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Abstract We classify tight contact structures on the small Seifert fibered 3–manifold
M(−1; r1, r2, r3) with ri ∈ (0, 1) ∩ Q and r1, r2 ≥ 1

2
. The result is obtained by com-

bining convex surface theory with computations of contact Ozsváth–Szabó invariants.
We also show that some of the tight contact structures on the manifolds considered are
nonfillable, justifying the use of Heegaard Floer theory.
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1 Introduction

In this paper we call a Seifert fibered 3–manifold M small if M is closed, the base surface
is S2 and M has exactly three singular fibers. Using normalized Seifert invariants, a
small Seifert fibered 3–manifold M can be described by the surgery diagram of Figure 1,
where e0 ∈ Z and ri ∈ (0, 1) ∩ Q , with r1 ≥ r2 ≥ r3 . Conversely, a 3–manifold given by
Figure 1 carries a natural structure of a small Seifert fibered 3–manifold. We shall denote
such a 3–manifold by M(e0; r1, r2, r3). The classification of tight contact structures on

e0

− 1
r1

− 1
r2

− 1
r3

Figure 1: Surgery diagram for the Seifert fibered 3–manifold M(e0; r1, r2, r3)

M(e0; r1, r2, r3) has been given in [35] when e0 6= 0,−1,−2, and then extended in [8] to
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the case e0 ≥ 0. In the present article we consider a further special case:

e0 = −1, r1 ≥ r2 ≥
1

2
.

Let us assume that − 1
ri

has continued fraction expansion [ai
0, . . . , a

i
ki

] , that is,

−
1

ri
= −ai

0 −
1

−ai
1 −

1

. . . −
1

−ai
ki

, ai
j ∈ N, ai

j ≥ 2.

Define

h(r1, r2, r3) := (a3
1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1),

ϕ(r1, r2, r3) :=





(
2(a1

1 − 1)(a2
1 − 1) + (a3

0 − 1)(a1
1 + a2

1 − 2)
)
h(r1, r2, r3) if r2 >

1
2 ,(

2(a1
1 − 1) + (a3

0 − 1)
)
(a3

1 − 1)
∏

i6=2

∏
j≥2(a

i
j − 1) if r1 > r2 = 1

2 ,

2
∏

j≥1(a
3
j − 1) if r1 = r2 = 1

2 ,

and

ψ(r1, r2, r3) :=





(a1
1 − 1)(a2

1 − 1)a3
1

∏3
i=1

∏
j≥2(a

i
j − 1) if r3 6= 1

a3
0

,
∏2

i=1

∏
j≥1(a

i
j − 1) if r3 = 1

a3
0

,

where one should conventionally set ai
j = 2 when j > ki . Our main result is the following.

Theorem 1.1 Let M = M(−1; r1, r2, r3) be a small Seifert fibered 3–manifold with
r1 ≥ r2 ≥ 1

2 . Then, M supports exactly

ϕ(r1, r2, r3) + ψ(r1, r2, r3)

tight contact strucures up to isotopy.

In order to put this result in perspective, recall that the classification of tight contact
structures on small Seifert fibered 3–manifolds with e0 6= −1,−2 (as it is given in [8, 35])
required two steps. First, using convex surface theory, an upper bound on the number
of tight contact structures was achieved. In the second step, using Legendrianizations
of appropriate surgery diagrams for the 3–manifold at hand, a collection of Stein fillable
contact structures was constructed. The isotopy classes of these Stein fillable (hence tight)
structures were distingushed by the first Chern classes of their Stein fillings, resting on a
result of [17]. For the class of 3–manifolds considered in this paper, this strategy needs to
be modified, since — as it will be shown in Section 4, cf. Theorem 4.13 — some 3–manifolds
addressed by Theorem 1.1 admit tight, nonfillable contact structures. Tightness of such
nonfillable structures can be either shown by state traversal methods (which becomes
extremally complicated when the underlying 3–manifold is atoroidal, as is the case of
the 3–manifolds considered in Theorem 1.1), or by computing contact Ozsváth–Szabó
invariants. By finding appropriate contact (±1)–surgery diagrams for all the potential
tight contact structures, here we describe a simple way to determine their contact Ozsváth–
Szabó invariants.
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Our results imply that the mod 2 reduced contact Ozsváth–Szabó invariant is a complete
invariant for tight contact structures on the 3–manifolds M(−1; r1, r2, r3), r1, r2 ≥ 1

2 .
Moreover, two tight structures on these 3–manifolds are isotopic if and only if they induce
the same spinc structure.

Notice that the class of small Seifert fibered 3–manifolds considered in Theorem 1.1 is
large enough to contain each small Seifert fibered 3–manifold with finite fundamental
group (with one orientation) — with the unique exception of the Poincaré homology
sphere −Σ(2, 3, 5) = M(−1; 1

2 ,
1
3 ,

1
5).

In Section 2 we derive upper bounds for the number of isotopy classes of tight contact
structures on the Seifert fibered 3–manifolds listed in Theorem 1.1. The heart of these
arguments is to establish isotopies between tight contact structures presented in different
ways. Section 3 is devoted to a recollection of relevant results of Heegaard Floer theory
related to the contact Ozsváth–Szabó invariants. Contact surgeries are also briefly dis-
cussed. In Section 4 the special case of M(−1; 1

2 ,
1
2 ,

1
p
) is examined, and by using contact

Ozsváth–Szabó invariants we achieve a complete classification for these Seifert fibered 3–
manifolds. Stein fillability and nonfillability is also discussed. Finally in Section 5 we
complete the proof of Theorem 1.1 by giving lower bounds for the number of tight contact
structures on M(−1; r1, r2, r3) satisfying r1, r2 ≥ 1

2 .

There is a final remark in place. Notice that in the definition of continued fractions we
introduced negative signs, so that the coefficients ai

j became positive. Although this
convention might differ from many results established in the literature, for our purposes
it seemed to be more convenient to work with positive rather than negative numbers.

Acknowledgements. Part of this work was done while the first author was visiting
Princeton University supported by the NSF Focused Research Grant FRG-024466. The
third author wants to thank the Institute for Advanced Study, Princeton for their hospi-
tality while part of this collaboration was carried out. He was partially supported by NSF
Focused Research Grant FRG-024466 and by OTKA T049449.

2 Upper bounds from convex surface theory

In order to get an upper bound for the number of tight contact structures, we will follow
the methods developed in [6, 10] and implemented [6, 9]. Suppose that (M, ξ) is a contact,
Seifert fibered 3–manifold. Then, a Legendrian knot in M smoothly isotopic to a regular
fiber admits two framings: one coming from the fibration and another one coming from the
contact structure ξ . The difference between the contact framing and the fibration framing
is the twisting number of the Legendrian curve. We say that ξ has maximal twisting equal

to zero if there is a Legendrian knot L isotopic to a regular fiber such that L has twisting
number zero. Applying [34, Theorem 1.5(1)] we have:

Proposition 2.1 Every tight contact structure on M(−1; r1, r2, r3) with r1 ≥ r2 ≥ 1
2

has maximal twisting equal to zero.

Proof Using unnormalised Seifert invariants, we write M(−1; r1, r2, r3) as M(0; r1 −
1, r2, r3). In the notation of [34, Theorem 1.5] this means that q3

p3
= r1 − 1 and q2

p2
= r2 .

3



Therefore q2

p2
+ q3

p3
= r1+r2−1, which is nonnegative by our assumptions. Consequently [34,

Theorem 1.5(1)] applies, implying the statement.

Let Fi (i = 1, 2, 3) be the three singular fibers of the Seifert fibration on M . First, in
view of Proposition 2.1 we can isotope the Seifert fibration until there is a Legendrian
regular fiber L with twisting number zero with respect to the fibration. Then, we can
isotope each Fi further so that it becomes Legendrian.

Let Vi be a standard convex neighbourhood of Fi , i = 1, 2, 3. Then, M \ (V1 ∪ V2 ∪ V3)
can be identified with Σ×S1 where Σ is a pair of pants. This diffeomorphism determines
identifications of −∂(M \Vi) with R2/Z2 so that

(
1
0

)
is the direction of the section Σ×{1}

and
(0
1

)
is the direction of the regular fibers. In order to fix one among the infinitely many

product structures on M \ (V1 ∪ V2 ∪ V3) we also require the meridian of each Vi to have
slope − βi

αi
in −∂(M \ Vi), with

β1

α1
= r1 − 1,

β2

α2
= r2,

β3

α3
= r3.

We also choose an identification between ∂Vi and R2/Z2 so that
(
1
0

)
is the direction of the

meridian of Vi and
(1
0

)
is the direction of a longitude. Notice that ∂Vi and −∂(M \ Vi)

coincide as sets, but are identified with R2/Z2 in different ways. We can choose the
longitude on Vi so that these two identifications are related by gluing matrices Ai : ∂Vi →
−∂(M \ Vi) given by

Ai =

(
αi α′

i

−βi −β′i

)

with βiα
′
i − αiβ

′
i = 1 and 0 < α′

i < αi .

Since Vi is a standard convex neighbourhood of a Legendrian curve, −∂(M \ Vi) is a
standard torus with exactly 2 dividing curves. By flexibility of the Legendrian ruling [14,
Corollary 3.6] we can modify the characteristic foliation of −∂(M \ Vi) so that its Leg-
endrian ruling has infinite slope. Consider convex vertical annuli Ai with Legendrian
boundary between a vertical Legendrian ruling curve of −∂(M \ Vi) and the Legendrian
regular fiber L with twisting number zero. By the Imbalance Principle [14, Proposi-
tion 3.17] the annuli Ai give bypasses on −∂(M \ Vi). The Bypass Attachment Lemma
[14, Lemmas 3.12 and 3.15] implies that the attachments of these bypasses reduce the
denominator of the slope −∂(M \ Vi) in absolute value, therefore after a finite number of
bypass attachments we obtain tubular neighbourhoods Ui of Fi containing Vi such that
−∂(M \ Ui) has infinite slope for i = 1, 2, 3.

Lemma 2.2 The convex torus ∂Ui has slope

−
αi

α′
i

= [ai
ki
, . . . , ai

0], i = 1, 2, 3.

Proof For i = 2, 3 the statement follows from [23, Lemma A4] because ri = βi

αi
. When

i = 1 we can still apply [23, Lemma A4] because ri = β1−α1

α1
and we have

α′
1(β1 − α1) − α1(β

′
1 − α′

1) = 1.
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Since −αi

α′

i
< −1, by [14, Proposition 4.16] applied to Ui \ Vi there exist tubular neigh-

bourhoods V ′
i ⊂ Ui of the singular fibers such that ∂V ′

i is a standard convex torus with
slope −1. Following [14, Section 4.4] we decompose Ui \ V

′
i into consecutive layers N i

j

diffeomorphic to toric annuli with convex boundary and boundary tori with slopes

[ai
ki
, . . . , ai

1 − 1] and [ai
ki
, . . . , ai

0] if j = 0,

[ai
ki
, . . . , ai

j+1 − 1] and [ai
ki
, . . . , ai

j − 1] if 0 < j < ki,

−1 and [ai
ki
− 1] if j = ki,

where [ai
ki
, . . . , ai

1 − 1] should be interpreted as −1 when ri = 1
ai
0

. If ai
j = 2 then by

definition N i
j is an invariant neighbourhood of a convex torus, and if ai

j > 2 by [14,

Proposition 4.14] N i
j is a continued fraction block.

We define qi
j as the number of positive basic slices in N i

j . We have

0 ≤ qi
0 ≤ ai

0 − 1 and 0 ≤ qi
j ≤ ai

j − 2 (j > 0).

For j > ki there are no more layers N i
j and we define qi

j = ∞ .

