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Summary

The objective of this study was to develop pedotransfer functions (PTFs) for converting soil particle-size
distribution (PSD) data from the laser diffraction method (LDM) to the classical sieve–pipette method (SPM)
for use on a wide range of temperate soil types. Four hundred soil samples, representative of European soil types
and climate zones, were selected from the LUCAS (Land Use/Land Cover Area Frame Survey) topsoil database
and their PSDs were determined with LDM and SPM. The LDM measurements were made on samples with
(i) their organic matter (OM) removed and (ii) their OM content present. The ranges of PSD obtained with the
two pretreatment methods enabled clay–silt and silt–sand boundaries from LDM (6.6 and 60.3 μm for soil with
OM, respectively, and 5.8 and 69.2 μm for soil without OM, respectively) to be optimized. Optimization of the
boundaries of the fractions considerably improved the prediction performance of SPM PSD from LDM PSD.
Specific PTFs with different input requirements were developed for continental scale applications in Europe to
convert data from LDM to SPM. The predictions of SPM clay, silt and sand contents were the most accurate with
PTFs that used PSD from LDM and soil chemical properties (R2 0.83, 0.81, 0.94; RMSE 6.14, 7.91 and 6.58%,
respectively). For the most accurate results no pretreatment for OM removal was required, but data on chemical
properties were necessary. If no soil chemical data are available, the most accurate PTFs need input data of LDM
PSD that originate from samples on which the OM content was removed prior to the PSD analysis.

Highlights

• PTFs are developed to harmonize PSD data between laser diffraction (LDM) and sieve–pipette (SPM)
methods.

• PTFs are derived from a representative dataset from Europe for application at the continental scale.
• Clay–silt and silt–sand boundaries for LDM without removing OM are at 6.6 and 60.3 μm, respectively.
• Clay–silt and silt–sand boundaries for LDM with OM removed are at 5.8 and 69.2 μm, respectively.

Introduction

Particle-size distribution (PSD) is a fundamental soil physical
property that provides information about the size and distribution
of soil mass fractions. It is commonly used for soil classification
and to characterize soil and geomorphological processes. It affects
many other soil properties and can be the basis for estimating soil
hydraulic characteristics (Ryżak & Bieganowski, 2011; Makó et al.,
2014).

Sand-size particles are usually determined by sieving, whereas
smaller particles are generally measured by the pipette or
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hydrometer methods (Gee & Bauder, 1986). The latter meth-
ods are generally used in combination with sieving and are
often termed sieve–pipette or sieve–hydrometer methods (SPM
or SHM). The sedimentation (pipette or hydrometer) meth-
ods are based on Stokes’s law, but deviations can be expected
when the particles have non-spherical shapes. Most silt-size
particles have an irregular shape, and clay-size particles can be
platy or tubular in shape (Clifton et al., 1999). The sedimen-
tation methods require relatively large amounts of the sample
(20–40 g) and their resolution to subgroups of different sizes
is limited. In addition, sedimentation-based procedures are
time-consuming, especially for determination of the < 2 μm size
fraction.
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Laboratories use diverse pretreatments in routine PSD analyses
to remove cementing and flocculating agents, especially OM, iron
oxides, carbonates and soluble salts (Gee & Bauder, 1986). The
results obtained with various pretreatment methods might differ;
therefore, the one used must be defined clearly (Shein, 2009).
The international SPM standard (ISO 11277: 2009) makes the
destruction of OM and the removal of soluble salts and gypsum
obligatory, but the removal of other cementing agents is optional.
Thereafter, chemical dispersion is prescribed (i.e. saturation of
the exchange complex with a strongly electron-negative cation,
resulting in a large hydrated radius). Mechanical dispersion is most
commonly used in soil-physics laboratories because of the ease
and speed of the process. Ultrasonic dispersion uses vibration wave
transmission in the soil solution (Genrich & Bremner, 1972).

The laser diffraction method (LDM) is now applied more fre-
quently by soil scientists for the determination of soil PSD
(Beuselinck et al., 1998), but it has not yet completely replaced the
labour-intensive SPMs or SHMs, which represent the international
standards for the particle-size analysis of soil. The principle of LDM
for PSD measurement and the description of different diffraction
theories is given in de Boer et al. (1987). The results obtained with
this method are volumetric, which assumes that all particles have a
spherical shape and identical densities. The volumetric particle-size
distribution calculated concurs with the mass distribution (Ryżak &
Bieganowski, 2011). The LDM analyses small samples (0.5 g to a
few grams) within 5–10 minutes, which makes it suitable for the
rapid, accurate analysis of a large number of samples. Recent laser
diffractometers provide a wide range of measurements from frac-
tions of micrometres to several millimetres. The drawbacks are the
cost of LDM instruments, the difficulty of obtaining samples from
the desired grain size for further analysis and the lack of standard
operating procedures for soil analysis.

The LDM data might vary according to the type of diffractometer,
the amount and state of the sample, the evaluation theory (Fraun-
hofer or Mie), the defined refractive and absorption indices and the
mixing, pumping and sonication dispersion settings (Ryżak & Bie-
ganowski, 2011; Sochan et al., 2012; Makó et al., 2014).

Several papers compare LDM PSD data with either SPM
(e.g. Beuselinck et al., 1998; Konert & Vandenberghe, 1997; Eshel
et al., 2004; Yang et al., 2015) or SHM data (e.g. Ryżak & Bie-
ganowski, 2010; Centeri et al., 2015; Fenton et al., 2015). A review
of the literature suggests that LDM usually tends to underestimate
the clay fraction. This can be attributed mainly to the non-spherical
shape of the particles (Fedotov et al., 2007; Polakowski et al., 2014).
The latter authors stated that different results might be related to the
optical properties selected or measurement limits of earlier equip-
ment. The lack of comparability might also arise from differences in
the LDM equipment used, the pretreatments applied and the settings
used (Ryżak & Bieganowski, 2011; Madarász et al., 2012; Sochan
et al., 2012; Makó et al., 2014).

