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PREFERENCE INTENSITY WITHOUT CARDINALITY

JOSÉ MANUEL GUTIÉRREZ

Universidad de Salamanca. Spain

A . Preference intensity is a relevant concept, more general than car-
dinal representable preference, and an according axiomatic definition is intro-
duced. Uniform spaces are applied as a tool to study preference intensity.
”Uniqueness” and the existence of cardinal representation are thus considered.

1. I

Suppose that an individual prefers a particular car (say a Mercedes) to a par-
ticular handkerchief, and a rehearsal of Beethoven 7th Symphony to a rehearsal of
Beethoven 8th Symphony. If she compares the two preferences, most likely she will
find that the first one is stronger that the second one, i.e., for her the difference
in preference in going from the handkerchief to the Mercedes is greater than the
difference in preference in going from the 8th to the 7th Symphony.
In another context, two voters, A and B, facing a general election may agree that

they prefer pro-life to pro-choice and high inheritance tax to low inheritance tax.
But perhaps for A the first issue is more relevant than the second one when the
time comes to decide his vote, whereas for B it is the other way round. In short,
their strengths of preferences are opposite as for these two issues. Any politician
knows that the strength of preference of voters is very important in an election.
Of course, reality can be formalized in manifold ways (e.g., considering preferences
between bundles of alternatives, one component of the bundle for each issue), and
the bounded rationality of decision makers is to be considered here, but at any rate
the strength of preference is a relevant fact in the decisions of economic and political
agents. Is the strength of preference susceptible of formal analysis? Perhaps we may
say, even recognizing that the strength of preference exists in reality, that ”quae res
in se neque consilium neque modum habet ullum, eam consilio regere non potes”
(”something that has in itself neither reason nor measure at all, you cannot manage
it according to reason”), as Terence put it [12]. Perhaps, in a more sanguine vein,
we may try to deal formally with the strength of preference, as many before have
done.
Traditionally the analysis of the strength of preference (or ”preference intensity”)

has been seen as a way to obtain cardinal utilities. In the wake of the classical [9],
the preference intensity is formalized through a binary relation between pairs of
alternatives satisfying three sorts of axioms: (1) basic assumptions (such as being
a weak order); (2) in the infinite case, technical solvability assumptions (entailing
a ”rich enough” set of alternatives and a ”discriminating enough” decision maker);
(3) an Archimedean assumption, necessary in order to build a cardinal scale. In
this paper we intend to reflect the preference intensity without attempting to build
a cardinal utility, and thus we dispense with (3) in our definition of ”preference
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2 JOSÉ MANUEL GUTIÉRREZ

intensity”. Our stronger ”cardinal preference intensity” refers in the literature to
terms like ”strength of preference”, ”preference intensity” or ”algebraic difference
structucture”.
Order topologies provide a suitable tool to study preferences (in the infinite

case). The preference intensity involves further structure, and we introduce here a
further tool: a certain uniformity, generating the order topology of the preference.
Uniform spaces are, in a sense, between metric and topological spaces.
The ”cardinality” of a preference intensity is linked to the semimetrizability of

the corresponding uniformity.
While the question of the ”uniqueness” of preferences involves the hypothesis of

connectedness [6], a ”uniqueness” result for preference intensities leads naturally
to the hypothesis of compactness. Through the uniformity corresponding to the
preference intensity, compactness can be characterized, in particular in the cardinal
case.

2. P

A binary relation on a nonempty set X is said to be a weak order if it is
transitive and total (total means that x y or y x for any two elements x and
y), and a weak order is said to be a linear order if it is antisymmetric (antisymmetric
means that if x y and y x then x = y). Weak orders are the standard way to
model the wishes of consumers in economics.
If R is a binary relation on X, its conjugate R� is defined by xR�y iff not yR�x,

for all x, y ∈ X. Obviously (R�)� = R. If we use the symbol for the binary
relation, we denote its conjugate by ≺, i.e. x ≺ y iff not x y, where has the
obvious meaning (the inverse relation). It is immediate that is a weak order if
and only if ≺ is asymmetric and negatively transitive.
We may associate to a weak order an equivalence relation ∼ defined by x ∼ y

