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Abstract: It is a generally accepted practice in the natural gas industry the approximation that the 

temperature of the flowing gas along the length of the pipeline is constant. Experimental 
investigations obtain the decrease of the temperature in the direction of the flow resulted by the heat 
transfer between the flowing gas and the soil around the pipe. The polytropic change of thermal state 
seems to be a more realistic assumption than the traditional isothermal approximation. The flow 
equations are expanded to the polytropic expansion. The pressure distribution can be determined in 
this way with a higher accuracy. The key problem to determine the adequate value of the polytropic 
power. Our paper present a method to obtain this power based on the heat transfer calculations. 
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1. Introduction 
 

It is a generally accepted practice in natural gas industry that the flow in gas 

transporting pipelines is considered to isothermal. In spite of this assumption a considerable 

amount of heat crosses the pipe walls of the pipe sections followed the compressor stations. 

The warmed up natural gas is not cooled perfectly to the temperature of the surroundings. 

The warm gas flowing through a pipeline buried of cold soil permanently heats the soil 

around itself, while the gas temperature gradually decreases. The flow cannot consider to 

isothermal, the change of its thermal state is polytropic. There is attempt to develop the 

mathematical model to determine the pressure loss of polytropic gas flows ( ZSUGA 

2012).The obtained results are in rather good agreement with measured data obtained in 

operating pipelines. Nevertheless this description being a phenomenological treatment does 

not investigate the heat transfer between the flowing gas and the surroundings which is the 

reason of the polytropic process. The object of this paper is the detailed investigation of the 

heat transfer between the gas and the soil. 

 

2. Formulation of the problem 
 

Consider a one-dimensional steady flow in a pipe of circular cross section. Using log 

mean values which relate to the inlet and outlet cross sections, the balance of internal 

energy equation can be written 
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where 2 and 1 are the specific internal energy at the outlet and the inlet, hln is the 

logarithmic mean heat transfer coefficient, A3 is the area of the pipe wall between the inlet 

and outlet, Tln is the logarithmic mean temperature difference, m  is the mass flow rate, g 

is the acceleration due to gravity and '

21
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 is the head loss of the flow. Since the 

determination of the head loss can be done using the mechanical energy equation, the term 
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form the flux of the internal energy equation. 

To begin our investigation of the heat transfer coefficient we examine the steady one-

dimensional flow of a compressible fluid confined in a pipe which has a constant wall 

temperature. The bulk flow temperature T
~

 is greater than the wall temperature Tw. The unit 

normal vector n for a solid-fluid interface is taken as being directed from the fluid into the 

solid, thus the heat flux normal to the wall can be written as 
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where hloc is the local heat transfer coefficient. 

Consider now an infinitesimal length dl of the pipe. Neglecting the head loss, the 

internal energy balance for this control volume is obtained as 
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This equation can be simplified to 
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Since Tw is constant, its derivative must be zero. Subtracting this derivative from the 

left-hand side of the equation we get 
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This equation may be divided by  
w1

TT
~

k  , where k is the coefficient of thermal 

conductivity of the fluid and 
1

T
~

 is the bulk fluid temperature at the inlet of the pipe. 

Introducing the dimensionless temperature 
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and the dimensionless length l/D, the internal energy equation can be written as 
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Fig. 1. Infinitesimal control volume for non-isothermal flow 

Multiplying both sides of the equation by D, and the left-hand side by /, we get 
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It is clear that the equation can be expressed by three dimensionless similarity 

invariants: the Prandtl number, the Reynolds number and the Nusselt number. The last 

term, of course, only represents the local value of the latter: 
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3. Solution 
 

The above differential equation can be solved easily. It is readily integrated to give 

Cln
D

l

PrRe
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where C is a constant of integration. As a boundary condition to evaluate this constant we 

can make use of the fact that if l/D=0, =1. Thus we get 
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From Eq. (6) the temperature distribution along the pipe axis is obtained as 
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The difference in the internal energy fluxes between the inlet and outlet can be 

expressed as 
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This equation may be modified 

 
12

v T
~

T
~

4

kDcD

k

c
Q 






    (13) 

i.e. 
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At the outlet of the pipe, the temperature can be written 
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Expressing from this the product Pr Re we get 
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Substituting this into Eq. (13) we obtain 
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After rearranging, this can be written as 
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Note, that this result is valid only for the case of a constant wall temperature, constant 

physical properties of the fluid and a constant heat transfer coefficient hloc. If these 

conditions are satisfied, the above equation can be written in the brief form 

ln3loc
TAhQ       (18) 

The heat transfer coefficient can be determined experimentally. Measuring the flow rate 

Q, the bulk temperatures 
1

T
~

 and 
2

T
~

, the wall temperature Tw in a pipe of diameter D and 

length L, the so-called logarithmic mean heat transfer coefficient is obtained as 
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Fig. 2. Nusselt number for laminar and turbulent flow 

The obtained experimental results can be interpreted in the form of a similarity 

invariant. As shown in Fig. 2. the laminar and turbulent regions can be distinguished easily. 

In the laminar region a satisfactory expression is obtained: 
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In this equation the fluid properties (, cv, k, ) are evaluated at the mean bulk fluid 

temperature  
21

T
~

T
~

2

1
 . The viscosity  is taken at this temperature, while w is the 

viscosity at wall temperature. 

For turbulent flow, experimental results lead to the following expression: 
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For case of graphical interpretation this is rearranged in the form 
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This quantity is plotted in Fig. 3. For laminar flow the effect of L/D is considerable and 

the Nusselt number decreases as the dimensionless length increases. In the turbulent region 

all measured points fall onto a single curve. This fact shows that Eq. (22) is a reasonably 

satisfactory empirical formula to estimate the heat transfer coefficient for turbulent flow. 

 

 

Fig. 3. Forced convection Nusselt numbers for pipe flow 

The heat transfer process is investigated in the gas transporting pipeline. The 

temperature distribution along the length is expressed by dimensionless similitary invariant. 

This form is suitable for generalization particular data obtained certain pipelines. This 
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equation can be expressed using quantities familiar in natural gas industry. The power in 

Eq. (23) can be written as 
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considering that  
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the final result is obtained as 
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The subscript N refers to the normal gas state, where 
2N

m

N
101325p   and 

K288C15T o

N  . 

The temperature distribution obtained by this equation is the same as the polytropic 

temperature distribution along the length. Thus it is possible to determine the polytrophic 

power for pressure calculations. 
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In this formula the inlet pressure p1, the temperature T1.and T2 are known together the 

distance between points 1. and 2. It seems to be an acceptable approximation to determine 

pressure p2 using the isothermal formula, since isothermal and polytrophic pressure 

distributions are rather close on to another. It is convenient to choose point 2 not too far 

from the inlet e.g. 3-5 km. 

Knowing the polytrophic power the pressure, temperature, density and velocity 

distribution can be determined with higher accuracy.  

 

4. Summary 
 

The pressure distribution of the flowing natural gas is determined along the length of 

the pipeline considered the expansion of the gas polytropic. Thus the heat transfer between 

the flowing gas and the soil around the pipeline is considered. The obtained equations 

contain the formulas referring to isothermal flow also as a particular case. It is very 

important the adequate evaluation of the polytropic power. This can be calculated knowing 

the temperature distribution along the pipe length. The temperature distribution is 

determined solving the differential equation referring to the heat transfer between the gas 

and the surrounding soil. Thus a more sophisticated equation system is obtained to describe 

the whole gas transporting process. 
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