Although previous attempts have been made to construct
models for converting LDM data to SPM data, most were
based on small datasets representing a selected soil group,
pilot area, landscape or watershed. Therefore, the conversion

models might have a restricted use on a national or continental
scale.

The aim of this study was to verify model relations between PSDs
determined with LDM and SPM for soil types that are representative
of the whole European Union. The specific objectives were to:
(i) examine differences in PSD data determined by the two methods
on a database representing the heterogeneous soil cover of Europe,
(ii) demonstrate the effects of pretreatments on the LDM data and
(iii) provide prediction models (i.e. pedotransfer functions [PTFs])
to convert LDM data (vol %) to SPM data (mass %) for application
in Europe and similar environments.

Materials and methods

The LUCAS soil database

The Land Use/Land Cover Area Frame Survey (LUCAS) is the first
consistent spatial database of the soil cover across Europe. Around
22 000 soil samples were collected from 10% of the survey points
by standard sampling procedures, and were analysed in a certified
laboratory with unified standard methods (Tóth et al., 2013).

Among the LUCAS topsoil samples, 400 were selected to rep-
resent the variation and differentiation in soil cover (Table 1). The
selection was stratified by texture classes and land cover, followed
by simple random sampling in each stratum using the R package
srswor (Tillé & Matei, 2015). Finally, we verified that the repre-
sentation of soil characteristics (e.g. organic carbon and calcium
carbonate content), climate zones and countries in the selected sam-
ples was comparable with that in the full dataset.

Determination of particle-size distribution

The conventional SPM and LDM methods were used to measure the
soil PSD. For both methods the soil samples were air-dried, gently
crushed and dry-sieved at 2000-μm mesh size. Macroscopic traces
of OM (e.g. roots, chaffs and debris) were removed physically.

Prior to SPM analysis, each sample was chemically pretreated
with 30% hydrogen peroxide solution to destroy OM in accordance
with the ISO 11277:2009 standard. Carbonates and iron oxides
were not removed because it is optional in the standard method.
Removal of OM was applied to destroy soil aggregates and
microaggregates.

To test the effect of OM on the PSD obtained by LDM, two sets of
LDM measurements were made. Each of the samples was analysed
by the LDM both with and without OM removal (see ISO standard
above). After pretreatment, the OM-free suspension was allowed
to evaporate at 40∘C to complete dryness, then gently crushed and
sieved again through a 2000-μm mesh. The two datasets from the
LDM PSD data were: ‘OM not removed’ (OMNR, n= 809) and
‘OM removed’ (OMR, n= 832). The 809 and 832 samples of soil
represent duplicate, and in some instances triplicate, subsamples of
the initial 400 from the LUCAS archive; LDM PSD was measured
at least twice or even three times if PSD curves were very different
from each other.
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Table 1 Mean physical and chemical properties of the soil samples used in
the particle-size distribution (PSD) measurements (N = 400).

Soil properties Mean Standard deviation Minimum Maximum

Claya / m % 22.3 15.0 1.0 76.0
Siltb / m % 41.7 18.2 4.0 88.0
Sandc / m % 36.0 26.2 1.0 94.0
pH(H2O) / – 6.3 1.2 3.8 8.7
pH(CaCl2) / – 5.8 1.3 2.8 7.9
OCd / g kg−1 28.6 25.7 3.1 170.3
CaCO3 / g kg−1 47.3 108.2 0.0 607.0
CECe / cmol(+)kg−1 15.7 11.7 1.0 92.2

aClay, clay content (< 0.002 mm).
bSilt, silt content (0.002–0.063 mm).
cSand, sand content (0.063–2.0 mm) (all these fractions were determined
by the sieve–pipette method).
dOC, organic carbon content.
eCEC, cation exchange capacity.
Laboratory standards are described by Tóth et al. (2013).

Sieve–pipette method (SPM). The PSD was determined by a com-
bination of sieving and sedimentation, starting with about 20–30 g
(depending on soil texture) air-dried soil (ISO 11277:2009). Par-
ticles of 63–2000 μm (sand fraction) were determined by a com-
bination of wet and dry sieving. Particles passing the 63-μm sieve
were determined by sedimentation with the pipette method. A parti-
cle density of 2650 kg m−3 was used to calculate the sedimentation
time. ‘Calgon’ (containing 33 g sodium hexametaphosphate and
7 g anhydrous sodium carbonate in 1 l aqueous solution) was used
for chemical dispersion. The pretreated suspension was shaken for
18 hours on an end-over-end shaker. The percentages (mass %) of
the constituent fractions (sand, 63–2000 μm; silt, 2–63 μm; clay,
< 2 μm) were obtained from the PSD analysis.

Laser diffraction method (LDM). A Mastersizer 2000 (Malvern
Instruments, Malvern, UK) laser diffractometer, which measures
within a size range of 0.02–2000 μm (Mastersizer 2000 User
Manual, 1999), was used for LDM analysis (ISO 13320:2009).
Measurements were made with a Hydro 2000G dispersion unit.

The PSD was usually determined on two or three replicates
(measurement of distinct subsamples) with the LDM. If the shapes
of the PSD curves of two repetitions were largely dissimilar, a
third measurement was made. The mass of dry soil samples placed
into the dispersion unit was in the range of 0.5–1 g depending
on the ‘obscuration’ of the soil suspension after dispersion. In
this context obscuration is a measure of the amount of the light
scattered by the soil particles and correlates with the concentration
of measured material present in the laser diffractometer. According
to the Mastersizer 2000 manual, the obscuration values should be
between 10 and 20%.