iff x y and y x. The quotient set by the indifference ∼ will be denoted byX/ ∼,
and induces naturally a linear order on X/ ∼. The order is linear precisely
when ∼ is trivial (the equality). In practice, we shall refer to as preference, to ≺
as strict preference, and to ∼ as indifference.
The order topology associated to a weak order on X, denoted by τor(≺) (or

simply τor if no confusion is possible), has as base the set of all the intervals of the
kind ]a, b[ := {x ∈ X : a ≺ x ≺ b} with a, b ∈ X ∪ {±∞} (equivalently, generated
by all the subsets ]−∞, x[ and ]x,∞[ with x ∈ X). Thus, if 3 is the linear order
naturally induced onX/ ∼, and we consider the topology τor(≺) onX, then τor(≺3)
coincides with the quotient topology on X/ ∼.
If is a linear order, then X (with the order topology) is T4 and hereditarily

normal.
In order to generalize from linear orders to weak orders the properties of order

topologies, we consider saturated identifications [2]. Let (X, τ) and (X 3, τ 3) be
topological spaces. We say that a quotient map f : X −→ X 3 is a saturated
identification with the topologies τ , τ 3 if, for each A ∈ τ , A = f−1f(A). Topological
properties can often be translated between the dominion and the range through
saturated identifications, as it is stated in the next proposition.

Proposition 2.1. [1]Let f : (X, τ) −→ (X 3, τ 3) be a saturated identification. Then
the following properties are satisfied by (X, τ) if and only if they are satisfied by
(X 3, τ 3): first countability, second countability, separability, compactness, countable
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compactness, local compactness, Lindelöff, connectedness, local connectedness, nor-
mality, hereditary normality, regularity. Moreover, if (X 3, τ 3) is completely regular,
then the same holds for (X, τ).

Let (X, τ) be a topological space. We say that a binary relation R saturates τ
when: x ∈ A ∈ τ and yRx imply y ∈ A. If R is an equivalence relation on X,
then the quotient map p : (X, τ) −→ (X/R, τquot) is a saturated identification if
and only if R saturates τ . Besides, if is a weak order, then ∼ saturates τor(≺).
It follows that if is a weak order on X and 3 is the induced linear order on
X/ ∼, then the quotient map p : X −→ X/ ∼ is a saturated identification with the
order topologies. By considering this, many results on linear orders can be easily
adapted to weak orders. In particular, If is a weak order, then X (with the order
topology) is completely regular and hereditarily normal.
A function f : (X,R) −→ (X 3, R3) between spaces with binary relations is called

isotone when: xRy if and only if f(x)R3f(y) for any x, y ∈ X. If R3 is a weak order,
then R is a weak order. If R is a linear order, then f is injective. If R3 is a linear
order and f is injective, then R is a linear order. An injective isotone function is
called an (order) embedding, and then (X,R) is said to be (order) embeddable in
(X 3, R3).
Let (X, ) and (X 3, 3) be spaces with weak orders. If f : (X, ) −→ (X 3, 3)

is isotone, then x ∼ y if and only if f(x) ∼3 f(y), and an embedding naturally
associated to f can be defined between the linearly ordered spacesX/ ∼ andX 3/ ∼3.
Conversely, an embedding between the linearly ordered spaces X/ ∼ and X 3/ ∼3
leads (using the axiom of choice if ∼3 is not trivial) to an isotone function between
(X, ) and (X 3, 3). An isotone function u from a space X with a weak order
to the real line R (with its usual linear order) is called a utility representation of
. Thus the problem of the existence of utility representations reduces to that of

embeddability of linearly ordered spaces in the real line.
The following theorem is based on ideas of Cantor going back to 1895 (cf. [5]).

Theorem 2.2. Let (X, ) be a linearly ordered space with more than one element.
Then:
[4],[10] (X, ) can be embedded in the real line (with its usual linear order) if

and only if X (with the order topology) is second countable.

A weak order and a topology τ on the same set X are called compatible if
τor(≺) ⊆ τ . A result on ”uniqueness” of compatible orders is available.