Our assumption r1 ≥ r2 ≥ 1
2 implies that a1

0 = a2
0 = 2, therefore q10 , q

2
0 ∈ {0, 1} and N1

0 ,
N2

0 are basic slices.

By the classification of tight contact structures on solid tori [14, Theorem 2.3] there are

ai
0(a

i
1 − 1) . . . (ai

ki
− 1)

distinct tight contact structures on each Ui . We will see that not every combination of
tight contact structures on U1 , U2 , and U3 is the restriction of a tight contact structure on
M . But first we need to analyse the tight contact structures on the complement of U1 , U2 ,
and U3 . There are infinitely many distinct tight contact structures on M \ (U1 ∪U2 ∪U3)
which can be the restriction of a tight contact structure on M . However, Lemma 2.4
below implies that the isotopy class of a tight contact structure ξ on M does not depend
on its restriction to M \ (U1 ∪ U2 ∪ U3).

Definition 2.3 Let Σ be a pair of pants. A tight contact structure ξ on Σ × S1 is
appropriate if there is no contact embedding

(T 2 × I, ξπ) →֒ (Σ × S1, ξ)

with T 2 × {0} isotopic to a boundary component, where ξπ is a tight contact structure
with convex boundary and twisting π (see [14, § 2.2.1] for the definition of twisting).

Lemma 2.4 Let Σ be a pair of pants and let ξ be an appropriate contact structure on
Σ × S1 with convex boundary −∂(Σ × S1) = T1 ∪ T2 ∪ T3 , boundary slopes

s(T1) = −n, s(T2) = −1, s(T3) = ∞, n ∈ N ∪ {0},

and #ΓTi
= 2 for i = 1, 2, 3. Then, there is a pair of pants Σ′ contained in Σ and a

factorization
Σ × S1 = (Σ′ × S1) ∪B1 ∪B2

such that

5



(1) the restriction of ξ to Σ′×S1 is appropriate and has convex boundary with infinite
boundary slopes;

(2) the restrictions of ξ to B1 and B2 are basic slices;

(3) the isotopy class of ξ is determined by the signs of the restrictions of ξ to B1 and
B2 .

Figure 2: Nonisotopic dividing sets on a convex horizontal section of Σ′×S1 become isotopic when
extended to a section of Σ′′ × S1

Proof The proof of this lemma is similar to the proof of [35, Lemma 4.1], where different
boundary slopes are considered. Here we give a sketch of the argument.

The existence of the factorization is stated in [15, Lemma 5.1(a)]. The restriction of
ξ to Σ′ × S1 is appropriate because the restriction of an appropriate contact structure
is always appropriate. This proves (1). B1 and B2 are basic slices because they are
appropriate (which, for thickened tori, is the same as being minimally twisting) and their
boundary slopes are consecutive in the Farey Tessellation. This proves (2). Let Σ′

0 be a
convex horizontal section of Σ′ × S1 with Legendrian boundary consisting of horizontal
Legendrian ruling curves of T1 , T2 , and T3 so that the dividing set ΓΣ′

0
has the minimum

possible number of dividing curves in the isotopy class of Σ′
0 . The dividing set of Σ′

0

cannot contain a boundary parallel dividing curve because ξ is appropriate, therefore it
consists of three arcs, each joining distinct boundary components: see [6, Lemma 10].
By [15, Lemma 5.2] there is a unique extension of (Σ×S1, ξ) to (Σ′′×S1, ξ′′) obtained by
adding basic slices B′′

1 and B′′
2 so that the resulting contact structure ξ′′ is tight and has

infinite boundary slopes. Let Σ′′
0 be a convex horizontal section of Σ′′×S1 with Legendrian

boundary extending Σ′
0 so that the dividing set ΓΣ′′

0
has the minimum number of dividing

curves in the isotopy class of Σ′′
0 . Then the dividing set ΓΣ′′

0
consists of three boundary

parallel arcs, as in Figure 2. Therefore, the isotopy class of ξ′′ is determined by the signs
of the boundary parallel regions. These signs depend on the signs of the basic slices B′′

1

and B′′
2 , which must be equal to the signs of the basic slices B1 and B2 by the Gluing

Theorem [14, Theorem 4.25].

6



Lemma 2.5 Let (T 2 × [0, 1], η) be a minimally twisting tight contact structure with
boundary slopes s0 and s1 . Let T 2 × [12 , 1] be the last basic slice in the basic slice
decomposition of (T 2 × [0, 1], η) . Then, the slope s 1

2

of T 2 × {1
2} is the vertex of the

Farey Tessellation in the counterclockwise arc starting at s 1

2

and ending at s1 which is

the closest to s0 among those connected to s1 by an edge.

Proof In [14, Section 4.4.3] T 2 × {1
2} is obtained from T 2 × {1} by attaching a by-

pass along a Legendrian ruling curve with slope s1 . The bypass attachment lemma [14,
Lemma 3.15] concludes the proof.

Let Zi be the complement of the outermost basic slice in Ui . In particular, U1 \ Z1 and
U2 \ Z2 coincide with N1

0 and N2
0 respectively.

Lemma 2.6 −∂(M \ Z1) has boundary slope 0, while −∂(M \ Z2) and −∂(M \ Z3)
have both boundary slopes equal to −1.

Proof Since

A1

(
1

−1

)
=

(
α1 − α′

1

−β1 + β′1

)
,

using the relation α′
1β1 − α1β

′
1 = 1 and the fact that

β1

α1
= r1 − 1 < 0 implies β1 ≤ −1,

we see that the slope of −∂(M \ V ′
i ) is

−β1 + β′1
α1 − α′

1

=
−α1β1 + α1β

′
1

α1(α1 − α′
1)

=
−β1(α1 − α′

1) − 1

α1(α1 − α′
1)

= −
β1

α1
−

1

α1(α1 − α′
1)

≥ −
β1 + 1

α1
≥ 0.

On the other hand,

−β1 + β′1
α1 − α′

1

= −
β1

α1
−

1

α1(α1 − α′
1)

≤ −
β1

α1
= 1 − r1 < 1.

Applying Lemma 2.5 to U1 \ V
′
1 with its boundary slopes computed with respect to the

basis of −∂(M \ U1), we find that −∂(M \ Z1) has boundary slope 0. In the same way
we see that −∂(M \ Z2) and −∂(M \ Z3) have both boundary slope −1.

It is easy to check that if ξ is a tight contact structure on M , its restriction to M \
(Z1∪Z2∪U3) is appropriate, therefore Lemma 2.4 implies that the isotopy class of a tight
contact structure ξ on M depends only on the restriction of ξ to the solid tori Ui . This
fact implies that the number of possible tight contact structures on M is at most

3∏

i=1

ai
0

∏

j≥1

(ai
j − 1).

We will sharpen this upper bound by excluding some overtwisted contact structures and
eliminating the overcounting of different presentations of the same tight contact structure.
Lemmas 2.7 and 2.8 are essentially more precise reformulations of a particular case of [9,
Theorem 4.13].
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Lemma 2.7 Let Σ be a pair of pants and let ξ be a contact structure on Σ × S1 with
convex boundary −∂(Σ × S1) = T1 ∪ T2 ∪ T3 , boundary slopes

s(T1) = −n, s(T2) = −1, s(T3) = ∞, n ∈ N ∪ {0},

and #ΓTi
= 2 for i = 1, 2, 3. Suppose that there exists a collar neighbourhood B3 ⊂ Σ×S1

of T3 such that

(1) B3 is a basic slice with boundary slopes ∞ and n ;

(2) the restriction of ξ to (Σ × S1) \ B3 = Σ′′ × S1 coincides, up to isotopy, with the
unique tight contact structure on Σ′′ × S1 without vertical Legendrian curves with
twisting number 0, and with boundary slopes −n , −1, and n .

Then (Σ × S1, ξ) is appropriate, and in the decomposition Σ × S1 = B1 ∪B2 ∪ (Σ′ × S1)
of Lemma 2.4, where B1 and B2 are basic slices with boundary slopes −n , ∞ and −1,
∞ respectively, the signs of B1 and B2 are both opposite to the sign of B3 .

B1 B2

B3

Figure 3: The two decompositions of (Σ × S1, ξ).

Here we warn the reader that our convention for the computation of the boundary slopes
differs from that of [15, Lemma 5.1] in the sense that our slopes are computed with respect
to −∂(Σ × S1), as opposed to ∂(Σ × S1).

Proof Define −∂Bi = Ti − T ′
i for i = 1, 2, 3. (Σ′′ × S1, ξ|Σ′′×S1) is contactomorphic to

the complement of a vertical Legendrian curve with twisting number −1 in a nonrotative
thickened torus with boundary slopes −n because there is a unique tight contact structure
up to isotopy on Σ′′ × S1 with these boundary slopes and without vertical Legendrian
curves with twisting number 0, see [15, Lemma 5.1(4b)]. A collar of T ′

3 in B3 is isomorphic
to a nonrotative thickened torus, therefore we can identify (Σ×S1, ξ) with the complement
of a vertical Legendrian curve with twisting number −1 in B3 . Since B3 is tight and
minimally twisting we can conclude that (Σ × S1, ξ) is appropriate.

To prove that the signs of the restrictions of ξ to B1 and B2 are the opposite of the
sign of its restriction to B3 , we argue by evaluating the relative Euler class e(ξ) of ξ on
vertical annuli A1 ⊂ B1 and A2 ⊂ B2 with Legendrian boundary

∂Ai = (Ai ∩ T
′
i ) − (Ai ∩ Ti)

8



such that Ai ∩ Ti is a Legendrian ruling curve of Ti , and Ai ∩ T
′
i is a Legendrian divide

of T ′
i .

Let A′
i , for i = 1, 2, be a vertical annulus in Σ′×S1 such that ∂A′

i = (A′
i ∩T3)− (A′

i ∩T
′
i )

consists of Legendrian divides of T ′
i and T3 , and A′

i ∩ T
′
i = Ai ∩ T

′
i . We consider also

the vertical annuli A′′
i = Ai ∪ A′

i between T3 and Ti . From the Thurston–Bennequin
inequality it follows that

〈e(ξ), [A′
i]〉 = 0,

therefore

〈e(ξ), [Ai]〉 = 〈e(ξ), [A′′
i ]〉.

Take a vertical annulus A3 ⊂ B3 with Legendrian boundary ∂A3 = (A3 ∩T
′
3)− (A3 ∩T3),

and a vertical annulus A′
3 ⊂ Σ′′×S1 with Legendrian boundary ∂A′

3 = (A3∩Ti)−(A3∩T
′
3)

for either i = 1, 2. Assume moreover that A3 ∩ T
′
3 = A′

3 ∩ T
′
3 . The dividing set of A′

3 can
contain no boundary parallel dividing arc because Σ′′×S1 contains no vertical Legendrian
curve with twisting number 0, therefore [14, Proposition 4.5] implies that 〈e(ξ), [A′

3]〉 = 0.
If we call A′′

3 = A3 ∪A
′
3 , then we have

〈e(ξ), [A3]〉 = 〈e(ξ), [A′′
3 ]〉 = −〈e(ξ), [A′′

i ]〉.

The change of sign in the evaluation of the relative Euler class is due to the different
orientations of A′′

3 on one hand, and A′′
i with i = 1, 2 on the other hand. This implies

that

〈e(ξ), [A3]〉 = −〈e(ξ), [Ai]〉

for i = 1, 2.

Combining Lemma 2.4 and Lemma 2.7 we obtain the following corollary, which contains
the basic move which allows us to go from a sign configuration of the basic slice decom-
positions of U1 , U2 , and U3 to a different one without affecting the isotopy class of ξ .