Dry soil samples, both with and without OM removal, were placed
on a watch glass and moistened by adding drops of standard Calgon
solution. Thereafter, the soil paste was washed into the tank of the
dispersion unit and a further 25 cm3 of Calgon solution was poured
on to it. Laser diffraction measurements were made in ∼800 cm3

soil and distilled water suspension (Bieganowski et al., 2010). To
ensure complete disaggregation and dispersion the soil suspension
was then treated for 240 s with ultrasound at 75% of maximum
power (0.75× 35 W and 0.75× 40 kHz).

The Hydro 2000G dispersion unit has an integrated stirrer and
pump that prevents the sedimentation of particles and ensures
circulation of the sample in the measuring system. The pump speed
was set at 29.17 Hz (1750 rpm) and the stirrer at 11.67 Hz (700 rpm)
(Sochan et al., 2012), which gave maximum homogenization of the
suspension in the beaker while eliminating air bubbles from the
suspension (Ryżak & Bieganowski, 2011).

The laser light intensity registered on the detectors of the mea-
surement system was converted to PSD according to the Mie theory.
The following settings were assumed for the instrument: refraction
index of 1.52 and absorption index of 0.1 for the dispersed phase;
refraction index of 1.33 for water.

The wavelength of the laser light was 466 nm for blue and
633 nm for red light. All the measurements lasted 60 s (30 s for blue
and 30 s for red) (Ryżak & Bieganowski, 2010). The algorithms
selected for PSD calculation were: (i) general purpose analysis,
which assumes that the sample probably contains a large number
of various fractions and (ii) irregular shape ratio, which takes into
account that the particles in the samples are not perfect spheres
(Mastersizer 2000 User Manual, 1999).

Optimizing LDM fraction boundaries

To obtain laser-diffraction fractions similar to those of SPM, the
fraction boundaries detectable by the LDM device that were nearest
to standard SPM boundaries (which are at 2 and 63 μm) had to be
defined first. These were found at 1.9 and 60.26 μm and referred to
as ‘non-modified LDM fraction boundaries’.

Lin’s concordance correlation coefficient (CCC) (Lin, 1989; Lin
et al., 2002; Fisher et al., 2017) was calculated between the SPM
and LDM PSD data for each dataset to optimize boundaries of the
clay, silt and sand fractions in the LDM data. Lin’s CCC measures
how well a new set of observations (LDM PSD) reproduce an
original set (SPM PSD). The CCC is calculated by multiplying the
Pearson correlation coefficient with a bias correction factor. The
Pearson correlation coefficient measures how far each observation
deviates from the line of best fit, and the bias correction factor is
the slope of the line that relates the two measured datasets. Lin’s
CCC indicates perfect agreement if its value is 1. The optimized
boundaries are referred to as ‘modified LDM fraction boundaries’
hereinafter. From the PSD data obtained by LDM, 14 possible
clay fractions were calculated from the upper boundaries with a
range of 1.4–10.0 μm (1.4, 1.6, 1.9, 2.2, 2.9, 3.3, 3.8, 4.4, 5.0,
5.8, 6.6, 7.6, 8.7 and 10.0 μm). In the same way, 12 possible sand
fractions were calculated from the lower boundaries with a range
of 30.2–138.4 μm (30.2, 34.7, 39.8, 45.7, 52.5, 60.3, 69.2, 79.4,
91.2, 104.7, 120.2 and 138.2 μm). The LDM clay, silt and sand
fractions calculated with these boundaries were used as independent
variables (X) against the dependent variables (Y) of conventional
clay, silt and sand fractions measured with SPM (< 2.0, 2–63
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and 63–2000 μm, respectively). Lin’s method was used for the
optimization. The best fraction boundaries gave the largest Lin’s
CCC values.

Methods to estimate SPM PSD data from LDM PSD results

One potential application of the above datasets is to develop
conversion pedotransfer functions (PTFs) to obtain conventional
SPM data from the more easily measured LDM data, and possibly
from other soil properties that are easy to measure. Different types
of PTFs were tested to relate the results of SPM and LDM. We
focused on predictions based on the information available from
LDM measurements and from basic soil analyses. A series of input
variables was tested for the development of PTFs.

To select the best prediction model and to decrease uncertainty
of the suggested method of estimation, k-fold cross-validation was
used (Lamorski et al., 2014). Each of the datasets (OMNR and
OMR) was mixed and divided randomly into five equal-sized dis-
junctive subsets. Thereafter, five pairs of training and test datasets
were set up as follows: one subset (test dataset) was omitted and the
remaining four subsets were combined to form the training dataset.
This procedure was repeated five times to give five datasets for fur-
ther development of the prediction model, each with a different sub-
set as the test dataset. Models describing the relation between LDM
(vol %) and SPM (mass %) data were derived from the training
datasets, and their performance was determined on the test datasets.
The final PTFs were obtained by selecting the best performing linear
regression equation of the five-fold cross-validation approach.

Several publications have indicated that the relation between
corresponding LDM and SPM fractions is not linear (e.g. Booth
et al., 2003; Yang et al., 2015). Therefore, the linearity of the
relations was tested by comparing different types (namely linear,
logarithmic, quadratic, cubic and exponential) of model fitting
(spss, 2004, regression, curve estimation).

Linear regression with backward elimination was used for
developing PTFs (spss, 2004, regression, linear regression). Sep-
arate PTFs were derived to predict SPM clay and silt contents
(claySPMpred, siltSPMpred; mass %) from the corresponding LDM
PSD fractions (clayLDM, siltLDM; vol %) determined without or with
OM removal. The predicted SPM sand fraction was obtained as
follows in all cases:

sandSPMpred = 100 −
(
claySPMpred + siltSPMpred

)
,

where sandSPMpred, claySPMpred and siltSPMpred are the predicted
SPM particle-size fractions (mass %). The indirect calculation,
whereby siltSPMpred was obtained by subtracting the sum of predicted
claySPMpred and sandSPMpred from 100%, was also tested, but the
estimates were not as good.

