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This study uses the Genetic Weighted Pyramid Operation Tree (GWPOT) to build a model to solve the
problem of predicting high-performance concrete compressive strength. GWPOT is a new improvement
of the genetic operation tree that consists of the Genetic Algorithm, Weighted Operation Structure, and
Pyramid Operation Tree. The developed model obtained better results in benchmark tests against several
widely used artificial intelligence (AI) models, including the Artificial Neural Network (ANN), Support
Vector Machine (SVM), and Evolutionary Support Vector Machine Inference Model (ESIM). Further,
unlike competitor models that use “black-box” techniques, the proposed GWPOT model generates
explicit formulas, which provide important advantages in practical application.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

High-performance concrete (HPC) is a new type of concrete
used in the construction industry (Yeh, 1998). HPC works better in
terms of performance characteristics and uniformity characteris-
tics than high-strength concrete (Mousavi et al., 2012; Yeh and
Lien, 2009). Apart from the 4 conventional cement ingredients,
Portland Cement (PC), water, fine aggregates, and coarse aggre-
gates, HPC further incorporates cementitious materials, fly ash,
blast furnace slag, and a chemical admixture (Yeh, 1998). These
additional ingredients make HPC mix proportion calculations and
HPC behavior modeling significantly more complicated than
corresponding processes for conventional cement.

Machine learning and Al are attracting increasing attention in
academic and empirical fields for their potential application to
civil engineering problems (Mousavi et al., 2012). In civil engineer-
ing, Al techniques have been categorized into two approaches,
optimization and prediction, with numerous prediction applica-
tions including Artificial Neural Network (ANN), Support Vector
Machine (SVM), and Linear Regression Analysis, among others.
Optimization applications include the Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO).

In the field of civil engineering, much research has focused on
hybridizing optimization techniques and prediction techniques.
Many papers have reported on hybrid techniques that are able to
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predict HPC to a high degree of accuracy (Cheng et al., 2012; Peng
et al., 2009; Yeh, 1999). The Evolutionary Support Vector Machine
Inference Model (ESIM), one hybridization technique, uses a fast
messy Genetic Algorithm (fmGA) and SVM to search simulta-
neously for the fittest SVM parameters within an optimized legal
model (Cheng and Wu, 2009). However, the aforementioned
techniques, especially ANN, SVM, and ESIM, are considered
“black-box” models due to massive node sizes and internal
connections. Because these models do not provide explicit for-
mulae, they do not explain the substance of the associated model,
which is a serious disadvantage in practical applications.

Yeh and Lien (2009) proposed the novel Genetic Operation Tree
(GOT) to overcome this disadvantage. The GOT consists of a GA and
an Operation Tree (OT). This model is a practical method for
eliciting both an explicit formula and an accurate model from
experimental data. Although many studies have used GOT to
develop formulae to optimally fit experimental data (Chen et al.,
2012; Peng et al., 2009; Yeh et al., 2010), this model has yet to
achieve results comparable to other prediction techniques such as
ANN and SVM. This suggests the potential to further improve
the GOT.

This paper introduces a novel approach based on OT called
Genetic Weighted Pyramid Operation Tree (GWPOT) to predict
HPC compressive strength. The GWPOT integrates the Weighted
Operation Structure (WOS) and Pyramid Operation Tree (POT)
models to enhance the prediction capability and the fit with
experimental data.

Remaining sections in this paper are organized as follows:
Section 2 provides a brief explanation of OT, GA, and WOS; Section
3 describes the GWPOT model; Section 4 describes the case study
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Fig. 1. Five-layer OT model.
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Fig. 2. Example of an OT model.

and configuration of GWPOT parameters, presents GWPOT model
results, and compares those results with those of common
prediction techniques; and, finally, Section 5 presents study
conclusions.