Lemma 2.8 Let Σ be a pair of pants and let ξ be an appropriate contact structure on
Σ × S1 with convex boundary −∂(Σ × S1) = T1 ∪ T2 ∪ T3 , boundary slopes

s(T1) = −n, s(T2) = −1, s(T3) = ∞, n ∈ N ∪ {0},

and #ΓTi
= 2 for i = 1, 2, 3. If the basic slices B1 and B2 of Lemma 2.4 have the

same sign, then there exists a collar neighbourhood B3 of T3 such that B3 is a basic slice
with boundary slopes ∞ and n having sign opposite to the sign of B1 and B2 and the
restriction of ξ to Σ′′×S1 = (Σ×S1) \B3 coincides, up to isotopy, with the unique tight
contact structure on Σ′′×S1 without vertical Legendrian curves with twisting number 0,
and with boundary slopes −n , −1, and n .

Proof Let Σ′′ be a pair of pants, and let η′ denote the the unique tight contact structure
on Σ′′×S1 without vertical Legendrian curves with twisting number 0, and with boundary
slopes −n , −1, and n . Consider the contact structure η obtained by gluing to the
boundary component of (Σ′′ × S1, η′) with slope n a basic slice B3 with boundary slopes
∞ and n , and with sign opposite to the sign of (B1, ξ|B1

) and (B2, ξ|B2
). Then, by

Lemma 2.7, in the decomposition of Lemma 2.4 for η the signs of the basic slices B1 and

9



B2 are both opposite to the sign of B3 , and therefore are equal to the sign of (B1, ξ|B1
) and

(B2, ξ|B2
). By Lemma 2.4 the contact structures η and ξ are isotopic, so the statement

follows.

We will see that the nontrivial behaviour of the tight contact structures on M comes
from the first two outermost layers N i

0 and N i
1 in the decomposition of Ui (i = 1, 2, 3).

This fact justifies the introduction of the following notation: to a potentially tight contact
structure on M we associate the matrix

(
q10 q20 q30
q11 q21 q31

)

whose entries qi
j are the number of positive basic slices in the basic slice decompositions

of N i
j for i = 1, 2, 3 and j = 0, 1. (Recall that we defined qi

j = ∞ if j > ki .) We will call
this matrix the matrix of signs of the contact structure.

We will study two separate cases. Suppose first that q10 6= q20 .

Proposition 2.9 A tight contact structure on M(−1; r1, r2, r3) with matrix of signs
(

1 0 q30
q11 q21 q31

)

is isotopic to either a tight contact structure with matrix of signs
(

0 1 q30 + 1
q11 + 1 q21 q31

)

or to a tight contact structure with matrix of signs
(

0 1 q30 − 1
q11 q21 − 1 q31

)

provided that the expressions are defined, and all the further basic slice decompositions
are the same. Here we use the convention ∞± 1 = ∞ .

Proof We start with the proof of the first isotopy. If q30 < a3
0 − 1 then there is a

negative basic slice in the decomposition of N3
0 , therefore we can arrange the basic slice

decomposition of U3 so that the outermost basic slice is negative. We recall that M \(U1∪
Z2∪Z3) has boundary slopes ∞ , −1, and −1. Applying Lemma 2.8 to M \(U1∪Z2∪Z3)
we obtain a positive basic slice B1 such that U ′′

1 = U1 ∪B1 is a tubular neighbourhood of
F1 and −∂(M \U ′′

1 ) has slope s(−∂(M \U ′′
1 )) = 1. Now we divide the proof in two cases.

Case 1. If r1 = 1
2 then

A−1
1

(
1
1

)
=

(
1 −1

−1 2

)
=

(
0
1

)
,

therefore s(∂U ′′
1 ) = ∞ . It follows that U ′′

1 is the standard neighbourhood of a desta-
bilization of F1 with twisting number 0. Stabilize F1 again, and remove a standard
neighbourhood U ′

1 of the stabilized curve. We can choose the sign of the stabilization so
that U ′′

1 \ U ′
1 is a negative basic slice. The Gluing Theorem [14, Theorem 4.25] implies

that U ′
1 \ V

′
1 = N1

0 is also a negative basic slice, because it glues to U ′′
1 \ U ′

1 , which is a

10



negative basic slice, to give a tight contact structure on U ′′
1 \V ′

1 with boundary slopes −1
and ∞ . For this reason q10 changes from q10 = 1 to q10 = 0. Notice that, in this case,
V ′

1 = Z1 . Using Lemma 2.4 applied to M \ (U ′
1 ∪ Z2 ∪ Z3) we obtain basic slices B′

2 and
B′

3 with boundary slopes −1 and ∞ . The basic slices B′
2 and B′

3 are positive by Lemma
2.7, therefore q20 changes from q20 = 0 to q20 = 1, and q30 changes to q30 + 1. This changes
the first row of the matrix of signs from

(
1 0 q30

)
to

(
0 1 q30 + 1

)
.

Case 2. Suppose now that r1 > 1
2 . Observe that, in view of Lemma 2.6, B1 ∪ N1

0

has boundary slopes 0 and 1. Since B1 and N1
0 are both positive basic slices, by [14,

Theorem 4.25] B1 ∪N
1
0 is a positive basic slice as well. Since

A−1
1

(
1
1

)
=

(
−β′1 − α′

1

β1 + α1

)
,

it follows that B1 has boundary slopes

−
α1

α′
1

and −
β1 + α1

β′1 + α′
1

in the basis of −∂(M \ U1). Moreover,

−
α1

β1 + α1
= −

1

r1
= [a1

0, . . . , a
1
k1

]

implies by Lemma 2.2 that

−
α1

α′
1

= [a1
k1
, . . . , a1

0],

and by an inductive argument over k1 as in [23, Lemma A4] that

−
β1 + α1

β′1 + α′
1

= [a1
k1
, . . . , a1

1].

This implies that B1 ∪ N
1
0 ∪ N1

1 is a continued fraction block, therefore the signs of the
basic slices in B1 ∪ N

1
0 ∪ N1

1 can be shuffled. If we shuffle the sign of the positive basic
slice B1 ∪N

1
0 with the sign of a negative basic slice in N1

1 we obtain the claimed isotopy.

The proof of the second isotopy is analogous: if q30 > 0, we can arrange the basic slice
decomposition of U3 so that the outermost basic slice is positive. Applying Lemma 2.8 to
M \ (Z1 ∪ U2 ∪ Z3) and proceeding as above we obtain the second isotopy.

Corollary 2.10 The number of distinct tight contact structures on M(−1; r1, r2, r3) with
q10 6= q20 is bounded above by

(
2(a1

1 − 1)(a2
1 − 1) + (a3

0 − 1)(a1
1 + a2

1 − 2)
)
(a3

1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1)

when r2 >
1
2 , by (

2(a1
1 − 1) + (a3

0 − 1)
)
(a3

1 − 1)
∏

i6=2

∏

j≥2

(ai
j − 1)

when r1 > r2 = 1
2 , and by

2
∏

j≥1

(a3
j − 1)

when r1 = r2 = 1
2 . In the above formulae ai

j = 2 by convention if j > ki .
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Proof By Proposition 2.9 we can always assume (q10, q
2
0) = (1, 0) unless (q10 , q

2
0) = (0, 1)

and one of the following cases occurs:

(1) q30 = 0 and q21 = a2
1 − 2,

(2) q30 = a3
0 − 1 and q11 = 0,

(3) q11 = 0 and q21 = a2
1 − 2.

There are at most

(a1
1 − 1)(a3

1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1)

isotopy classes of tight contact structures in Case (1),

(a2
1 − 1)(a3

1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1),

in Case (2), and

a3
0(a

3
1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1)

in Case (3). But we counted twice the configurations of signs belonging to the groups (1)
and (3) or (2) and (3) simultaneously, so we have to subtract

2(a3
1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1)

from the sum of the above expressions. This shows that the maximum number of tight
contact structures when (q10 , q

2
0) = (0, 1) and r2 >

1
2 is

(a3
0 + a1

1 + a2
1 − 4)(a3

1 − 1)
3∏

i=1

∏

j≥2

(ai
j − 1). (2.1)

If r1 > r2 = 1
2 , only Case (2) above is possible, so the upper bound when (q10 , q

2
0) = (0, 1)

is
(a3

1 − 1)
∏

i6=2

∏

j≥2

(ai
j − 1). (2.2)

If r1 = r2 = 1
2 , then none of the above cases can occur, and we may always assume

(q10 , q
2
0) = (1, 0).

Now we consider the case when (q10 , q
2
0) = (1, 0). By Proposition 2.9 the contact structure

with matrix of signs (
1 0 q30
q11 q21 q31

)

is isotopic to one with matrix
(

1 0 q30 ± 2
q11 ± 1 q21 ± 1 q31

)

where the same sign must be chosen in each entry, assuming that all the expressions are
defined. Therefore, we can always assume that one of the following cases holds:

12



(4) q30 = 0,

(5) q30 = 1,

(6) q30 6= 0, 1 and q11 = 0,

(7) q30 6= 0, 1 and q21 = 0.

Each one of Cases (4) and (5) allows the existence of at most

(a1
1 − 1)(a2

1 − 1)(a3
1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1)

distinct isotopy classes of contact structures, Case (6) allows

(a3
0 − 2)(a2

1 − 1)(a3
1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1),

and Case (7) allows

(a3
0 − 2)(a1

1 − 1)(a3
1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1).

However, we have counted twice the contact structures with (q11, q
2
1) = (0, 0) belonging to

both Cases (6) and (7). Therefore, we must subtract

(a3
0 − 2)(a3

1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1).

Thus, when r2 >
1
2 the total number of potential tight contact structures with (q10, q

2
0) =

(1, 0) is

(
2(a1

1 − 1)(a2
1 − 1) + (a3

0 − 2)(a1
1 + a2

1 − 3)
)
(a3

1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1). (2.3)

Adding up (2.1) and (2.3) we obtain the stated formula in the case r2 >
1
2 .

If r1 > r2 = 1
2 then Case (7) cannot occur because q21 = ∞ , therefore the total number of

potential tight contact structures with (q10 , q
2
0) = (1, 0) is

(
2(a1

1 − 1) + (a3
0 − 2)

)
(a3

1 − 1)
∏

i6=2

∏

j≥2

(ai
j − 1). (2.4)

Adding up (2.2) and (2.4) gives the statement in this case.

When r1 = r2 = 1
2 only Cases (4) and (5) can occur, giving the upper bound

2
∏

j≥1

(a3
j − 1),

which coincides with the stated formula.

Next we turn to the second possibility, when q10 = q20 .

Proposition 2.11 Let ξ is a tight contact structure on M = M(−1; r1, r2, r3) such that
q10 = q20 . If (q10 , q

2
0) = (1, 1) then q30 = 0 and if (q10, q

2
0) = (0, 0) then q30 = a3

0 − 1.
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Proof Recall that M \ (Z1 ∪ Z2 ∪ U3) has boundary slopes 0, −1, and ∞ . Applying
Lemma 2.8 to M \(Z1∪Z2∪U3) we get a basic slice B3 with the sign opposite to the sign
of N1

0 and N2
0 . Then U ′′

3 = B3∪U3 is a tubular neighbourhood of F3 so that −∂(M \U ′′
3 )

has slope 0. Since

A−1
3

(
1
0

)
=

(
−β′3
β3

)
,

U ′′
3 has boundary slope −β3

β′

3

. Now suppose that r3 6= 1
a3
0

. Then, by induction on k3 as

in [23, Lemma A4], we have

−
β3

β′3
= [a3

k3
, . . . , a3

1].

