23, 24, 25, 26],
also called the method of convergent weights or iterative Bayesian unfolding. That method
is nonlinear and therefore is somewhat more complicated to study; however, it can be more
suitable for unfolding problems in probability theory as it conserves the integral and nonneg-
ativity of pdfs. Although widely used and numerically very promising, so far little is known
on the convergence properties of that algorithm, and nothing is known about its error prop-
agation. Our proposed method can be considered as the “linearized” version of that method,
and thus the presented results are expected to provide clues also for the convergence and error
propagation properties of the method of convergent weights or iterative Bayesian unfolding.

Acknowledgments. The author would like to thank Tamás Matolcsi for valuable com-
ments and for reading various versions of the manuscript and Dezső Varga for discussions on
the physical applications and on the relevance of error propagation formulae, in particular for
the systematic errors.
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Stat., 49 (2013), pp. 569–609.

[14] M. C. Liu and R. L. Taylor, A consistent nonparametric density estimator for the deconvolution
problem, Canad. J. Statist., 17 (1989), pp. 427–438.

[15] L. A. Stefanski and R. J. Carol, Deconvoluting kernel density estimators, Statistics, 21 (1990),
pp. 169–184.

[16] J. Kalifa and B. Rouge, Deconvolution by thresholding in mirror wavelet bases, IEEE Trans. Image
Process., 12 (2003), pp. 446–457.

[17] A. Hoecker and V. Kartvelishvili, SVD Approach to data unfolding, Nuclear Instr. Meth. A, 372
(1996), pp. 469–481.

[18] G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nuclear Instr. Meth. A,
362 (1995), pp. 487–498.

[19] G. Zech, Iterative unfolding with the Richardson-Lucy algorithm, Nuclear Instr. Meth. A, 716 (2013),
pp. 1–9.

[20] C. ALT et al., High transverse momentum Hadron spectra at
√
sNN = 17.3 GeV, in Pb+Pb and p+p

Collisions, Phys. Rev. C, 77 (2008), 034906.
[21] W. H. Richardson, Bayesian-based iterative method of image restoration, J. Opt. Soc. Amer. A, 62

(1972), pp. 55–59.
[22] L. B. Lucy, An iterative technique for the rectification of observed distributions, Astronomi. J., 79 (1974),

p. 745.
[23] L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans.

Med. Imag., 1 (1982), pp. 113-122.
[24] A. Kondor, Method of convergent weights – An iterative procedure for solving Fredholm’s integral equa-

tions of the first kind, Nuclear Instr. Meth., 216 (1983), pp. 177–181.
[25] H. N. Mülthei and B. Schorr, On an iterative method for a class of integral equations of the first kind,

Math. Methods Appl. Sci., 9 (1987).
[26] H. N. Mülthei and B. Schorr, On an iterative method for the unfolding of spectra, Nuclear Instr.

Meth. A, 257 (1987), pp. 371–377.
[27] P. D. Lax, Functional Analysis, Chichester, Wiley-Interscience, 2002,
[28] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[29] G. Arfken, Fourier convolution theorem, in Mathematical Methods for Physicists, 7th ed., Elsevier,

Amsterdam, 2013.
[30] P. Bracewell, Convolution theorem, in The Fourier Transform and Its Applications, 3rd ed., McGraw-

Hill, New York, 1999, pp. 108–112.
[31] L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math.,

73 (1951), pp. 615–624.
[32] G. B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed., Wiley-Interscience,

New York, 1999.
[33] N. Dinculeanu, Vector Measures, Elsevier, New York, 1967.
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