Theorem 2.3. Let (X, τ) be a connected topological space. Then:
[6] Two linear orders compatible with τ are either identical or inverse to each

other.

3. P

Let A 9= ∅ be the set of alternatives available for a decision maker. In the wake of
[9], the assumptions for preference intensity, including an Arquimedean assumption,
differ in detail, but not greatly in content. We follow those of [8], but dispensing
with the Arquimedean assumption.

Definition 3.1. Suppose that A is a nonempty set and a binary relation on
A×A. Then is a preference intensity on A iff, for all a, b, c, d, a3, b3, c3 ∈ A, the
following five assumptions are satisfied:
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(A.1) is a weak order on A×A.
(A.2) If (a, b) (c, d), then (d, c) (b, a).
(A.3) If (a, b) (a3, b3) and (b, c) (b3, c3), then (a, c) (a3, c3).
(A.4) Given a, b, there exists d ∈ A such that (a, d) ∼ (d, b).
(A.5) Given a, b, c, there exists d ∈ A such that (c, d) ∼ (a, b).

Preference intensity is a stronger structure than preference, and thus every pref-
erence intensity determines a preference (see below). (a, b) (c, d) may be inter-
preted as ”the difference in preference in going from d to c is greater (or equal)
than the difference in preference in going from b to a”. ”Negative differences in
preference” are part of the model (cf. (A.2)). (A.4) and (A.5) are solvability ax-
ioms, entailing a ”rich enough” set of alternatives and a ”discriminating enough”
decision maker.
Some easy consequences result from the definition.

Proposition 3.1. Let be a preference intensity on A. Then, for all a, b, c, a3, b3, c3 ∈
A,
(i) (a, a) ∼ (b, b).
(ii) If (a, b) (a3, b3) and (b, c) ≺ (b3, c3), then (a, c) ≺ (a3, c3).
(iii) If (a, b) ≺ (c, d), then (d, c) ≺ (b, a).
(iv) If (a, b) ≺ (a, c), then (b, c) " (b, b).

Proof. (i) follows from being total and (A.2). To prove (ii), suppose that (a, b)
(a3, b3) and (b, c) ≺ (b3, c3), but (a, c) (a3, c3). Then, by (A.2), (c, a) (c3, a3),
and thus, by (A.3), (c, b) (c3, b3). From (A.2), (b, c) (b3, c3), and a contradiction
results. In order to verify (iii), suppose that (a, b) ≺ (c, d), but (b, a) (d, c). Now,
by (ii), (b, b) ≺ (d, d), a contradiction. Finally, (iv) follows from (ii), considering
that (b, a) (b, a).

In Proposition 3.1, (i) means that all the pairs of the form (x, x) are mutually
indifferent. Given a, b ∈ A, we write (a, b) 0 (resp. (a, b) " 0) (resp. (a, b) ∼ 0)
iff (a, b) (x, x) (resp. (a, b) " (x, x)) (resp. (a, b) ∼ (x, x)) for some (and thus for
all) (x, x). It is easy to check that in order to determine the preference intensity
it is sufficient to provide A+ := {(x, y) ∈ A×A : (x, y) " 0} and the restriction of
to A+.

Definition 3.2. Let be a preference intensity on A. The binary relation ∗

induced on A by is defined by a ∗ b iff (b, a) 0, for all a, b ∈ A.

It is immediate that ∗ is a weak order on A. The notations ≺∗ and ∼∗ have
the natural meaning. Given a, b ∈ A, obviously a ≺∗ b iff (b, a) " 0, and a ∼∗ b iff
(b, a) ∼ 0.
We now intend to make correspond a uniform space, generating the order topol-

ogy of the induced preference, to every preference intensity.

Definition 3.3. Let be a preference intensity on A. If (b, a) " 0, we define
Uba := {(x, y) ∈ A×A : (x, y) ≺ (b, a) and (y, x) ≺ (b, a)}.