Since in the basis of −∂(M \ V3) the toric annulus B3 ∪N
3
0 has boundary slopes

[a3
k3
, . . . , a3

1 − 1] and [a3
k3
, . . . , a3

1],

which are joined by an edge in the Farey Tessellation, by [14, Theorem 4.25] B3 ∪N
3
0 is

a basic slice, and it is tight if and only if B3 and all the basic slices in the basic slice
decomposition of N3

0 have the same sign. This happens if and only if

(q10, q
2
0 , q

3
0) = (1, 1, 0) or (q10 , q

2
0, q

3
0) = (0, 0, a3

0 − 1).

Now suppose that r3 = 1
a3
0

. Since

A−1
3

(
1
0

)
=

(
a3

0 a3
0 − 1

1 1

)−1 (
1
0

)
=

(
1
1

)
,

∂U ′′
3 has slope 1. Therefore, in this case B3 ∪N

3
0 has boundary slopes −1 (as observed

after Lemma 2.2) and 1. Thus, we can argue as in the case r3 6= 1
a3
0

and draw the same

conclusion.

Proposition 2.12 Two tight contact structures on M(−1; r1, r2, r3) with matrices of
signs (

1 1 0
q11 q21 q31

)

and (
0 0 a3

0 − 1
q11 q21 q31 + 1

)

and with identical basic slice decomposition in all the further continued fraction blocks
are isotopic, whenever the symbols are defined. Here we use the convention ∞± 1 = ∞ .

Proof Suppose that q10 = q20 . Applying Lemma 2.8 to M \ (Z1 ∪ Z2 ∪ U3) we obtain a
basic slice B3 such that U ′′

3 = B3∪U3 is a tubular neighbourhood of F3 , and −∂(M \U ′′
3 )

has slope s(−∂(M \ U ′′
3 )) = 0. Now we divide the proof into two cases.

Case 1. Suppose first that r3 = 1
a3
0

. As in the proof of Proposition 2.11, we see that U ′′
3

has slope 1, and therefore it is the standard neighbourhood of a destabilization of F3 with
twisting number 1. Stabilize F3 again, and remove a standard neighbourhood U ′

3 of the
stabilized curve. We can choose the sign of the stabilization so that U ′′

3 \U ′
3 is a negative
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basic slice. Proceeding as in Case 1 of the proof of Proposition 2.9, we can change the
first row of the matrix of signs from

(
1 1 0

)
to

(
0 0 a3

0 − 1
)
.

Case 2. If r3 6= 1
a3
0

then B3 ∪ N
3
0 is a basic slice with boundary slopes [a3

k3
, . . . , a3

1 − 1]

and [a3
k3
, . . . , a3

1] , and B3 and all the basic slices in N3
0 have the same sign (cf. the

proof of Proposition 2.11). B3 ∪ N3
0 ∪ N3

1 has boundary slopes [a3
k3
, . . . , a3

2 − 1] and

−β3

β′

3

= [a3
k3
, . . . , a3

1] computed in the basis of −∂(M \V3). This implies that B3∪N
3
0 ∪N

3
1

is a continued fraction block. According to [14, Lemma 4.14] we can swap the signs of the
basic slice B3 ∪N

3
0 and the sign of a basic slice of N3

1 . This gives the stated isotopy.

Corollary 2.13 The number of isotopy classes of tight contact structures with q10 = q20
carried by M(−1; r1, r2, r3) is bounded above by

(a1
1 − 1)(a2

1 − 1)a3
1

3∏

i=1

∏

j≥2

(ai
j − 1)

if r3 6= 1
a3
0

, and by

2∏

i=1

∏

j≥1

(ai
j − 1)

if r3 = 1
a3
0

. In the above formulae ai
j = 2 by convention if j > ki .

Proof By Proposition 2.11 there are two possibilities for the first row of the matrix of
signs (q10 , q

2
0, q

3
0) defined by the number of positive basic slices in the outermost continued

fraction blocks N i
0 : either (q10 , q

2
0, q

3
0) = (1, 1, 0) or (q10, q

2
0 , q

3
0) = (0, 0, a3

0 − 1). By Propo-
sition 2.12 each potentially tight contact structure with (0, 0, a3

0 − 1) as first row of the
matrix of signs is isotopic to one with (1, 1, 0) unless q31 = 0. If r3 = 1

a3
0

we have q31 = ∞ ,

therefore in this case we get the bound

(a1
1 − 1)(a2

1 − 1)
2∏

i=1

∏

j≥2

(ai
j − 1) =

2∏

i=1

∏

j≥1

(ai
j − 1).

When r3 6= 1
a3
0

we can consider two cases:

(1) (q10 , q
2
0, q

3
0) = (1, 1, 0), or

(2) (q10 , q
2
0, q

3
0) = (0, 0, a3

0 − 1) and q31 = 0.

Case (1) gives the upper bound

(a1
1 − 1)(a2

1 − 1)(a3
1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1) (2.5)

and Case (2) gives

(a1
1 − 1)(a2

1 − 1)
3∏

i=1

∏

j≥2

(ai
j − 1). (2.6)

Adding up (2.5) and (2.6) gives the statement when r3 6= 1
a3
0

.
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3 Contact Ozsváth–Szabó invariants

Ozsváth–Szabó homology groups

In a remarkable series of papers [24, 25, 26, 30] Ozsváth and Szabó defined new invariants
of many low–dimensional objects — including contact structures on closed 3–manifolds.
Heegaard Floer theory associates to a closed, oriented spinc 3–manifold (Y, t) the abelian

groups ĤF (Y, t), HF∞(Y, t), HF−(Y, t) and HF+(Y, t), called the Ozsváth–Szabó ho-

mology groups. If (W, s) is an oriented spinc cobordism between two spinc 3–manifolds
(Y1, t1) and (Y2, t2) and HF •(Y, ti), i = 1, 2 is any of the groups above, there is a
homomorphism

F •
W,s : HF •(Y1, t1) → HF •(Y2, t2).

In this paper we shall be mainly concerned with the groups ĤF (Y, t), which are always

finitely generated. The symbol ĤF (Y ) will denote the direct sum

ĤF (Y ) := ⊕tĤF (Y, t)

over all spinc structures t on Y . Since there are only finitely many spinc structures with
nonvanishing ĤF –group, ĤF (Y ) is still finitely generated. A rational homology 3–sphere

Y is called an L–space if ĤF (Y, t) ∼= Z for all t ∈ Spinc(Y ).

Let Y be a closed, oriented 3–manifold and let K ⊂ Y be a framed knot with framing
f . Let Y (K) denote the 3–manifold given by surgery along K ⊂ Y with respect to the
framing f and Y ′(K) the 3-manifold we get by performing surgery along K with framing
f +µ , where µ denotes the meridian of K . The surgeries determine cobordisms X1 from
Y to Y (K), X2 from Y (K) to Y ′(K) and X3 from Y ′(K) back to Y . The following
result can be deduced (cf. the discussion at the beginning of [27, Section 3] and [19, page
934]) from [25, Theorem 9.16] and [26, Subsection 4.1].

Theorem 3.1 (Surgery exact triangle) The Ozsváth–Szabó homology groups of Y ,
Y (K) and Y ′(K) fit into an exact triangle

ĤF (Y ) ĤF (Y (K))

ĤF (Y ′(K))

FX1

FX2
FX3

where
FXi

=
∑

s∈Spinc(Xi)

±FXi,s, i = 1, 2, 3.

It was proved in [24, 27] that for each spinc structure t the Ozsváth–Szabó homology

group ĤF (Y, t) comes with a natural relative Z/div(t)Z–grading, where div(t) is the
divisibility of c1(t) in H2(Y ; Z). If t ∈ Spinc(Y ) is torsion, that is, c1(t) ∈ H2(Y ; Z)

is a torsion element, then div(t) = 0, and therefore ĤF (Y, t) has a natural relative Z–
grading. This relative Z–grading admits a natural lift to an absolute Q–grading. In
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conclusion, for a torsion spinc structure t the Ozsváth–Szabó homology group ĤF (Y, t)
splits as

ĤF (Y, t) = ⊕n∈ZĤF d0+n(Y, t),

where the degree d0 ∈ Q is determined mod 1 by t . Moreover, when t ∈ Spinc(Y ) has

torsion first Chern class, there is an isomorphism between the homology groups ĤF d(Y, t)

and ĤF−d(−Y, t).

Let (W, s) be a spinc cobordism between two spinc manifolds (Y1, t1) and (Y2, t2). If

the spinc structures ti are both torsion and x ∈ ĤF (Y1, t1) is a homogeneous element of

degree d(x), then FW,s(x) ∈ ĤF (Y2, t2) is also homogeneous of degree

d(x) +
1

4
(c21(s) − 3σ(W ) − 2χ(W )). (3.1)

We need one more piece of information. Recall that the set of spinc structures comes
equipped with a natural involution, usually denoted by t 7→ t . The spinc structure t ,
called the conjugate of t , is defined as follows: If one thinks of a spinc structure as a
suitable equivalence class of nowhere zero vector fields (cf. [24]) then the above involution
is the map induced by multiplying a representative vector field by (−1).

Theorem 3.2 ([25], Theorem 2.4) There is a natural isomorphism

JY : ĤF (Y, t) → ĤF (Y, t)

A spinc structure t ∈ Spinc(Y ) is induced by a spin structure exactly when c1(t) = 0, or
equivalently when t = t . According to [26, Theorem 3.6], given a spinc cobordism (W, s)
we have

JY ′ ◦ FW,s = FW,s ◦ JY , (3.2)

where s is the spinc structure on the 4–manifold W conjugate to s . This means that, if
one thinks of s ∈ Spinc(W ) as a suitable equivalence class of almost–complex structures
defined on W \ {finitely many points}, then s is represented by the negative −J of any
almost–complex structure J representing s .

Contact (±1)–surgery

Suppose that L ⊂ (Y, ξ) is a Legendrian knot in a contact 3–manifold. Let Y ±
L denote

the 3–manifold obtained by doing (±1)–surgery along L , where the surgery coefficient
is measured with respect to the contact framing of L . According to the classification
of tight contact structures on a solid torus [14], the contact structure ξ|Y −νL extends
uniquely (up to isotopy) to the surgered manifolds Y +

L and Y −
L as a tight structure on

the glued–up torus. Therefore, the knot L with a (+1) or (−1) on it uniquely specifies a
contact 3–manifold (Y +

L , ξ+L ) or (Y −
L , ξ

−
L ). (For more about contact surgery see [1, 2, 3].)

In particular, a Legendrian link L ⊂ (S3, ξst) in the standard contact 3–sphere (which
can be represented by its front projection) defines a contact structure once the surgery
coefficients (+1) and (−1) are specified on its components.
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Contact Ozsváth–Szabó invariants

In [30] Ozsváth and Szabó define an invariant

c(Y, ξ) ∈ ĤF (−Y, tξ)/{±1}

assigned to a positive, cooriented contact structure ξ on Y . In fact, ξ (as an oriented
2–plane field) determines an element (d(ξ), tξ) ∈ H and according to [30] the contact

invariant c(Y, ξ) is an element of ĤF−d(ξ)(−Y, tξ)/{±1}. Moreover, if c1(ξ) ∈ H2(Y ; Z)
is torsion then

d(ξ) =
1

4
(c21(X,J) − 3σ(X) − 2χ(X) + 2), (3.3)

where (X,J) is a compact almost–complex 4–manifold with ∂X = Y , and ξ is homotopic
to the distribution of complex tangencies on ∂X .

The main properties of the contact Ozsváth–Szabó invariant are summarized in the fol-
lowing two theorems.