2. Literature review
2.1. Operation Tree (OT)

Operation Tree (OT) is a hierarchical tree structure that repre-
sents the architecture of a mathematical formula. Fig. 1 illustrates
an OT model with 31 nodes. In Fig. 1, the OT model consists of a
root value and sub-trees of children, represented as a set of
connected nodes. Each node on the OT model has either O or
2 child branches, with the former designated as “leaf nodes” and
associated with either a variable or constant and the latter
associated with a mathematical formula (+, —, x, =+, log, etc.)
(Hsie et al., 2012). Fig. 2 shows an example of the OT model with a
31-bit-node code. Table 1 lists the bit codes for mathematical
operations, variables, and constants. The OT in Fig. 2 may be
expressed as

Output = (<logE €+D )'ﬂ)

log A D @

Its flexibility in expressing mathematical formulae allows OT to
avoid a disadvantage common to other prediction techniques
(Peng et al, 2009; Yeh and Lien, 2009). The branch-and-leaf
configuration of OT facilitates the deduction of function values
and formulae. Input values may thus be substituted into the
formula to generate a predicted output value for each data point.
OT performance may be evaluated by calculating the root-mean-
squared error (RMSE) between predicted and actual output values
(Yeh et al., 2010). The best OT formula is achieved when RMSE

Table 1
Genetic code of mathematical operations, variables, and constants.

Code 1 2 3 4 5 6 7 8 9 10
Meaning x - —+ — log A B C D E

reaches the lowest possible value. Because searching the best
combination formula to fit with the data is a discrete optimization
problem, an optimization technique capable of solving a discrete
problem must be integrated into the OT model (Peng et al., 2009).

2.2. Genetic Algorithm (GA)

Genetic Algorithm (GA) is an optimization technique first
proposed by Holland (1975). GA is based on Darwin's theory of
evolution and mimics biological competition in which only com-
paratively strong chromosomes survive into the next generation.
Each chromosome in a GA population represents a candidate
solution for a given problem and is able to generate a result based
on the objective function. Ability to handle various types of
objective functions is another advantage of GA.

GA proceeds through progressive generations from an initial
population. Each GA generation is subjected to genetic operation
processes such as evaluation, selection, crossover, and mutation
and generates a new result. A new-generation chromosome will
replace the current-generation chromosome if it generates a better
result.

2.3. Weighted operation structure (WOS)

The weighted operation structure (WOS) is an improvement of
the OT model proposed by Tsai (2011). This study added a constant
value to every variable to balance every input variable to help OT
generate a better formula. Therefore, WOS assigns weights to
every node connection in the OT model so that each WOS element
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produces node outputs conducted by 2 OT nodes and 2 undeter-
mined weights.

The WOS is thus able to search for the best formula in a wider
search space with more combinations over a longer time period
than the original OT model. Fig. 3 shows a 5-layer weighted
operation structure. The example of the WOS model in Fig. 4
may be expressed as

0.1 x (0.3P1+0.4P2)  0.03P1+0.04P2
0.2 x (0.5P4 x 0.6P3)  0.012 x P4 x P3

Output = 2)

3. Genetic Weighted Pyramid Operation Tree (GWPOT)
3.1. GWPOT architecture

This study proposes a new operation tree algorithm to address the
shortcomings of OT called the Genetic Weighted Pyramid Operation
Tree (GWPOT). GWPOT applied a pyramid-shaped, 4 connected OT
called Pyramid Operation Tree (POT). The significantly wider search
area of GWPOT results from its use of multiple trees that allows
coverage of a greater number of combination possibilities. The
weighted concept of WOS was integrated into GWPOT due to the
success of this concept in improving GOT performance. Fig. 5 illus-
trates a GWPOT model with 3 layers per tree.

Tuning parameters in the GWPOT model include: mutation
rate, crossover rate, weight rate, layers per tree, and total number
of trees. Mutation rates and crossover rates were retained from OT.
The other parameters are new to GWPOT and explained as follows:
(1) weight rate sets the probability of each node having a constant
value in the WOS structure; (2) layers per tree sets the number of
layers used for each tree; and (3) total number of trees sets the
number of trees used to produce the formula in one model process.
Four trees were used to assemble the pyramid shape in this study.

GWPOT operations start by generating a population of chromo-
somes for the first tree. Every chromosome represents the solution
vector of formula components. Next, the evaluation step obtains
the objective function (RMSE) for each chromosome. Afterward,
the GA optimizer searches for the optimal parameter or best
formula combination. GA optimization repeats until the stopping
criterion is achieved. Fig. 6 shows the flowchart for GWPOT.

An explanation of the principal steps in GWPOT follows below:

(1) Initialization and parameters setting: This step sets GWPOT tuning
parameters and randomly generates the initial population.

Fig. 3. Example of a WOS model.

(2) Training dataset: The dataset is divided into two parts, with the
first used as training data and the second as testing data.