The input variables used in the analysis are listed below according
to their codes in the PTFs:

PTFs1: non-modified LDM size boundaries (clayLDM or siltLDM;
vol %).

PTFs2: modified LDM clay and silt boundaries (clayLDMmod or
siltLDMmod; vol %).
PTFs3: clayLDMmod or siltLDMmod and organic carbon content (OC,
g kg−1), calcium carbonate content (CaCO3, g kg−1) and soil pH
measured in a water–soil suspension (pH(H2O), −).
PTFs4: similar to PTFs3, but also using the modified LDM sand
content (sandLDMmod; vol %).
PTFs5: similar to PTFs4, but predictions were developed for dis-
tinct soil texture groups (Di Stefano et al., 2010). The samples
were grouped according to the USDA classification based on
clayLDMmod, siltLDMmod and sandLDMmod contents. To simplify pre-
diction, the samples were merged into four texture groups with
wider boundaries: (i) sand and loamy sand, (ii) sandy loam and
loam, (iii) silt loam and (iv) silt, sandy clay loam, clay loam, silty
clay loam, sandy clay, silty clay and clay soils. These groups rep-
resent homogeneous zones on the USDA particle-size triangle.
PTFs6: similar to PTFs4, but transformed soil properties were also
used in the regression analysis. Linear, quadratic, reciprocal and
common base logarithmic (log10) forms of the soil properties were
used in the regression analysis (Tóth et al., 2015).
PTFs7: similar to PTFs6, but predictions were developed for
aggregated soil texture groups similarly to PTFs5.

The performance of PTFs was assessed both on the training and
test datasets by the coefficient of determination (R2) and the root
mean square error (RMSE) (mass %) (Equation (1)):

RMSE =
√

1
N

∑N

i=1

(
yi − ŷi

)2
, (1)

where yi represents claySPM, siltSPM or sandSPM values, ŷi represents
the predicted claySPMpred, siltSPMpred or sandSPMpred values and N is
the number of samples.

The mean and standard errors of the R2 and RMSE values were
calculated for each PTF from five repetitions resulting from the
five-fold cross-validation replications. The homogeneity of vari-
ance was checked with Levene’s test. The significance of differ-
ences between the prediction methods was evaluated by a one-way
analysis of variance (anova) on both the training and test datasets.
The distribution of the residuals from the analysis of variance
was assessed by Kolmogorov–Smirnov and Shapiro–Wilk tests.
The majority of residuals from anova were normally distributed.
Fisher’s LSD or Tamhane’s T2 test, depending on the homogeneity
of variances, was used for comparison of the means at the signifi-
cance level P= 0.05.

Samples in the test datasets were classified into textural groups
according to the USDA soil-texture triangle (the fact that the
USDA classification uses 50 μm as silt–sand boundary, whereas
the new ISO standard (ISO 11277:2009) uses 63 μm, could be
a minor source of error). The texture classes determined from
predicted and measured SPM PSD data were compared with each
other. Similarities between the texture classes derived from SPM
measurements and the various prediction models were evaluated
statistically, as described above, by comparing cases that are
identical in terms of soil texture.
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Figure 1 Comparison of the interquartile ranges of soil particle-size fractions measured by different (SPM, sieve–pipette; LDM, laser diffractometer) methods
for different pretreatments: (a) OMNR, organic matter not removed; (b) OMR, organic matter removed.

Figure 2 Interquartile ranges of the ratio of the particle volume percentages measured by the two kinds of pretreatments (organic matter not removed and
organic matter removed) for size ranges of: (a) clay, (b) silt and (c) sand fractions.

Results and discussion

Comparison of particle-size data and evaluation of OM
removal

The soil samples selected show a wide range of variation in several
soil properties (Table 1). The boxplots in Figure 1(a,b) show the
results of SPM and LPM methods of measurement with and without
pretreatment. The mean clay (< 2 μm), silt (2–63 μm) and sand
(> 63 μm) fractions were 22.3, 41.7 and 36.0% for SPM (based
on the ISO 11277:2009 standard particle-size limits) and 6.9, 59.8
and 33.3%, respectively, for LDM with OMNR, and 9.6, 51.8
and 38.6%, respectively, for LDM with OMR (Figure 1). The size
ranges of the LDM fractions correspond to the ISO size classes for
SPM; the equivalent LDM fractions were calculated from the 100
classes by linear interpolation.

The results confirmed that, depending on the sample pretreatment,
the LDM underestimated clay content compared with SPM by an
average of 69.3% for OMNR and 57.2% for OMR datasets, but
overestimated the silt content by an average of 43.5% for OMNR

and 26.2% for OMR datasets. SandLDM was slightly underestimated
(7.4%) for OMNR samples and a little overestimated (5.7%)
for OMR samples. The measured fractions also had different
interquartile ranges (Figure 1a,b). This corresponds to the findings
of other authors (e.g. Konert & Vandenberghe, 1997; Beuselinck
et al., 1998; Eshel et al., 2004; Yang et al., 2015).