Theorem 3.3 ([30]) If (Y, ξ) is overtwisted, then c(Y, ξ) = 0. If (Y, ξ) is Stein fillable
then c(Y, ξ) 6= 0. In particular, for the standard contact structure (S3, ξst) the invariant
c(S3, ξst) is nonzero.

Given a spinc cobordism (W, s) between spinc 3–manifolds (Y1, t1) and (Y2, t2), the

homomorphism FW,s clearly induces a map between the sets ĤF (Yi, ti)/{±1}, i = 1, 2.

Likewise, for any spinc 3–manifold (Y, t) the isomorphism JY : ĤF (Y, t) → ĤF (Y, t)
induces a map

ĤF (Y, t)/{±} → ĤF (Y, t)/{±}.

Abusing notation, throughout the paper we shall keep denoting such maps by FW,s and
JY .

Theorem 3.4 ([18, 30]) Suppose that (Y2, ξ2) is obtained from (Y1, ξ1) by a contact
(+1)–surgery, and let −W be the cobordism induced by the surgery with reversed orien-
tation. Then,

F−W (c(Y1, ξ1)) = c(Y2, ξ2).

In particular, if c(Y2, ξ2) 6= 0 then (Y1, ξ1) is tight.

Since by [1, Proposition 8] contact (+1)–surgery along a Legendrian knot L is cancelled
by a contact (−1)–surgery along a Legendrian push–off of L , Theorem 3.4 immediately
implies:

Corollary 3.5 If (Y2, ξ2) is obtained by Legendrian surgery along a Legendrian knot in
(Y1, ξ1) and c(Y1, ξ1) 6= 0, then c(Y2, ξ2) 6= 0. In particular, (Y2, ξ2) is tight.

An easy application of the surgery exact triangle together with Theorem 3.4 gives

Lemma 3.6 ([18], Lemma 2.5) The contact structure η1 on S1 × S2 given as (+1)–
surgery on a Legendrian unknot with Thurston–Bennequin number −1 in (S3, ξst) has
nonvanishing contact Ozsváth–Szabó invariant.
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4 Tight contact structures on M(−1; 1
2,

1
2,

1
p)

In this section we define three contact structures ξ1 , ξ2 and Ξ on the 3–manifold Mp =
M(−1; 1

2 ,
1
2 ,

1
p
) for each p ≥ 2, we prove that they are distinct up to homotopy, that

ξ1 and ξ2 are Stein fillable and that Ξ has nonzero Ozsváth–Szabó contact invariant.
Combined with the results of Section 2, this gives the complete classification of tight
contact structures on Mp for every p . In the last subsection we show that for p > 2 the
contact 3–manifold (Mp,Ξ) is not Stein fillable, and for p 6≡ 2 mod 8 is not symplectically
fillable.

Heegaard Floer groups of Mp

The oriented manifold −Mp is represented by the third surgery diagram of Figure 8.
The three dotted circles denoted by µa , µb and µc represent (up to sign) elements of
H1(−Mp; Z). It is easy to check that

H1(Mp; Z) =

{
〈µb | 4µb = 0〉 ∼= Z/4Z for p odd,

〈µb, µc | 2µb = 2µc = 0〉 ∼= Z/2Z ⊕ Z/2Z for p even,

In particular, Mp has four spinc structures for every p .

The sequence of Kirby calculus moves going from the third to the seventh diagram of
Figure 8 shows that −Mp is the boundary of P , the plumbing of spheres given by Figure 4.
This amounts to saying that −Mp is the link of the singularity Dp−2 .

︷ ︸︸ ︷p− 1 vertices

· · · · · ·

−2

−2

−2 −2 −2 −2 −2

Figure 4: The 4–dimensional plumbing P with boundary −Mp

Consider the four 2–cohomology classes Ki , i = 1, . . . , 4, on P whose values on the
standard homology generators are given by Figure 5 (each number in parentheses indicates
the value of Ki on the homology generator corresponding to the nearby vertex, and by
convention no number is present if such value is zero).

K3
· · · · · ·

(2) K4
· · · · · ·

K1

(2)
· · · · · ·

K2(2)
· · · · · ·

Figure 5: Initial vectors
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Definition 4.1 Define ti , for i = 1, . . . , 4, to be the spinc structure on −Mp which is
the restriction of the spinc structure on P specified by the characteristic element Ki .

An easy calculation shows that

t1 = t4 + µb, t2 = t4 + µa + µb = t4 + µc and t3 = t4 + µa,

where µa , µb and µc are the homology classes defined in Figure 8. This implies that
{t1, t2, t3, t4} is the whole set of spinc structures on −Mp . When p is even, Mp has 4
spin structures, therefore in this case each of the spinc structures ti is induced by a spin
structure. When p is odd, Mp carries 2 spin structures, which induce t3 and t4 . In
fact, observe that t4 is always induced by a spin structure because K4 = 0 and therefore
c1(t4) = 0. On the other hand, we always have µa = µb − µc , while when p is odd
µc = 3µb and therefore

c1(t3) = c1(t4) + 2µa = −4µb = 0.

Proposition 4.2 We have

ĤF (−Mp, t1) ∼= ĤF (−Mp, t2) ∼= Z(0), ĤF (−Mp, t3) ∼= Z(p−2

4
), ĤF (−Mp, t4) ∼= Z(p+2

4
).

Proof Since −Mp is the boundary of the plumbing P , we can apply the algorithm
of [29] to determine its Ozsváth–Szabó homology groups. It is easy to check that the four
cohomology classes Ki , i = 1, . . . , 4, of Figure 5 provide initial characteristic vectors in
the sense of [29]. An easy computation shows that

K2
1 = K2

2 = −p− 2, K2
3 = −4 and K2

4 = 0.

The 3–manifold −Mp has elliptic geometry and therefore it is an L–space by [31, Propo-
sition 2.3]. Since by [29]

d(−Mp, ti) =
K2

i + p+ 2

4
, i = 1, . . . , 4,

this immediately implies the statement.

Contact structures on Mp

Definition 4.3 Let ξ1 and ξ2 be the contact structures defined respectively by the
contact surgery diagrams of Figure 6(a) and 6(b).

Definition 4.4 Let Ξ be the contact structure defined by the contact surgery diagram
of Figure 7.

Lemma 4.5 We have

{tξ1 , tξ2} = {t1, t2} and tΞ = t3.
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....

....

+1

+1

+1

+1

−1

−1

−1

−1

−1

−1

L L

(a) (b)

p− 1

left cusps left cusps
p− 2

Figure 6: The contact structures ξ1 and ξ2 on Mp

....

+1

+1

−1

−1

−1

Lp− 1

left cusps

Figure 7: The contact structure Ξ on Mp

Proof The contact surgery presentation of each contact structure ξ ∈ {ξ1, ξ2,Ξ} can be
interpreted as a simply connected 4–manifold with boundary, endowed with a characteristic
2–cohomology class Kξ . The class Kξ is uniquely determined by requiring that it evaluates
on a 2–homology generator corresponding to a given Legendrian knot L in the surgery
presentation as the rotation number of L (once an orientation for L is chosen). Moreover,
by [3] the spinc structure determined by Kξ restricts to the spinc structure associated to
ξ on the boundary.

On the other hand, the given surgery presentation can be viewed smoothly as the first
diagram of Figure 8. By carrying along the class Kξ during the Kirby moves of Figure 8
(and observing that blowups and blowdowns do not change the spinc structure on the
boundary) one can check that the spinc structures tξ1 , tξ2 and tΞ are the restrictions
to the boundary of the spinc structures on the 4–dimensional plumbing determined by,
respectively, the characteristic classes C1 , C2 and C3 given in Figure 9. Since when p is
even 2µb = 0, while when p is odd µc = 3µb , we have

tξ1 = t1 − 2µb =

{
t1 for p even,

t1 − µc + µb = t2 for p odd

21



0

0

0

0

−3

−3

−p− 1

−1

1
1

1

1

1

1
1

−1
−1

−1

−1

−2
−2

−2

−2

−2−2−2

−2

−2
−2

−2

−2−2

−2

−2

−2

−2

−2−2

2
2

2 2

22

p− 1

p

−p

orientation reversal

µa

µa

µb

µb

µc

µc

Figure 8: Kirby diagrams for ±Mp
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C3
· · · · · ·

(−2)

(2)

C1

(2)

(−4)
· · · · · ·

C2(−4)

(2)

(2)
· · · · · ·

Figure 9: The characteristic classes determining tξ1
, tξ2

and tΞ

Since µa = µc − µb = µb − µc , we have

tξ2 = tξ1 + µa = tξ1 + µb − µc =

{
t1 + µb − µc = t2 for p even,

t1 for p odd

and
tΞ = t1 − µb = t1 + µa − µc = t3.

We have shown that for p ≥ 2 the contact structures ξ1 , ξ2 and Ξ are distinct up to
homotopy. Next, we are going to prove that they are tight for every p ≥ 2.

Definition 4.6 Let η be the contact structure defined by the diagram obtained from
any of the diagrams of Figure 6 by omitting the Legendrian knot L .

A simple Kirby calculus computation shows that η is a contact structure on S1 × S2 .

Proposition 4.7 The contact Ozsváth–Szabó invariant of η is nonzero.

Proof Consider the contact structure ζ given by the surgery diagram obtained from
Figure 6(a) by erasing both L and one of the (+1)–framed Legendrian unknots. According
to Corollary 3.5 and Lemma 3.6, the contact Ozsváth–Szabó invariant of the resulting
structure ζ is nontrivial. It is easy to see that the 3–manifold underlying ζ is the lens
space L(4, 1). Let X denote the cobordism from L(4, 1) to S1×S2 obtained by the handle
attachment defined by the remaining contact (+1)–surgery. According to Theorem 3.4
we have

F−X(c(L(4, 1), ζ)) = c(S1 × S2, η),

where F−X =
∑

s∈Spinc(X) ±F−X,s . The cobordism −X induces an exact triangle

ĤF (−L(4, 1)) ĤF (S1 × S2)

ĤF (RP3#RP3)

F−X

FU

The Ozsváth–Szabó homology groups in this triangle are well–known (see [27]):
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• ĤF (−L(4, 1)) ∼= Z2
(0) ⊕ Z( 3

4
) ⊕ Z(− 1

4
)

• ĤF (S1 × S2) ∼= Z( 1

2
) ⊕ Z(− 1

2
)

• ĤF (RP3#RP3) ∼= Z2
(0) ⊕ Z( 1

2
) ⊕ Z(− 1

2
)

A simple computation shows that the cobordisms −X and U have zero signature. More-
over, since the 4–manifolds X and U are obtained by attaching a 2–handle to S1 × S2 ,
the restriction maps H2(X; Z) → H2(∂X; Z) and H2(U ; Z) → H2(∂U ; Z) are injective.

Since the group ĤF (S1 × S2) is concentrated at the torsion spinc structure, this implies
that each possibly nontrivial component of the maps F−X and FU is induced by a torsion
spinc structure. Therefore, by the degree–shift formula (3.1), both F−X and FU shift
degrees by −1

2 .

Exactness of the triangle immediately shows that the kernel of F−X is 3–dimensional and,
since F−X shifts degree by −1

2 , we see that

Z( 3

4
) ⊕ Z(− 1

4
) ⊆ kerF−X and F−X(Z2

(0)) = Z(− 1

2
).

Since the J –map preserves degree and fixes spin structures, the summands Z( 3

4
) and Z(− 1

4
)

inside ĤF (−L(4, 1)) correspond to the two spin structures on −L(4, 1). Therefore, since
c(ζ) 6= 0,

〈c(ζ),J−L(4,1)c(ζ)〉 = Z2
(0) ⊆ ĤF (−L(4, 1)).