(3) OT training model: OT is a learning tool able to build an explicit
formula for use as a prediction model. Each chromosome in OT
represents one formula, as explained in the previous section of
this paper.

(4) Fitness evaluation: A fitness function formula, RMSE in the
current study, evaluates each chromosome. Smaller RMSE
values indicate better chromosomes.
GA procedure: GA begins with the selection process. This study
uses a roulette wheel as the selection technique and uniform
crossover as the crossover mechanism. After completing cross-
over, mutation is performed by generating random real value
numbers based on the mutation rate. The termination criterion
in the current study is the total number of generations. This GA
procedure will repeat until either the stopping criterion or
termination criterion is satisfied.
(6) Checking the number of tree: If the number of trees does not
reach the maximum parameter value, the GWPOT process
continues to the next tree structure. In each new tree struc-
ture, the top-half population is generated randomly and
includes the best chromosomes from the previous tree struc-
ture. Moreover, the amount of bits in every chromosome is
expanded in order to modify the current population. The
newly added bits are provided to store the formula combina-
tion of the next tree structure. The top-half chromosomes from
the previous tree are retained due to the possibility that the
previous tree structure may not require further change to
improve performance. Random numbers replace the bottom-
half population in order to find new tree structure combina-
tions. The process continues until the 4th tree is produced.

Optimal solution: The chromosome with the lowest RMSE is

considered to be the optimal solution. This solution is the

formula that will be employed to map the input-output
relationship of the target dataset.

(5

~

—
~
—

3.2. GWPOT example

To further clarify the GWPOT procedure, this study applied GWPOT
to an example problem. A 3-layer GWPOT was created. This example
uses 5 types of operators and variables, respectively. The operators are

x, =, +, —, and \widehat and the variables are A, B, C, D and E. The
weights are set between 0.01 and 10.00, and 4 tree-structure phases
must be passed to establish the GWPOT model.

The first tree-structure phase begins by generating a population
that is identified by node (variables and mathematical operations) and
weight. The process continues through the OT training model, fitness
evaluation, and GA search procedures. Fig. 7 shows the best chromo-
some in the first tree structure, calculated as

0.3A+0.04E

Tree 1=41cx02C 3

Ifzi;setr B — 1st Layer
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Fig. 4. Five-layer WOS model.
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Fig. 5. Three-Layer GWPOT Model.
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Fig. 6. GWPOT flowchart.

The second tree structure starts with a top-half population
generated randomly from the best solutions from the first tree
structure and augmented by additional new bits. The bottom-half
population is tasked to identify new tree structure combinations
between the first tree and second tree. One additional mathema-
tical operator is used to connect the first tree and second tree.
GA finds this operator concurrently using other nodes in the
second tree-structure phase. Assuming the first tree solution in
the second phase is the same as the first tree solution in first tree-
structure phase, the best solution from second tree structure
phase may be illustrated as in Fig. 8.

Node Bits X1.1 X12 X13 X14 X115 Xl1.6 Xl1.7

Code 2 3 1 6 10 8 8
Weight Bits ~ W1.I W12 WI3 W14 WI5 W16 W17
Code 1 1 0.2 0.3 0.4 0.5 1
X1 /

Wiz Wis 1 7 02
Xi2 X13 + X
Wi Wis Wie Wiz 03 04 05 1
Xi4 Xis | Xise Xi7 A E C C

Fig. 7. First tree result example.

The corresponding formula for this tree (Fig. 8) is

(0.3A+0.4E/0.1C x 0.2C)
22A—11.44E+2.42B

The GWPOT procedure continues to the next phase after com-
pleting the second tree-structure process. The second tree-structure
procedures are repeated to find the best solutions in the 3rd and 4th
tree structure. Fig. 9 shows the best result from the third tree
structure, which incorporates the first, second, and third trees. The
last tree structure contains the result for all 4 trees, as shown in
Fig. 10, while Fig. 11 represents the pyramid-shape model.