Figure 1(a,b) shows the differences between the PSDs deter-
mined by LDM for different pretreatments. It suggests that the
pretreatment slightly altered the ratio of the clay, silt and sand
fractions of samples. Figure 2 shows the interquartile ranges of the
particle-size ratios (in vol %) measured after the two pretreatments
for each LDM size class. Removal of OM results in a larger clay
content (ratio> 1) and a smaller silt content (ratio< 1). In the
0.3–0.5-μm size interval clay content increased after removal of
OM. The maximum decline in silt content was at 2–20 μm. The
sand content increased in the small size ranges (63–478 μm),
whereas it decreased in the larger ones (> 478 μm). The differences
in clay, silt and sand contents measured by LDM for the pretreat-
ments are also reflected in the relations summarized in Figure 3.
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Figure 3 (a) Clay, (b) silt and (c) sand fractions with (OMR) and without (OMNR) organic matter removal by the laser diffractometer method (LDM) (---
shows the 1:1 line). Grey circles represent the problematic ranges of fraction concentration where the largest difference was detected.

Figure 3(a) shows that the differences between the measured clay
fractions increase with increasing clay content. The LDM measures
smaller silt and larger sand contents, however, after OM removal
in the range of samples characterized by medium silt and sand
contents; these problematic ranges are indicated with grey circles.

Removal of OM affected the measured PSD considerably, which
is contrary to the results of Beuselinck et al. (1998). This might
be because of the presence of pseudofractions in the particle-size
analysis: fine particles are often cemented by organic colloids or
organo-mineral colloidal structures into microaggregates that may
be resistant to ultrasonic dispersion and Calgon (Fedotov et al.,
2007). Part of the clay fraction in these microaggregates probably
remains in organo-mineral bonds and the aggregates are measured
as silt or sand. Figure 2 also suggests that the sand fraction was
affected by the H2O2 pretreatment; larger aggregates, which were
measured as large sand particles for OMNR, were disrupted in the
OMR dataset and the remaining particles were measured as clay,
silt and smaller sand particles.

These results contradict those of Di Stefano et al. (2010), who
found that silt content was not affected by pretreatment. Shein et al.
(2006), however, confirmed the presence of water-stable microag-
gregates in the coarse silt (10–50 μm) fraction in a typical Cher-
nozem. They demonstrated their gradual breakdown by different
pretreatments and assumed that the stages in the gradual decrease
in aggregation depend on soil type (related chemical and physical
properties). The disaggregation effect of pretreatment probably also
differed for the soil types in our datasets, and without removal of
OM part of the clay content remained in closed form in the microag-
gregates. This possibly explains the large variation in clay contents
for the LDM analysis without and with OM removal (Figure 3).

Proposal for modified LDM fraction boundaries

To determine the optimal boundaries between the clay, silt and
sand fractions obtained with laser diffractometry, the statistical
procedure described by Lin (1989) seemed useful for a wide range
of soil types, including those in the LUCAS dataset. The results

of Lin’s concordance correlation coefficient (CCC) analyses are
summarized in Figure 4.

The optimized boundaries of the clay–silt fraction according
to the change in Lin’s CCC values are shown in Figure 4a; they
are based on a comparison of the clay and silt fractions. For the
clay fraction, the CCC value was largest for the 0–6.6 μm fraction
with OMNR data and for the 0–5.8 μm fraction with OMR data
(CCC: 0.87 and 0.89, respectively) (Figure 4a). Figure 4a also
demonstrates that the upper boundaries calculated for clay of 6.6 μm
with OMNR and 5.8 μm with OMR data are acceptable as lower
boundaries of the silt fraction (CCC: 0.83 and 0.91, respectively).
This accords with the results of several authors, which suggest that
underestimation of the amount of clay by LDM can be compensated
for by changing the clay–silt boundary. Konert & Vandenberghe
(1997) determined slightly larger boundary values, 8 μm instead of
2 μm, for randomly selected Dutch soil samples, mostly of fluvial,
lacustrine and aeolian origin. The 8-μm clay–silt boundary was also
used by Centeri et al. (2015) and Fenton et al. (2015). Vandecasteele
& De Vos (2001) found the 0–6-μm fraction suitable as the clay
fraction for LDM of a Belgian soil dataset. Organic matter was
removed in both the Dutch and Belgian datasets. Pabst et al. (2000)
examined the PSDs of kaolin and other clay materials and found that
the SPM clay fractions contained clay plates of 3–5 μm. Buurman
et al. (2001) showed that a separate correlation procedure is required
for each type of sediment to obtain the ‘real’ clay–silt boundary
between 2 and 8 μm.

A probable explanation for the larger boundary of the clay–silt
fraction could be the slower settling of platy-shaped clay minerals.
Consequently, SPM overestimates the clay fraction, whereas LDM
underestimates platy particles with random orientations (Ließ
et al., 2012). Overestimation of the clay fraction by SPM could
also result from diverse particle density. This depends mainly on
the mineral composition and humus content, which are usually not
taken into account when calculating sedimentation velocity (Eshel
et al., 2004).

The different optimal clay–silt boundaries for the OMNR and
OMR datasets might be caused by mineralogical changes during

© 2017 British Society of Soil Science, European Journal of Soil Science
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Figure 4 Lin’s concordance correlation coefficient (CCC) values of the laser diffractometer methods (LDMs) and sieve–pipette methods (SPMs) (a) clay–silt
and (b) silt–sand fraction boundaries measured for the different datasets (OMNR, organic matter not removed; OMR, organic matter removed). The y-axis
gives Lin’s CCC of the (a) 14 cumulative size classes of the LDM clay (from < 1.4 to < 10.0 μm) and the SPM clay (< 2 μm) fraction and (b) 12 cumulative
size classes of the LDM sand (from > 30.2 to > 138.4 μm) and the SPM sand (> 63 μm) fraction.