The group ĤF (S1 × S2) is pointwise fixed (up to sign) by the J –action because it is
concentrated at the only spinc structure induced by a spin structure, and has rank at
most one in each degree. Hence,

F−X(J−L(4,1)c(ζ)) = JS1×S2F−X(c(ζ)) = F−X(c(ζ)).

Since F−X(Z2
(0)) 6= {0}, this implies c(η) = F−X(c(ζ)) 6= 0.

Corollary 4.8 The contact structures ξ1 and ξ2 are Stein fillable, hence tight.

Proof The contact structure η has nonzero contact Ozsváth–Szabó invariant, and there-
fore it is tight. It is well–known that S1 × S2 carries a unique tight contact structure up
to isotopy, and this contact structure is Stein fillable. Therefore, η is Stein fillable. Since
contact (−1)–surgery preserves Stein fillability, the statement follows.

Theorem 4.9 The Ozsváth–Szabó invariant of the contact structure Ξ is nonzero.

Proof Denote by (Y, β) the contact 3–manifold whose contact surgery presentation is
obtained from Figure 7 by erasing one of the unknots with contact surgery coefficient
equal to +1. Let −X be the cobordism from Y to Mp determined by the missing contact
(+1)–surgery, with orientation reversed. Denote by c+(β) the image of c(β) under the
map induced by the natural homomorphism [24, 25]

ĤF (−Y, tβ) → HF+(−Y, tβ),
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and define c+(Ξ) in the analogous way. Clearly, it is enough to show that c+(Ξ) 6= 0.
By [7, Lemma 2.11], there is a spinc structure s on −X such that F+

−X,s(c
+(β)) = c+(Ξ)

and

−d3(β) + δ(s) = −d3(Ξ),

where

δ(s) :=
1

4
(c21(s) − 3σ(−X) − 2χ(−X)).

The 3–manifold −Y is given by the surgery presentation obtained from the third diagram
of Figure 8 by changing the framing of the (1)–framed unknot to 0. Then, Kirby moves
similar to those of Figure 8 show that −Y is the boundary of a plumbing whose graph is
obtained from the graph of Figure 4 by changing the framing of the central vertex to −3.
By [28, Theorem 7.1] it follows that −Y is an L–space. By Lemma 3.6 and Corollary 3.5
we have c(β) 6= 0, therefore −d3(β) = d(−Y, tβ). This immediately implies c+(β) 6= 0.
Moreover, using [3, Corollary 3.6] (where b2(X) should be plugged into the formula instead
of the Euler characteristic χ(X) because the 3–dimensional invariant used in Heegaard
Floer theory is shifted by 1

2 ) a simple calculation gives

d3(Ξ) =
2 − p

4
.

Therefore, by Proposition 4.2 and Lemma 4.5 we have −d3(Ξ) = d(−Mp, tΞ).

Another simple calculation shows that b−2 (−X) = 1. Since tβ and tΞ are torsion and
HF∞(−Y, tη) ∼= Z[U,U−1] , by [27, Proposition 9.4] the induced map

F∞
−X,s : HF∞(−Y, tβ) → HF∞(−Mp, tΞ)

is an isomorphism. Since the group HF−
d (−Y, tβ) vanishes if the absolute degree d is

sufficiently large, the commutative diagram (see [27, Section 2])

· · · HF−(−Y, tβ) HF∞(−Y, tβ) HF+(−Y, tβ) · · ·

· · · HF−(−Mp, tΞ) HF∞(−Mp, tΞ) HF+(−Mp, tΞ) · · ·

F−
−X,s

F∞
−X,s F+

−X,s

implies that the map

F+
−X,s : HF+

d (−Y, tβ) → HF+
d+δ(s)(−Mp, tΞ)

is also an isomorphism when d is large enough. Since F+
−X,s is a homomorphism of Z[U ]–

modules [26], this immediately implies that F+
−X,s restricted to HF+

−d3(β)(−Y, tβ) is an

isomorphism if and only if −d3(Ξ) = d(−Mp, tΞ), and the conclusion follows.

Remark 4.10 (1) The proof of Corollary 4.8 applies to show that the result of any
Legendrian surgery on (S1×S2, η) is Stein fillable. In particular, for any choice of zig–zag
distribution for the Legendrian knot L of Figure 6, the resulting contact structures ξi
(i = 1, 2, . . . , p) are Stein fillable. In addition, by reversing the stabilizations on the other
two contact (−1)–framed knots of Figure 6, another collection of tight contact surgery
diagrams — denoted by ξ′i (i = 1, 2, . . . , p) — can be given. Although these diagrams give

25



isotopic structures to ξ1 or ξ2 on Mp , they will play an important role in the classification
results discussed in the next section.

(2) Let Ξ′ be the contact structure on Mp with surgery presentation obtained from Fig-
ure 7 by applying a 180◦ rotation around an axis perpendicular to the plane of the picture.
Then, tΞ′ = tΞ and d3(Ξ

′) = d3(Ξ). Since the auxiliary 3–manifold Y used in the proof of
Theorem 4.9 is the same for Ξ′ , the same proof also shows that Ξ′ has nonzero Ozsváth–
Szabó invariant.

(3) For a more general form of Theorem 4.9 see [21].

The results above lead to

Corollary 4.11 For every p ≥ 2, the 3–manifold Mp = M(−1; 1
2 ,

1
2 ,

1
p
) admits exactly

three tight contact structures (up to isotopy).

Proof Corollaries 2.10 and 2.13 imply that Mp admits at most three tight contact struc-
tures, while to combination of Lemma 4.5, Corollary 4.8 and Theorem 4.9 verifies that Mp

admits at least three distinct tight contact structures, concluding the proof. Notice that
this argument shows, for example, that Ξ and Ξ′ are isotopic on Mp .

Nonfillability of (Mp,Ξ)

In this subsection we give simple proofs of the facts that the tight contact 3–manifold
(Mp,Ξ) is not Stein fillable for p > 2, and not symplectically fillable for p 6≡ 2 mod 8,
justifying our use of contact Ozsváth–Szabó invariants in the proof of their tightness. First
we need the following general observation:

Lemma 4.12 Let (Y, ξ) be a contact 3–manifold such that b1(Y ) = 0, and suppose
that for every symplectic filling (X,ω) of (Y, ξ) we have b+2 (X) = 0. Then, for every
symplectic filling (X,ω) of (Y, ξ) we also have b1(X) = 0.

Proof Let n be the order of the finite group H1(Y ; Z). By contradiction, suppose that
(X,ω) is a symplectic filling of (Y, ξ) with b1(X) > 0. Then X admits a connected
(n + 1)–fold cover X̃ which is necessarily trivial over ∂X = Y . By [4, 5] we can cap off
n of the boundary components of X̃ with symplectic caps having b+2 > 0, obtaining a
symplectic filling of (Y, ξ) with b+2 > 0, which is against our assumptions.

Theorem 4.13 The tight contact 3–manifold (Mp,Ξ) is not Stein fillable for every p > 2,
and is not symplectically fillable for p 6≡ 2 mod 8.

Proof By [16, Theorem 2.2] if (X,ω) is any symplectic filling of (Mp,Ξ), then the
intersection form QX is a standard diagonal negative definite form. Therefore, Lemma 4.12
implies b1(X) = 0.

Now let (X,J) be a Stein filling of (Mp,Ξ) with complex structure J inducing the contact
structure Ξ. Then, the complex structure −J gives another Stein structure on X inducing
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a contact structure Ξ on Mp . Since the associated spinc structure satisfies s−J = sJ , we
have

tΞ = tΞ = t3 = t3

because, as we observed previously, t3 is induced by a spin structure. Therefore, by
Corollary 4.11 Ξ is isotopic to Ξ. But then, by [17, Theorem 1.2] we have sJ = sJ , which
implies c1(J) = 0. Since QX is standard diagonal and b1(X) = 0, this implies σ(X) = 0
and χ(X) = 1. In view of Formula (3.3) we have d3(Ξ) = 0, and by Proposition 4.2 this
is possible only if p = 2.

When (X,ω) is a general symplectic filling of (Mp,Ξ) we are unable to conclude that
c1(X,ω) = 0, but we still know that QX is negative definite, diagonal and b1(X) = 0,
therefore Formula (3.3) and Proposition 4.2 give

2 − p

4
=

1

4
(−

b2(X)∑

i=1

(2ni + 1)2 + b2(X))

for some ni ≥ 0. Since (2ni +1)2 −1 = 4ni(ni +1) is divisible by 8, the equation provides
the desired contradiction once (p− 2) is not divisible by 8.

It is natural to expect that (Mp,Ξ) is not symplectically fillable for every p > 2. On
the other hand, from the obvious Z/3Z–symmetry of the surgery diagram of M2 =
M(−1; 1

2 ,
1
2 ,

1
2) it is not hard to see that for p = 2 the structures ξ1, ξ2 and Ξ are contac-

tomorphic (although not isotopic), hence for p = 2 the structure Ξ is Stein fillable.

5 Lower bounds and the proof of Theorem 1.1

Now we are ready to prove the general lower bounds for the number of tight contact struc-
tures on the manifolds under consideration. We will proceed by first constructing a set of
contact structures which are — due to our previous computations — all tight, and then
determining how many distinct structures are in that set. Consider the surgery presenta-
tions of the contact structures ξi , ξ

′
i (i = 1, 2, . . . , p), Ξ and Ξ′ on Mp (cf. Figure 6, Fig-

ure 7 and Remarks 4.10(1) and (2)). According to the continued fraction expansions of the
surgery coefficients − 1

ri
, attach chains of Legendrian unknots Ki

j (i = 1, 2, 3; j = 1, . . . , ki)

stabilized (ai
j − 2)–times to the contact (−1)–framed knots of Figures 6 and 7. Notice

that there are many choices for the required stabilizations, hence this procedure gives rise
to a number of contact structures.

Define A(ξ) as the set of contact structures on M(−1; r1, r2, r3) obtained by Legendrian
surgery on the knots Ki

j on either diagram of Figure 6 or its modifications ξi, ξ
′
i (i =

1, 2, . . . , p) described in Remark 4.10(1). In a similar manner, A(Ξ) denotes the set of
contact structures obtained either from the diagram of Figure 7 giving Ξ or its symmetric
giving Ξ′ .

Lemma 5.1 The set A(ξ) ∪ A(Ξ) consists of tight contact structures having nonzero
Ozsváth–Szabó invariant.
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Proof Any element of A(ξ) ∪ A(Ξ) is constructed by Legendrian surgery on a contact
structure with nonzero contact Ozsváth–Szabó invariant, therefore the statement follows
immediately from Corollary 3.5.

Proposition 5.2 If ζ1 ∈ A(ξ) and ζ2 ∈ A(Ξ) then c(M, ζ1) 6= c(M, ζ2) . In particular,
ζ1 is not isotopic to ζ2 .

Proof Denote by (Yp, γi), i = 1, 2 the contact 3–manifolds obtained by contact (+1)–
surgeries in (M, ζi) along a push–off of Ki

1 for every i . The 3–manifold Yp is a connected
sum Mp#L , where L is the connected sum of at most three lens spaces. Correspondingly,
the contact structure γi can be written as

γi = γ
Mp

i #γL
i ,

where γ
Mp

1 is equal to ξi or ξ′i (i = 1, 2, . . . , p) and γ
Mp

2 to Ξ or Ξ′ . By Corollary 4.8

and Theorem 4.9 c(Mp, γ
Mp

1 ) and c(Mp, γ
Mp

2 ) are both nonzero. Since by Lemma 4.5

c(Mp, γ
Mp

1 ) and c(Mp, γ
Mp

2 ) live in groups corresponding to different spinc structures, we
have c(γM

1 ) 6= c(γM
2 ). Thus, the map corresponding to the cobordism induced by the

prescribed contact (+1)–surgeries sends c(M, ζ1) and c(M, ζ2) to distinct elements, and
the statement follows.