The corresponding formula for the 3rd tree and 4th trees are:

Tree 3=(1.1C—1.1D) x 5.9A%4 5)

Output =

C))

Tree 4=2.4D-+0.3A (6)

After combining all trees and simplification, the final formula
may be expressed as

Tree 1
Output = a+f x (2 x <2 x m+0.5Tree 3> +0.5Tree 4) (7)

3.3. Modified predicted output value

An oblique phenomenon frequently occurs in OT-generated for-
mula. This phenomenon reflects the concurrently high linear correla-
tion and high RMSE in the relationship between actual output and
predicted output (Yeh and Lien, 2009). To address this problem, some
researchers have used single linear regression analysis to modify
the OT result (Hsie et al., 2012; Mousavi et al., 2012; Yeh et al., 2010;
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Node Bits X1.1 X12 XI3 X114 XI5 Xl.6 X1.7 X21 X22 X23 X24 X25 X26 X27 XO0.1
Code 2 3 1 6 10 8 8 3 4 7 6 10 9 7 2
Weight Bits Wl WI2  WI3  WI4 WIS WI6 WI7 W20 W22 W23 W24 W25 W26 W27 WOl
Code 1 1 0.2 0.3 0.4 0.5 1 22 1 1.1 1 52 4 0.8 2
Fig. 8. First and second tree result example.

Node Bits X1.1 X112 X113 X14 XI5 Xl6 X1.7 X211 X22 X23 X24 X25 X26 X2.7
Code 2 3 1 6 10 8 8 3 4 7 6 10 9 7
Node Bits X3.1 X32 X33 X34 X35 X3.6 X37 X0.1 X0.2
Code 1 4 5 8 9 6 6 2 3

Weight Bits WI.1 W12 W13 Wi4 WIS Wle W17 W21 W22 W23 W24 W25 W2.6 W27
Code 1 1 0.2 0.3 0.4 0.5 1 22 1 1.1 1 52 4 0.8
Weight Bits ~ W3.1 W32 W33 W34 W35 W3.6 W37 WO0.I W0.2
Code 0.5 1.1 1 1 1 5.9 0.1 2 2
+
2 ) 0.5
/ x
1 22 1.1 1
/ * 1 ~ 1 5.9 A 0.1
0.1 0.2 2.1 1.1 N
n X - B C D A A
03 04 05 06 06 52
A E C C A E

Fig. 9. First, second, and third tree result example.

Yeh and Lien, 2009). The practical result of this regression analysis is
to assign the same value to the prediction output mean value and the
actual output mean value. The equation for the single linear regres-
sion analysis is

y=a+pf ®)
where fis the predicted output value of the operation tree; y is the

modified predicted value; @ and /3 are the regression coefficients.
According to single linear regression analysis

a=y—pf
/}:Z?:](fi —f)()ii—J_/)
;‘1= 1(fi_f)2

where ¥ is the mean of actual output values in the dataset; f is the
mean of predicted output values in the dataset; y; is the actual
output value of the ith data in the dataset; and f; is the predicted
output value of the ith data in the dataset.

©)

(10

4. Case study
4.1. The dataset

The dataset used was obtained from Yeh (1998) and published
in the data repository of the University of California, Irvine (UCI). A

total of 1030 concrete samples covering 9 variables were collected
from the database. Eight of the 9 variables or influencing factors in
the dataset, including cement, fly ash, slag, water, SP, coarse
aggregate, fine aggregate, and age, were treated as input variables.
The remaining variable, concrete compressive strength, was trea-
ted as the output variable. Table 2 shows descriptive statistics for
these factors.

4.2. Tuning parameters

In this study, each parameter was set as: crossover rate=0.8,
mutation rate=0.05, and weighted rate=0.5. Moreover, the total
tree was set at 4, with 3, 4, 5, and 6 layers. Furthermore, the total
population size and the total number of generations for each tree
selected for this study were 100 and 2,000, respectively.