Figure 5 Comparison of the interquartile ranges of soil particle-size fractions measured by different methods (SPM, sieve–pipette; LDM, laser diffractometer)
with modified particle-size distribution (PSD) boundaries for different pretreatments: (a) OMNR, organic matter not removed and (b) OMR, organic matter
removed. The clayLDMmod, siltLDMmod and sandLDMmod indicate the modified fraction boundaries.

pretreatment. Intensive oxidation by H2O2 and heating at the
end of OM removal may change soil properties considerably
(Shein, 2009). Clay minerals, especially those that swell, may be
transformed during pretreatment (Balázs et al., 2011) and result in
the possible ‘erosion’ of clay plates, leading to a lower boundary of
5.8 μm. Further research is required to confirm this hypothesis.

Figure 4(b) shows the optimized boundaries for the silt–sand
fraction according to Lin’s CCC values from a comparison of

the silt and sand fractions. The changes in Lin’s CCC values
indicate that the largest values (the best matches between the
two methods) for the sand fraction are at 60.3–2000 μm for
OMNR data and at 69.2–2000 μm for OMR data (CCC: 0.95
and 0.97, respectively) (Figure 4b). Figure 4(b) also shows that
the lower boundaries calculated for sand are also acceptable
as upper boundaries of the silt fraction (CCC: 0.83 and 0.91,
respectively). The scientific explanation for the difference between
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Figure 6 Difference in accuracy of prediction, expressed by R2 and root mean square error (RMSE) (mass %) for the pedotransfer functions (PTFs) developed
for the three particle-size distribution (PSD) fractions, (a) clay, R2, (b) clay, RMSE, (c) silt, R2, (d) silt, RMSE, (e) sand, R2 and (f) sand, RMSE, for the different
types of pretreatments (OMNR, organic matter not removed; OMR, organic matter removed). Error bars denote±1 standard error of the mean for each prediction
group. Dotted lines indicate the best level of accuracy and patterned columns indicate the performance of the best conversion model. 0A:PSDSPMpred is the
‘raw’ PSDLDM data. 0B:PSDSPMpred is based on PSDLDMmod results. 1–7 represents PTFs 1–7 based on different input parameters described in Materials and
methods.
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the optimal sand–silt boundaries of OMNR and OMR needs further
research.

In the later stages of the statistical analyses, the above clay–silt
boundaries (6.6 μm for OMNR and 5.8 μm for OMR) and silt–sand
boundaries (60.3 μm for OMNR and 69.2 μm for OMR) were used
as ‘modified LDM boundaries’, whereas the ‘non-modified LDM
boundaries’ were 2 and 63 μm, respectively.

Figure 5 shows the distribution of PSD derived by SPM and
LDM with and without OM pretreatment, and with the modified
fraction boundaries for LDM. They show clearly that the amounts
of each fraction determined by the different methods are much
more similar after modification of the fraction boundary than is
the case in Figure 1. The similarity between the SPM (claySPM,
siltSPM and sandSMP) and modified LDM (clayLDMmod, siltLDMmod

and sandLDMmod) data is greater for pretreated samples. This is not
surprising because pretreatment was also carried out before the
SPM measurements.

Pedotransfer functions for converting PSD data from LDM
to SPM

The analysis of ‘raw’ SPM and LDM (0A) data and modi-
fied LDMmod data (0B) (Figure 6) shows that: (i) pretreatment
had a significant, decreasing effect on the RMSE for the clay
and silt fractions in the case 0A (OMNR clay: 19.17± 0.04,
silt: 21.50± 0.05 compared with OMR clay: 16.31± 0.07,
silt: 15.68± 0.01) (Figure 6b,d), whereas the coefficients of
determination (R2) for the clay and silt fractions slightly increased
(OMNR clay: 0.667± 0.006, silt: 0.669± 0.003 compared with
OMR clay: 0.711± 0.002, silt: 0.754± 0.005) (Figure 6a,c), (ii)
the RMSE decreased significantly for clay and silt fractions
when the fraction boundaries were changed (OMNR 0A clay:
19.17± 0.04, silt: 21.50± 0.05 compared with OMNR 0B clay:
7.46± 0.05, silt: 9.61± 0.04; OMR 0A clay: 16.31± 0.07, silt:
15.68± 0.01 compared with OMR 0B clay: 8.09± 0.03, silt:
7.63± 0.02) (Figure 6b,d), whereas the modification of LDM
PSD boundaries had an increasing effect on R2 for the clay and
silt fractions (OMNR 0A clay: 0.667± 0.006, silt: 0.669± 0.003
compared with OMNR 0B clay: 0.765± 0.005, silt: 0.734± 0.003;
OMR 0A clay: 0.711± 0.002, silt: 0.754± 0.005 compared with
OMR 0B clay: 0.740± 0.002, silt: 0.831± 0.002) (Figure 6a,c),
(iii) the strongest correlation between SPM and LDM data was for
the sand fraction (between 0.928± 0.001 and 0.940± 0.001)
and the weakest was for clay (between 0.667± 0.006 and
0.765± 0.005) (Figure 6a,c,e), which accords with the results
of others (e.g. Ryżak & Bieganowski, 2010; Ließ et al., 2012),
and (iv) changing the fraction boundaries resulted in the great-
est improvement in R2 for the clay fraction in OMNR data
(ΔR2 = 0.098) and the silt fraction in OMR data (ΔR2 = 0.077)
(Figure 6a,c).

Linear regression was used to develop the conversion models
further (Tables S1 and S2, Supporting Information). A compar-
ison of the performance of conversion models (PTFs) showed
that combining LDMmod and routine soil data (OC, CaCO3,

pH(H2O)) as input parameters in the model (PTFs6) gave the
most accurate prediction results; they have the smallest RMSE
(OMNR clay: 5.94± 0.04, silt: 7.68± 0.04; OMR clay: 7.02± 0.03,
silt: 6.92± 0.03) (Figure 6b,d) and the largest R2 values (OMNR
clay: 0.844± 0.003, silt: 0.821± 0.002; OMR clay: 0.789± 0.002,
silt: 0.856± 0.002) (Figure 6a,c). On the other hand, the pro-
posed PTFs were able to eliminate the effect of OM removal on
the efficiency of estimation. With the best prediction method,
PTFs6, larger R2 and smaller RMSE values were achieved for
OMNR than for OMR. Preliminary grouping did not improve
the accuracy of prediction with PTFs5 and 7. (The compar-
ison of different PTFs with anova is shown in Table S3 in
Supporting Information.)