As a consequence of Proposition 5.2, in order to get a lower bound for the number of
nonisotopic contact structures on M , we can examine the sets A(ξ) and A(Ξ) separately.

Lower bound on |A(ξ)|

Suppose first that k1 = k2 = 1 and k3 = 0, that is, there are two circles on the first and
second legs and there is a single one on the third. Let the corresponding 3–manifold be
denoted by Mp,k,l . A surgery presentation for this 3–manifold is given by Figure 10(a).
Notice that if r1 > r2 = 1

2 then k2 = 0. Therefore, to cover this case we shall also consider
the 3–manifold Mp,k defined as in Figure 10(a) but omitting the (−l)–framed knot. (The
case r1 = r2 = 1

2 leads to the manifold Mp— we have already dealt with this manifold in
Section 4.)

−l + 1

−p+ 2

−k
−k

2

(a) (b)

−l

−2
−2

−p

−1

Figure 10: Surgery diagrams for (a) Mp,k,l and (b) Xp,k,l

Proposition 5.3 On the 3–manifold Mp,k,l there are at least

(2(k − 1)(l − 1) + p− 1)(k + l − 2)
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isotopy classes of tight contact structures belonging to A(ξ) , while on Mp,k there are at
least

2(k − 1) + p− 1

such isotopy classes.

Proof Let us start with the case of Mp,k,l , i.e. when r2 >
1
2 . We will apply [17, Theo-

rem 1.2], which implies that if two Stein structures on a 4–manifold X have distinct first
Chern classes, then the induced contact structures on ∂X are nonisotopic. As proved
by Plamenevskaya [33], tight contact structures distinguished in this way have different
contact Ozsváth–Szabó invariants. Notice, however, that the contact surgery diagrams
giving the elements of A(ξ) do not provide Stein fillings. A simple surgery operation,
however, can turn the 4–manifold Wp,k,l given by each surgery diagram into a Stein do-
main. Namely, let us consider the codimension–0 submanifold Z ⊂ Wp,k,l defined by the
union of the two (+1)–framed Legendrian unknots together with the two once stabilized
(−1)–knots. By Proposition 4.7, the corresponding contact structure η is the unique tight
(and hence Stein fillable) contact structure on S1 × S2 .

Replacing Z with a 4–dimensional 1–handle H we obtain a 4–manifold

Xp,k,l = (Wp,k,l \ Z) ∪H

with a decomposition involving a 1–handle and three 2–handles. Then, Xp,k,l can be
thought of as obtained by attaching three Stein 2–handles to a Stein 1–handle, and there-
fore carries a Stein structure. The Legendrian attaching circles are L from Figure 6 plus
two Legendrian meridional unknots M1 and M2 linking the once stabilized unknots in the
same picture. Smoothly, a handlebody decomposition for Xp,k,l is given by Figure 10(b),
where the (2 − p)–framed knot corresponds to L , and M1 , M2 correspond, respectively,
to the (−k)– and the (1 − l)–framed knots. Suppose now that (for some choice of the
orientations) the rotation numbers of the once stabilized Legendrian unknots in Figure 6
are A and −A with A ∈ {±1}, while the rotation numbers of M1 , M2 and L are given,
respectively, by x , y and z . These rotation numbers satisfy the constraints

x ∈ {−k + 2i1, i1 = 1, . . . , k − 1},

y ∈ {−l + 2i2, i2 = 1, . . . , l − 1},

z ∈ {−p− 1 + 2i3, i3 = 1, . . . , p}.

(5.1)

(Note the special behaviour of z , which is the rotation number of L , linking the (+1)–
surgery curves in Figure 6.) Denote by a , b and c the homology classes in H2(Wp,k,l; Z)
defined by M1 , M2 and L respectively, and observe that there are homology classes
α, β ∈ H2(Wp,k,l \Z; Z) which map to c−a−b and a−b , respectively, and such that their
images α and β under the map induced by the inclusion (Wp,k,l \ Z) ⊂ Xp,k,l generate
the group H2(Xp,k,l; Z) ∼= Z2 . It is not hard to see that Xp,k,l is simply connected, and
the values of the first Chern class of its Stein structure on α and β are, respectively,
z − x− y + 2 and x− y −A+ 2. Therefore, to apply [17, Theorem 1.2] we need to count
the number of elements of the set S(p, k, l) ⊂ Z2 of pairs (x− y−A, z − x− y) such that
A ∈ {±1} and x, y, z satisfy the constraints of (5.1).

In order to do this, we first consider the set T (k, l) consisting of pairs (x − y,−x − y),
where x and y satisfy the constraints given by (5.1). Setting e1 =

(1
0

)
and e2 =

(0
1

)
, we
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have
S(p, k, l) = ±e1 +

⋃

z

(T (k, l) + ze2) ,

where z satifies (5.1). Let ϕ : Z2 → Z2 be the injective map given by ϕ(x, y) = (x −
y,−x − y). Clearly T (k, l) = ϕ(Q(k, l)), where Q(k, l) ⊂ Z2 is the set of pairs (x, y)
which satisfy the constraints given by (5.1). Clearly, Q(k, l) has the shape of a rectangle
and contains (k − 1)(l − 1) elements. Since

ϕ(1
2 ,−

1
2 ) = e1, ϕ(−1

2 ,−
1
2) = e2,

the set S(p, k, l) has the same number of elements as the set

T (p, k, l) := ±

(
1/2

−1/2

)
+

⋃

z

(
Q(k, l) + z

(
−1/2
−1/2

))
⊂ Z2.

To count the number of elements in this set, observe that the (k − 1)(l − 1) elements of
Q(k, l) form a rectangle in the plane, and they are at two integral units of distance from
each other. In Figure 11 the points of the set Q(5, 4) are represented by a’s. The set

a

a

a

a

a

a

a

a

aaaa

b

b

bbbb

b

b

bbbb

bbbb

b b b b

bbbb

c

c

c

c

c

cccc

Figure 11: Counting the number of elements of T (p, k, l)

R(p, k, l) :=
⋃

z

(
Q(k, l) + z

(
−1/2
−1/2

))

is obtained as the union of p shifts of Q(k, l) by integral units in the North–East direction.
If we assume p = 4, for instance, we see in Figure 11 how the results of these shifts create
the elements denoted by b’s in the picture. It is easy to compute that the number of
elements increases by (k − 1)(l − 1) + (k + l− 2)(p− 2). Finally, T (p, k, l) is obtained as
the union of 2 shifts of R(p, k, l), one integral unit apart from each other in the South–
East direction. In Figure 11 the resulting new elements have been denoted by c’s. It is
easy to see that the number of such elements is (k− 1) + (l− 1) + (p− 2). Therefore, the
cardinality of T (p, k, l) is obtained by adding the number of a’s, b’s and c’s:

(k − 1)(l − 1) + (k − 1)(l − 1) + (k + l − 3)(p − 2) + (k − 1) + (l − 1) + (p− 2) =

2(k − 1)(l − 1) + (p− 1)(k + l − 2).

When r1 > r2 = 1
2 , i.e. in the case of Mp,k , there is no meridian M2 , no variable y nor

homology class b , and one can work with 4–manifolds Wp,k and Xp,k by analogy to what
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we did before. There is a class α ∈ H2(Wp,k \Z; Z) which is sent to c− 2a ∈ H2(Wp,k; Z)
by the map induced by inclusion, and whose image α ∈ H2(Xp,k; Z) ∼= Z is a generator.
Xp,k is still simply connected, and the possible values of the first Chern classes of Xp,k on
α are of the form z + A − 2x while z , A and x range as in (5.1). An easy count yields
the stated formula.

Corollary 5.4 The number of isotopy classes of tight contact structures on the 3–
manifold M(−1; r1, r2, r3) belonging to A(ξ) are at least

(
2(a1

1 − 1)(a2
1 − 1) + (a3

0 − 1)(a1
1 + a2

1 − 2)
)
(a3

1 − 1)

3∏

i=1

∏

j≥2

(ai
j − 1)

if r2 >
1
2 , (

2(a1
1 − 1) + (a3

0 − 1)
)
(a3

1 − 1)
∏

i6=2

∏

j≥2

(ai
j − 1)

if r1 > r2 = 1
2 , and

2
∏

j≥1

(a3
j − 1)

if r1 = r2 = 1
2 . In the above formulae ai

j = 2 by convention if j > ki .

Proof Let ζ be an element of the set A(ξ). Perform contact (+1)–surgeries along the
Legendrian push–offs of K1

1 (if it exists), K2
1 (if it exists) and K3

0 . By Proposition 4.7,
the resulting contact 3–manifold is the tight contact S1 ×S2 connected sum with at most
three tight contact lens spaces. But for such contact lens spaces it is known that the zig–
zag distribution is determined by the contact invariant. Therefore, applying Theorem 3.4
we see that different zig–zag distributions in the diagram for ζ after the second circle on
the first two legs and after the first circle on the third leg yield nonisotopic structures. If
r2 >

1
2 or r1 > r2 = 1

2 the statement follows by Proposition 5.3 and a simple computation.
If r1 = r2 = 1

2 , by Lemma 4.5 and Corollary 4.8, the set A(ξ) contains at least 2 elements
in the case of the 3–manifold Mp . Thus, the stated formula follows immediately.

Lower bound on |A(Ξ)| and the proof of Theorem 1.1

If k1 = k2 = k3 = 1, the same idea used to study the set A(ξ) suggests the existence of
an appropriate function g(p, k, l,m) such that there are at least

g(a3
0, a

1
1, a

2
1, a

3
1) · Π

3
i=1Πj≥2(a

i
j − 1)

different elements in A(Ξ): just perform contact (+1)–surgeries along the push–offs of the
Legendrian curves Ki

1 (i = 1, 2, 3). (It turns out that it is not useful to do surgery along
the push–off of the first circle of the third leg, because in the present case the resulting
contact structure on S1 × S2 would be overtwisted.) So our aim will be to find a lower
bound for the number of distinct structures in A(Ξ) on the 3–manifolds Mp,k,l,m defined
by Figure 12. To cover the cases when ki = 0 for some i ∈ {1, 2, 3}, we shall consider
also analogously defined manifolds Mp,k,m , Mp,k,l and Mp,k . Let K1, . . . ,K5 be the
components of the contact surgery diagram in Figure 7 defining Mp with one of the two

31



−2
−2

−k
−l

−p

−1

−m

Figure 12: Kirby diagram for the 3–manifold Mp,k,l,m

tight contact structures Ξ or Ξ′ . Let K6,K7,K8 be the three extra knots linked once to
K3,K4,K5 respectively as shown in Figure 13, which gives a contact surgery presentation
of (Mp,k,l,m, ζ) with ζ ∈ A(Ξ). Since the contact surgery coefficient of K6 , K7 and

....

....

....

....

....

....

....

K1

K2

K3

K4

K5

K6

K7

K8

p− 1

left cusps

Figure 13: Contact surgery diagram for ζ on Mp,k,l,m

K8 is −1, they determine a Stein cobordism Wp,k,l,m between (Mp,Ξ) or (Mp,Ξ
′) and

(Mp,k,l,m, ζ). Denote by t the spinc structure induced on Wp,k,l,m by the Stein structure.
The contact surgery diagram of Figure 13 determines also a 4–manifold Xp,k,l,m bounded
by Mp,k,l,m and a spinc structure s on Xp,k,l,m . Let Xp be the 4–manifold bounding
Mp obtained by surgery on the link in Figure 7. Since this link is a sublink of the link
in Figure 13, Xp is a submanifold of Xp,k,l,m and Wp,k,l,m = Xp,k,l,m \ Xp is the above
mentioned cobordism between Mp and Mp,k,l,m . Moreover,

s|Wp,k,l,m
= t.