4.3. k-Fold cross validation

k-Fold cross validation is a statistical technique that divides
study data into k subsamples to determine the accuracy of a
prediction model. The original data is divided randomly into k
equally sized or approximately equally sized segments, with one
subsample used as testing data and the remaining k-1 subsamples
used as training data. The cross validation process recreates the
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NodeBits ~ XI1.I X1.2 X13 X14 X135 X1.6 X1.7 X2.1 X22 X23 X24 X25 X26 X27
Code 2 3 1 6 10 8 8 3 4 7 6 10 9 7
NodeBits ~ X3.1 X32 X33 X34 X35 X3.6 X3.7 X41 X42 X43 X44 X45 X46 X47
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59
] g g gltelielialial
037004 0576 06732
(a]J[eJ[c]c][a][E]
Fig. 10. Four-tree result example.
A D ¢ Table 2
0.1 5.9 1 1 HPC variables data.
N -
1 1.1 Variable Notation Unit Min Max Mean Standard
X deviation
D 5 03 B Cement A (kg/m®) 102 540 2812 104.51
2.4 + + 1.1 Slag B (kg/m®) 0 3594 739 8628
. 0.5 ) . Fly ash C (kg/m3) 0 2001 542 64.00
- Water D (kg/m®) 121.8 247 1816 2136
0.3 Output / : 1 s, E Super plasticizer E (kg/m3®) 0 32.2 6.2 597
A ) _ Coarse aggregate F (kg/m3) 801 1145 9729 77.75
Fine aggregate G (kg/m®) 594 992.6 773.6 8018
A
/ Age H Day 1 365 457 6317
1 0.2 Compressive Output  MPa 2.3 82.6 358 16.71
+ X atrength
0.3 0.4 0.5 1
A E C C
Fig. 11. GWPOT result example. testing data training data
model k times, with each k subsample used exactly once as the training data testing data training data
validation data. Results from all subsamples or from all folds are
then averaged to produce a single value estimation. DTN o S -
In general, because k remains an unfixed parameter, the value training data testing data training data
of k may be any suitable number. The current study set the value of
k as 5 in order to limit total computational time. Five-fold means Se”
. . t \¥ test 1 t 1
that each set uses 20% of the data (206 data points) as testing data rammime data esting dala - fraining cata
and 80% (824 data pOintS) as training data. The data contains 1030 Set 5

HPC records is divided randomly into 5 equally sized (206 data),
with one subsample used as testing data and the remaining
4 subsamples used as training data. Five-fold means that each
set uses 20% of the data (206 data points) as testing data and 80%
(824 data points) as training data. The cross validation process
recreates the model 5 times, with each 5 subsample used exactly
once as the validation data. Fig. 12 illustrates k-fold cross valida-
tion operations.

training data testing data

Fig. 12. Five-fold cross-validation model.

4.4. Performance measurement

To explore the accuracy of each model, this study used 3
performance-measurement equations: Root Mean Square Error
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(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percen-
tage Error (MAPE). All performance measures used in testing data
were combined to create a normalized reference index (RI) in
order to obtain an overall comparison (Chou et al,, 2011). Each
fitness function was normalized to a value of 1 for the best
performance and O for the worst. The Rl was obtained by
calculating the average of every normalized performance measure
as shown in Eq. (11). Eq. (12) shows the function used to normalize
the data.

RI— RMSE-!—M?E-I—MAPE an
(Xmax _Xi)
X = 12
norm (Xmax —Xmin) (12)

4.4.1. Root mean square error

Root mean square error (RMSE) is the square root of the
average squared distance between the model-predicted values
and the observed values. RMSE may be used to calculate the
variation of errors in a prediction model and is very useful when
large errors are undesirable. RMSE is given by the following
equation:

1 A
RMSE = /- %} (=)’ (13)
where y; is the actual value; y; is the predicted value; and n is the
number of data samples.

4.4.2. Mean absolute error

Mean absolute error (MAE) is the average absolute value of the
residual (error). MAE is a quantity used to measure how close a
prediction is to the outcome. The MAE may be expressed as

1 -
MAE:ﬁZf:]U’j—J’j\ (14

where y; is the actual value; y; is the predicted value; and n is the
number of data samples.

4.4.3. Mean absolute percentage error

Mean absolute percentage error (MAPE) calculates percentage
error of prediction. Small denominators are problematic for MAPE
because they generate high MAPE values that impact overall value.
The MAPE may be expressed as

.Vj_j’j

1
MAPE=_37_,

Table 3
Average of GOT performance measurements results.