When the accuracy of PTFs 1–7 was tested with independent
variables only that were close to normally distributed, there was a
decrease in accuracy.

The PTFs that gave the most accurate predictions for the training
datasets (PTFs 4 and 6) were included in further analysis. The per-
formance of potential PTFs on the test datasets is shown in Figure 7
and the results of anova in Table S4 in Supporting Information.
Use of all transformed and untransformed independent variables
(PTFs6) significantly improved the accuracy of the models com-
pared with PTFs4, which include untransformed input variables
only. The performance of PTFs 4 and 6 on test datasets, however,
was similar based on R2 (Figure 7a,c,e) and RMSE (Figure 7b,d,f)
values.

Removal of OM before LDM measurements, however, did
have a noteworthy effect on the performance of the mod-
els. The PTFs derived from OMNR performed significantly
better, for example the R2 and RMSE values for claySPMpred

estimated by PTF6 were significantly better for OMNR
(R2 = 0.832± 0.012 and RMSE= 6.14± 0.18% for PTFs6) than
for OMR (R2 = 0.780± 0.007 and RMSE= 7.30± 0.10%).

The distribution of soil texture within the USDA textural triangle
for ‘raw’ SPM and LDM data, the modified fraction boundary data
and the particle-size data predicted by the best performing PTFs6
are shown in Figure 8. Removal of OM only did not result in the
convergence of soil texture distributions (Figure 8a,c). Changes
in soil fraction boundaries, however, resulted in a much greater
improvement in the correspondence of the texture distribution
between SPM and LDM (Figure 8b,d). Figure 8(e,f) shows that
the PTFs gave the closest agreement between the distributions of
texture determined by SPM and LDM .

The textural triangles (Figure 8) illustrate the distribution of
textures in the total soil database, but the test datasets only were
used to compare the texture classes formed in different ways. The
predicted texture classes estimated by the better performing PTFs
only (PTFs1, 2, 4 and 6) were compared with the measured texture
classes determined by SPM. The USDA texture classes agreed
well with 62.18± 1.98% and 62.10± 2.24% of the measured and
predicted values when PTFs6 were applied (Figure 9). This was
the largest percentage of matches, but there were no statistically
justified differences between the estimation of texture by PTFs2
(58.60± 0.66% and 57.80± 0.82%), PTFs4 (59.46± 1.58% and
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Figure 7 Difference in performance of predictions on test datasets, expressed by R2 and root mean square error (RMSE) (mass %), for the pedotransfer
functions (PTFs) developed for the three particle-size distribution (PSD) fractions, (a) clay, R2, (b) clay, RMSE, (c) silt, R2, (d) silt, RMSE, (e) sand, R2 and
(f) sand, RMSE, for the different types of pretreatments (OMNR, organic matter not removed; OMR, organic matter removed). Error bars denote ±1 standard
error of the mean for each prediction group. Dotted lines indicate the best level of performance and patterned columns indicate the performance of the best
conversion model. 1–4 represents PTFs1, 2, 4 and 6 based on different input parameters described in Materials and methods.

© 2017 British Society of Soil Science, European Journal of Soil Science
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Figure 8 Distribution of soil textures in the USDA textural triangles: (a) measured by sieve–pipette (SPM) and laser diffractometer (LDM) methods for the
OMNR (organic matter not removed) dataset, (b) measured by SPM and LDM with modified fraction boundaries for the OMNR dataset, (c) measured by SPM
and LDM for the OMR (organic matter removed) dataset, (d) measured by SPM and LDM with modified fraction boundaries for the OMR dataset, (e) measured
by SPM and converted LDM for pedotransfer functions (PTFs) 6 with the OMNR dataset and (f) measured by SPM and converted LDM for PTFs6 with the
OMR dataset.
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Table 2 Recommended conversion pedotransfer functions (PTFs) for continental scale applications in Europe.

Input data options Number of PTFs Prediction modelsa

Based on samples without removal of organic matter during pretreatment (OMNR)
PSDb only 2a claySPMpred = 0.69+ 0.92× clayLDMmod

siltSPMpred =− 6.10+ 1.10× siltLDMmod

PSD+ chemical soil properties 6a claySPMpred = 187.40–0.055 × CaCO3 + 0.008 × clay2
LDMmod + 0.002 × sand2

LDMmod −
0.001 × OC2 − 47.33 ×

√
pH

(
H2O

)
+ 15.74 ×

√
OC + 1.82 ×

√
CaCO3 + 37.85 ×

1∕clayLDMmod –359.48 × 1∕pH
(
H2O

)
–168.57 × 1∕OC–0.012 × 1∕CaCO3 + 41.59 ×

log10 clayLDMmod –90.26 × log10 OC–4.70 × log10 CaCO3

siltSPMpred = –170.55 + 0.036 × CaCO3 + 0.003 × silt2LDMmod + 0.003 × sand2
LDMmod +