The above discussion remains essentially unchanged if the knot K7 , the knot K8 or both
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the knots K7 and K8 are omitted from Figure 13. In fact, it suffices to replace the triple

(Mp,k,l,m,Wp,k,l,m,Xp,k,l,m)

by, respectively, the triples

(Mp,k,m,Wp,k,m,Xp,k,m), (Mp,k,l,Wp,k,l,Xp,k,l) and (Mp,k,Wp,k,Xp,k).

Lemma 5.5 Consider two contact surgery diagrams as in Figure 13, where in both dia-
grams K7 , K8 or both might be missing. Denote by ζ1 and ζ2 the tight contact structures
induced on Mp,k,l,m , Mp,k,m , Mp,k,l or Mp,k , and by t1 and t2 the corresponding spinc

structures induced respectively on Wp,k,l,m , Wp,k,m , Wp,k,l or Wp,k . If ζ1 is isotopic to
ζ2 then t1 is isomorphic to t2 .

Proof Consider the case of Mp,k,l,m . If ζ1 is isotopic to ζ2 then c(ζ1) = c(ζ2). By
[7, Lemma 2.11] FW p,k,l,m,s(c(ζi)) = c(Ξ) 6= 0 if s = ti and FWp,k,l,m,s(c(ζi)) = 0 for any

other spinc structure s on Wp,k,l,m , where W p,k,l,m denotes the cobordism Wp,k,l,m viewed
upside down. The same argument applies to Wp,k,m , Wp,k,l and Wp,k . This immediately
implies the statement.

Lemma 5.6 Let ζ1 , ζ2 ∈ A(Ξ) be two contact structures on Mp,k,l,m , Mp,k,m , Mp,k,l or
Mp,k given by contact surgery diagrams as in Figure 13, and let t1 and t2 be the spinc

structures on the cobordism Wp,k,l,m , Wp,k,m , Wp,k,l or Wp,k induced by the contact
surgery diagrams. Denote by xi , yi , zi , i = 1, 2, respectively, the rotation numbers (for
some choice of orientations) of the Legendrian knots K6 , K7 and K8 for ζ1 and ζ2 . Then,
t1 is isomorphic to t2 if and only if one of the following conditions hold:

(1) ζ1 and ζ2 are both built by Legendrian surgery on Ξ or both on Ξ′ , and

(x1, y1, z1) = (x2, y2, z2) for Mp,k,l,m,

(x1, z1) = (x2, z2) for Mp,k,m,

(x1, y1) = (x2, y2) for Mp,k,l,

x1 = x2 for Mp,k

(2) ζ1 is built by Legendrian surgery on Ξ and ζ2 is built by Legendrian surgery on Ξ′ ,
and

(x1, y1, z1) = (x2, y2, z2 − 2) for Mp,k,l,m,

(x1, z1) = (x2, z2 − 2) for Mp,k,m,

(x1, y1) = (x2, y2) for Mp,k,l,

x1 = x2 for Mp,k

Proof We consider first the case of Mp,k,l,m . Associated to any knot Ki in the con-
tact surgery diagram in Figure 13 there is a surface Σi ⊂ Xp,k,l,m obtained by capping
off a Seifert surface of Ki with the core of the 2–handle attached along Ki . The ho-
mology classes represented by the surfaces Σi freely generate H2(Xp,k,l,m; Z). Denote by
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[Σ1]
∗, . . . , [Σ8]

∗ the dual basis of H2(Xp,k,l,m; Z). The meridional discs Ni of Ki rep-
resent relative homology classes which freely generate H2(Xp,k,l,m,Mp,k,l,m; Z). Denote
by [N1]

∗, . . . , [N8]
∗ the dual basis of H2(Xp,k,l,m,Mp,k,l,m; Z). The cohomology exact se-

quence for the pair (Xp,k,l,m,Wp,k,l,m) together with the excision isomorphism

H2(Xp,k,l,m,Wp,k,l,m; Z) ∼= H2(Xp,Mp; Z)

gives the short exact sequence

0 −→ H2(Xp,Mp; Z)
ϕ∗

−→ H2(Xp,k,l,m; Z) −→ H2(Wp,k,l,m; Z) −→ 0

where the map ϕ∗ is defined for i = 1, . . . , 5 as

ϕ∗([Ni]
∗) =

8∑

j=0

lk(Ki,Kj)[Σj ]
∗

where lk(Ki,Kj) denotes the linking number between Ki and Kj if i 6= j , and the
smooth surgery coefficient of Ki if i = j . In terms of the dual bases chosen above, the
map ϕ∗ is given by the matrix

Φ∗ =




0 −1 −1 −1 −1
−1 0 −1 −1 −1
−1 −1 −3 −1 −1
−1 −1 −1 −3 −1
−1 −1 −1 −1 −p− 1
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1




Let s be a spinc structure on Xp,k,l,m defined by contact surgery on the Legendrian link
K1 ∪ . . . ∪ K8 describing ζ . By [12, Proposition 2.3] and [3, Proposition 3.4] the first
Chern class of s is given by the formula

c1(s) =
8∑

i=0

rot(Ki)[Σi]
∗,

where rot(Ki) denotes the rotation number of the Legendrian knot Ki . Since K1 and
K2 are Legendrian unknots with Thurston–Bennequin invariant tb(K1) = tb(K2) = −1,
their rotation numbers are rot(K1) = rot(K2) = 0. If K1 ∪ . . .∪K5 is a contact surgery
diagram for Ξ, then (for a suitable choice of orientations) rot(K3) = rot(K4) = +1 and
rot(K6) = −(p− 1). If it is a contact surgery diagram for Ξ′ then rot(K3) = rot(K4) =
−1, and rot(K6) = (p− 1).

Consider two contact surgery diagrams describing tight contact structures ζ1 , ζ2 ∈ A(Ξ)
on Mp,k,l,m and inducing spinc structures s1 and s2 on Xp,k,l,m . Since Xp,k,l,m is simply
connected, the restrictions t1 and t2 of s1 and s2 to Wp,k,l,m are isomorphic if and only
if

1

2
(c1(s1) − c1(s2))|Wp,k,l,m

= 0.

If ζ1 and ζ2 are both built from Ξ or from Ξ′ , then

1

2
(c1(s1) − c1(s2)) =

1

2
((x1 − x2)[Σ6]

∗ + (y1 − y2)[Σ7]
∗ + (z1 − z2)[Σ8]

∗), (5.2)
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while if ζ1 is built from Ξ and ζ2 is built from Ξ′ then

1

2
(c1(s1) − c1(s2)) = [Σ3]

∗ + [Σ4]
∗ − (p − 1)[Σ5]

∗ +
1

2
((x1 − x2)[Σ6]

∗ + (y1 − y2)[Σ7]
∗

+ (z1 − z2)[Σ8]
∗).

(5.3)

The matrix formed by the top five rows of Φ∗ is invertible over Q , therefore [Σ6]
∗|Wp,k,l,m

,
[Σ7]

∗|Wp,k,l,m
and [Σ8]

∗|Wp,k,l,m
are linearly independent in H2(Xp,k,l,m; Z). This implies

that
1

2
((x1 − x2)[Σ6]

∗ + (y1 − y2)[Σ7]
∗ + (z1 − z2)[Σ8]

∗)

belongs to the image of ϕ∗ if and only if x1 −x2 = 0, y1 − y2 = 0, and z1 − z2 = 0. Thus
if ζ1 and ζ2 are both built from Ξ or from Ξ′ then their surgery presentations induce
isomorphic spinc structures on Wp,k,l,m if and only if x1 = x2 , y1 = y2 and z1 = z2 .

Let ci denote the i-th column of Φ∗ . The class

[Σ3]
∗ + [Σ4]

∗ − (p− 1)[Σ5]
∗ − [Σ8]

∗

can be expressed as c5 − c1 − c2 , and therefore its restriction in H2(Wp,k,l,m; Z) vanishes.
Using this we see that Equation (5.3) implies

1

2
(c1(s1)− c1(s2))|Wp,k,l,m

=
1

2
((x1 −x2)[Σ6]

∗ + (y1 − y2)[Σ7]
∗ + (z1 − z2 + 2)[Σ8]

∗)|Wp,k,l,m
.

(5.4)
Thus, by Equation (5.4) if ζ1 is obtained by Legendrian surgery on Ξ and ζ2 is obtained by
Legendrian surgery on Ξ′ , then the surgery presentations of ζ1 and ζ2 induce isomorphic
spinc structures on Wp,k,l,m if and only if x1 = x2 , y1 = y2 and z1 = z2 − 2.

The same argument given above works in the case of Mp,k,m . One just needs to omit the
knot K7 from Figure 13 and work with the analogously defined manifolds Wp,k,m and
Xp,k,m . The new matrix Φ∗ is obtained from the original matrix Φ∗ by simply dropping
the seventh row. The remaining computations are essentially the same, except one does
not have terms involving y1 , y2 nor [Σ7] . Similar considerations hold for the cases of
Mp,k,l and Mp,k .

Proposition 5.7 The number of isotopy classes of tight contact structures in A(Ξ) is at
least

(k − 1)(l − 1)m on Mp,k,l,m,

(k − 1)m on Mp,k,m,

(k − 1)(l − 1) on Mp,k,l,

and

(k − 1) on Mp,k.

Proof In view of Lemma 5.5, the number of different spinc structures induced on Wp,k,l,m

by the contact surgery diagrams of Figure 13 gives a lower bound for the number of isotopy
classes of tight contact structures in A(Ξ). Notice that A(Ξ) can be decomposed as A∪A′ ,
where A contains the elements obtained by doing surgery on Ξ, while A′ contains the ones
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obtained from Ξ′ . By Lemma 5.6(1) both A and A′ contain (k−1)(l−1)(m−1) elements
distinguished by the induced spinc structures on Wp,k,l,m . However, some elements may
be contained both in A and in A′ . In fact, by Lemma 5.6(2) for any contact structure ζ
in A′ there is a contact structure in A inducing an isomorphic spinc structure on Wp,k,l,m

unless rot(K8) = −m in the surgery diagram for ζ . Since the number of contact surgery
diagrams on Mp,k,l,m with rot(K8) = −m giving tight contact structures belonging to A′

is (k − 1)(l − 1), there are at least

(k − 1)(l − 1)(m − 1) + (k − 1)(l − 1) = (k − 1)(l − 1)m

nonisotopic tight contact structures in A(Ξ).

In the case of Mp,k,m , a similar argument gives the lower bound (k− 1)m . In the cases of
Mp,k,l and Mp,k , since there is no knot K8 every spinc structure induced by an element
of A′ is also induced by an element of A . Therefore, as a lower bound we just get the
number of elements of A , that is (k − 1)(l − 1) in the case of Mp,k,l and (k − 1) in the
case of Mp,k .

Corollary 5.8 The number of isotopy classes of tight contact structures on the 3–
manifold M(−1; r1, r2, r3) belonging to A(Ξ) is at most

(a1
1 − 1)(a2

1 − 1)a3
1

3∏

i=1

∏

j≥2

(ai
j − 1)

if r3 6= 1
a3
0

, and

2∏

i=1

∏

j≥1

(ai
j − 1)

if r3 = 1
a3
0

. In the above formulae ai
j = 2 by convention if j > ki .

Proof The statement follows immediately from Proposition 5.7 together with Theo-
rem 4.9.

Proof of Theorem 1.1 The statement follows immediately combining Corollaries 2.10,
2.13, 5.4 and 5.8.
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