No. of layers  Training data Testing data RI
RMSE MAE  MAPE  RMSE MAE  MAPE
3 10226 8250 30.735 10415 8400 31.282 0.136
4 8105 6394 22.741 8.066 6.429 23.092 0.600
5 7117 5,537 18.661 7120 5.509 18.611 0.817
6 7.005 5.465 18.573 7357 5.681 19.049 0.779
7 7270 5.637 19.425 7253 5.615 19.033 0.792
Table 4
Average of WOS performance measurement results.
No. of layers  Training data Testing data RI
RMSE  MAE MAPE RMSE  MAE MAPE
3 9.020 7.089 24.853 8939 7.025 23.959 0.214
4 7.685 5990 20.345 7.712 6.065 20.646 0.569
5 6.983 5405 18540 7.021 5.349 18437 0.801
6 6.646 5.070 16.668 6.890 5.230 16.909 0.872
7 6.801 5169 17.307 7410 5.549 18.160 0.535
Table 5
Performance measurement results of GWPOT model.
No. of layers  Training Testing RI
RMSE  MAE MAPE RMSE  MAE MAPE
3 6.825 5273 17490 7.050 5442 18.333 0.263
4 6.352 4877 16335 6.780 5.174 17.253 0.448
5 5864 4440 14986 6.379 4.787 16.095 0.695
6 5689 4307 14597 6446 4.750 16.118 0.690

Five-fold cross-validation techniques validated the perfor-
mance of the models. The average 5-fold results for GOT, WOS,
and GWPOT are summarized in Tables 3-5, respectively.

Table 3 shows that the 5-layer configuration generated the best
RI result for the GOT model (0.817). Eq. (16) shows the formula
associated with this result. On the other hand, the six-layer
configuration generated the best overall and average for the
WOS model (0.872). Eq. (17) shows the formula associated with
this result.

y=—3574+2.842 (

(log (A+B+ In O)/log D)
B log (AH+H?)
x 100% 15y ~ ¥=2905+0077x ((log (n (D+H))> ) (16)
log 9.9H
(log ((3.173A+3.188B+1.033C—2.922D) x (2.467E+0.262H —0.725A —0.125F))/ log (2.798D x In In 83.025E))
17)

where y; is actual value; y; is predicted value; and n is number of
data samples.

4.5. Results and discussion

This study compared the performance of the proposed model
against two other OT-based tools, the Genetic Operation Tree
(GOT) and the Weighted Operation Structure (WOS). After testing
a variety of layer numbers, the number of layers needed to build
the best GWPOT model formula was determined as between 3
and 6.

The RI results in Table 5 for the 3-, 4-, 5-, and 6-layer
configurations are: 0.263, 0.448, 0.695, and 0.690, respectively.
This indicates that the 5-layer configuration generated the best RI
result for the GWPOT model. The 6-layer configuration generated
the worst result due to increased model complexity and large
chromosome bit number. Further, larger layer numbers require
more computational time, which increases the difficulty of finding
the best combination.

Fig. 13 illustrates the best OT produced using GWPOT. The OT in
Fig. 13 is generated from the best 5-layer GWPOT model and may
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Fig. 13. Best solution GWPOT model.

be decoded into a complete formula using Eqs. (18) through (22).
Figs. 14 and 15 show scatter diagrams for the actual values and
predicted values of, respectively, training data and testing data.

x1 = First tree output

_ In((833.085H/13.026G —12.875C) x (11.761H —71.547B—26.73C—9.9A))
- Inlog ; gg12.82D

(18)

In (1.428F —2.436H +215.704B> —317.206AB)
In ((48.56B—53.363A)(0.95F — 0.95G)((0.052BE)"/F))
(19)

X, = Second tree output =

0.52G+2.46EH —0.98C

X3 = Third tree output =
’ P = 00330+ (06574 /0.029G))*0%8¢

(20)

In ((10g (24 9744 50r)(3-003F +7.644H)) +6.11E — 10g 5 g57p4.906E)

variables and shows that each variable has a distinct influence
on HPC compressive strength.

This study compared 3 types of OT to verify that the proposed
new OT outperforms the other two. The best-solution configura-
tion for each OT was determined and used in this comparison.
These configurations were: 5-layer for the GOT model, 6-layer for
the WOS model, and 5-layer for the GWPOT model. Table 6
summarizes comparisons among these models.

GWPOT obtained the best result for every performance mea-
sure, with an RI value of 1.00. GOT and WOS obtained RI values of
0.00 and 0.458, respectively. Due to the superior performance of
GWPOT over the two other OT models, the GWPOT model was
tested against other prediction techniques.

x4 = Fourth tree output =

y= —90.089+17.628(x1 —4.7xy —2.7x3 — 6.2X4) (22)

Wider search area allows GWPOT to precisely identify the
relationships between all the input variables (variables A through
H) and the prediction output. Meanwhile, the result shows that
GOT and WOS exclude some input variables. In the GOT formula
example (Eq. (16)), super plasticizer, fine aggregate, and coarse
aggregate are not included in the formula. Peng et al. stated that
excluding some variables from a formula does not mean they do
not impact the compressive strength (Peng et al, 2009). The
GWPOT depicts the relationship between all input-output

In (0.54F 1980017756 ~11.803¢

21

4.6. Comparison

This section presents the results of comparing GWPOT to other
prediction techniques including SVM, ANN, and ESIM. The GWPOT
result was obtained as explained in the previous section using a
5-layer model in fold set one, and 5-fold cross validation was
performed on all results. Table 7 presents model results for
comparison.