10.94 ×
√

siltLDMmod + 54.02 ×
√

pH
(
H2O

)
+ 1.29 ×

√
OC–0.62 ×

√
CaCO3 –107.33 ×

1∕sandLDMmod + 421.51 × 1∕pH
(
H2O

)
–34.11 × log10 sandLDMmod –20.12 × log10 OC

Based on samples undergoing pretreatment including removal of organic matter (OMR)
PSD only 2b claySPMpred = 3.09+ 0.87× clayLDMmod

siltSPMpred = 2.41+ 0.93× siltLDMmod

PSD+ chemical soil properties 6b claySPMpred = −44.22 + 0.24 × sandLDMmod –0.079 × CaCO3 + 0.001 × OC2 + 12.02 ×
CaCO2

3 –2.48 ×
√

clayLDMmod + 13.27 ×
√

sandLDMmod –0.81 ×
√

pH
(
H2O

)
+ 2.30 ×√

OC–22.95 × 1∕pH
(
H2O

)
–0.02 × 1∕OC–13.79 × 1∕CaCO3 + 3.73 ×

log10 clayLDMmod –7.05 × log10 OC
siltSPMpred =

–26.76–0.34 × sandLDMpred –0.076 × CaCO3 + 0.01 × silt2LDMmod + 0.0001 × CaCO2
3 +

2.92 ×
√

sandLDMmod –3.98 ×
√

OC + 0.82 ×
√

CaCO3 + 42.77 × 1∕pH
(
H2O

)
+ 70.45 ×

1∕OC + 13.48 × log10 siltLDMmod –2.87 × log10 sandLDMmod + 29.83 × log10 OC

aclaySPMpred, sieve–pipette method (SPM) clay content (mass %); siltSPMpred, SPM silt content (mass %), clayLDMmod, modified laser diffractometer method
(LDM) clay content (vol %); siltLDMmod, modified LDM silt content (vol %); sandLDMmod, modified LDM sand content (vol %); CaCO3, calcium carbonate
content (g.kg−1); OC, organic carbon content (g.kg−1); pH(H2O), soil pH measured in water–soil suspension (−).
bPSD, elements of particle size distribution, clay or silt content (mass%).

Figure 9 Comparison of the accuracy of assigning samples correctly to the
USDA textural class for the measured and predicted values. The differences
in correspondence are presented for the pedotransfer functions (PTFs)
developed and the different types of pretreatments (OMNR, organic matter
not removed; OMR, organic matter removed). Error bars denote±1 standard
error of the mean for each prediction group and have the same format as
in the other figures. Dotted lines indicate the best level of accuracy and
patterned columns indicate the performance of the best conversion model.
1–4 represents PTFs1, 2, 4 and 6 based on different input parameters
described in Materials and methods.

60.02± 0.94%) and PTFs6 (Figure 9 and Table S5 in Supporting
Information).

Conclusions and recommendations

• The PTFs presented to convert PSD data from LDM (vol %) to
SPM (mass %) for comparison and harmonization of data are
reliable tools for application in Europe.

• New standards for LDM clay–silt boundaries and silt–sand
boundaries presented above provide a proper basis for the
transformation of LDM PSD to SPM PSD.

• The new PTFs to convert PSD data from LDM (vol %) to
SPM (mass %) use the modified particle-size LDM fractions and
some optional basic soil chemical data such as OC, CaCO3 and
pH(H2O). The use of soil chemical properties as input parameters
significantly improved the prediction of SPM PSD from LDM
PSD.

• We recommend two sets of PTFs developed on a representative
European dataset: (i) one set derived from samples with pretreat-
ment to remove OM (OMR) and (ii) a second set derived from
samples for which the OM was not removed (OMNR).

• When data on soil chemical properties, such as OC, CaCO3 and
pH(H2O), are available, PTFs that use data from OMNR PSD
measurements have similar prediction power to those that use
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PSD data with OMR pretreatment. Thus, the time-consuming
pretreatment to remove OM cannot be justified in these cases.

• Performance of the conversion with the PTFs depends greatly on
the preparation and specifications of the LDM PSD method. To
secure reliable and coherent results, standardization of pretreat-
ments and settings for soil LDM PSD measurements is required.

• The continental scale PTFs obtained with the conversion meth-
ods developed can be improved further with local databases
including soil type, land use, soil management, and so on.

• The following PTFs are recommended for converting PSD from
LDM (vol %) to SPM data (mass %) with different pretreatments
and input variables (as listed in Table 2):

1 For datasets where PSD data (clay or silt content) only are
available, functions in ‘PTFs type 2’ are recommended for data
harmonization:

- Function 2a when sample pretreatment did not include the
removal of OM.

- Function 2b when sample pretreatment included removal of
OM.

2 For datasets where OC, CaCO3 content and pH(H2O) are also
known, the best performing functions were those in ‘PTFs
type 6’.

- Function 6a when sample pretreatment did not include the
removal of OM.

- Function 6b when sample pretreatment included removal of
OM.

Supporting Information

The following supporting information is available in the online
version of this article:
File S1. Statistical approaches.
Table S1. The effect of fitting method on the accuracy of pedotrans-
fer functions (PTFs) fit. Summary results of R2 values from anova.
Table S2. Comparison of the different regression models for con-
verting laser diffractometer method (LDM) particle-size distribu-
tion (PSD) to sieve–pipette method (SPM) with the variation in R2

values for the type of models. Results are given as mean of five
replicates ± standard error.
Table S3. The effect of prediction methods (pedotransfer functions,
PTFs) on the accuracy of conversion from laser diffractometer
method (LDM) to sieve–pipette method (SPM). Summary results
for R2 and root mean square error (RMSE) values from anova.
Table S4. The effect of prediction methods (pedotransfer functions,
PTFs) on the performance of conversion from LDM to SPM on test
datasets. Summary results for R2 and RMSE values from anova.
Table S5. The effect of prediction methods (PTFs) on the accu-
racy of assigning samples correctly to the USDA texture class for
the measured and predicted values. Summary results for correspon-
dence (%) values from anova.
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