GWPOT obtained a better RI value than SVM and ANN but
worse than ESIM. ESIM demonstrated its superiority with a
prediction RI value of 0.918 compared to RI values for GWPOT,
SVM, and ANN of 0.085, 0.072, and 0.684, respectively. Although
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Fig. 14. Scatter diagram, GWPOT training data.
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Fig. 15. Scatter diagram, GWPOT testing data.

Table 6
Performance measurement results of various OT techniques.

Prediction tools  Training Testing RI

RMSE MAE  MAPE  RMSE MAE  MAPE

GOT 7117 5537 18.661 7120 5.509 18.611 0.000
WOS 6.646 5.070 16.668 6.890 5230 16909  0.458
GWPOT 5864 4440 14986 6379 4.787 16.095 1.000

the RI value for GWPOT fell short of the RI value for ESIM, GWPOT
remains capable of competing with ESIM, as demonstrated by the
superior RMSE value obtained by GWPOT (6.379) compared to
ESIM (6.574).

4.7. Sensitivity analysis

OT uses a single-tree structure to build its model while GWPOT
uses 4 trees to form a pyramid shape. Other OT model configura-
tions such as 2-tree and 3-tree exist as well. To increase the
validity of the GWPOT concept, this study conducted another
comparative analysis that used various combinations of layer
numbers and tree numbers to identify differences among these
parameters. Each tree number and layer number used the 5-fold

Table 7
Performance measurement results of various prediction techniques.

Prediction technique Training Testing RI

RMSE MAE MAPE RMSE MAE MAPE

SVM 6.533 4.610 16.356 7.170 5295 18.610 0.085
ANN 6.706 5.189 18.761 6.999 5416 19.632 0.072
ESIM 3.294 1597 5191 6.574 4160 13.220 0.918
GWPOT 5.864 4440 14986 6.379 4.787 16.095 0.684
Table 8
RI Values from various layer and tree number configurations.
Number of trees Number of layers
3 4 5 6
1 0.2960 0.5341 0.6665 0.7283
2 0.5820 0.6766 0.7241 0.7752
3 0.6569 0.7128 0.7654 0.7858
4 0.6764 0.7354 0.7901 0.7693
5 0.7197 0.7419 0.7823 0.7537

cross validation technique to avoid potential bias. Table 8 shows
average RI results for each fold set.

As shown in Table 8, the 5-tree structure with 4 layers
generated the best result with an RI value of 0.792. The 5-tree,
5-layer model obtained a good result of 0.790, which differed only
slightly from the best RI solution. The worst RI result was 0.296,
produced by the 1-tree, 3-layer model.

The unexpected results and the flexibility of the solution
indicate that another OT model may generate the ultimate best
solution. However, the 4-tree, 5-layer model obtained the best
result in this study.

5. Conclusions

This study develops a new GWPOT to predict HPC compressive
strength. Accurately predicting HPC strength is critical to building
a robust prediction model for HPC. The GWPOT model employs 4
hierarchical OT to form the pyramidal shape. Multiple trees widen
the GA search area, creating a formula that is more complex and
more flexible to fit with the data. Comparisons between GWPOT
and other prediction techniques, including GOT, WOS, SVM, ANN,
and ESIM, showed the highly competitive performance of GWPOT
in predicting HPC compressive strength.

GWPOT performs comparably to the well-known ESIM in terms
of prediction accuracy. However, while ESIM uses a black-box
approach that does not depict input-output relationships in an
explicit formula, GWPOT generates and shows corresponding
formulae for these relationships. This comparative transparency
gives GWPOT an important advantage in practical applications.
In future research, another optimization technique may be devel-
oped to replace the GA technique used in this study for further
comparison. Additionally, the efficacy of GWPOT may be further
tested and verified on other construction management case
studies.
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