Given (b, a) " 0 and (d, c) " 0, it is immediate that
(b, a) (d, c) if and only if Uba ⊆ Udc

If V ⊆ A×A and x ∈ A, we denote V (x) := {y ∈ A : (x, y) ∈ V }. If V ⊆ A×A
andW ⊆ A×A, we writeW◦V := {(x, y) ∈ A×A : (∃z ∈ A : (x, z) ∈ V and (z, y) ∈W )}.
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Proposition 3.2. Let be a preference intensity on A. The collection of sets
B := {Uba : (b, a) " 0} ∪ {A×A} is a base for a uniformity U on A.

Proof. Firstly, it is immediate that all the members of B include the diagonal
∆ := {(x, x) : x ∈ A} of A × A. Now we see that B is a filterbase. Obviously
B 9= ∅ and ∅ /∈ B. Let (b, a) " 0 and (d, c) " 0. There are two possibilities:
either (b, a) (d, c) or (b, a) " (d, c); in the first case Uba ⊆ Udc ∩ Uba, and in the
second case Udc ⊆ Uba ∩Udc. Thus we have shown that B is a filterbase. Moreover,
Uba = U

−1
ba := {(y, x) : (x, y) ∈ Uba}, and all members of B are symmetric. Finally,

given Uba, we see that there exists V ∈ B such that V ◦ V ⊆ Uba. By (A.4), there
exists d ∈ A such that (b, d) ∼ (d, a). Now (b, d) " 0 (otherwise (b, d) (b, b)
and (d, a) (b, b), thus (b, a) (b, b), a contradiction). We take V = Ubd. If
(x, y) ∈ Ubd ◦ Ubd, then there is z ∈ A such (x, z) ∈ Ubd and (z, y) ∈ Ubd. Hence
(x, z) ≺ (b, d), (z, x) ≺ (b, d) ∼ (d, a) and (z, y) ≺ (b, d) ∼ (d, a), (y, z) ≺ (b, d).
Applying (ii) in Proposition 3.1, (x, y) ≺ (b, a) and (y, x) ≺ (b, a); thus (x, y) ∈ Uba.
We conclude that Ubd ◦ Ubd ⊆ Uba.

Theorem 3.3. Let be a preference intensity on A. Then the uniformity U gen-
erates the order topology τor(≺∗) on A.

Proof. Let T be the topology generated by U . Firstly we prove that τor(≺∗) ⊆ T .
Given c ∈ ]a, b[, with a, b, c ∈ A, we shall show that there is V ∈ B such that V (c) ⊆
]a, b[. There are two possible cases: (i) (c, a) (b, c); (ii) (c, a) " (b, c). In case (i),
we take V = Uca. If z ∈ Uca(c), then (c, z) ≺ (c, a) and (z, c) ≺ (c, a) (b, c). From
(iv) in Proposition 3.1, (z, a) " 0, and z "∗ a. Also, (c, b) ≺ (c, z); again from (iv)
in Proposition 3.1, (b, z) " 0, and z ≺∗ b. We obtain that Uca(c) ⊆ ]a, b[. In case
(ii), the proof that Ubc(c) ⊆ ]a, b[ is similar. We conclude that τor(≺∗) ⊆ T .
Now we prove that T ⊆ τor(≺∗). Given Uba(c), with a, b, c ∈ A and (b, a) " 0,

we shall show that there is ]h, k[ such that c ∈ ]h, k[ ⊆ Uba(c). By (A.5), there
are h, k ∈ A such that (c, h) ∼ (b, a) and (c, k) ∼ (a, b). Thus (c, h) " 0 and
(k, c) " 0, i.e. h ≺∗ c ≺∗ k. Let z ∈ ]h, k[. Now, on the one hand, (c, h) ∼ (b, a)
and (h, z) ≺ (a, a). From (ii) in Proposition 3.1, (c, z) ≺ (b, a). On the other hand,
(z, k) ≺ (b, b) and (k, c) ∼ (b, a). From an obvious variation of (ii) in Proposition
3.1, (z, c) ≺ (b, a). We conclude that z ∈ Uba(c).

Let 1 and 2 be two preference intensities on A inducing the same weak order
∗ on A. Then, given c, d ∈ A, we have that (c, d) "1 0 if and only if (c, d) "2 0.
It is immediate that 2 includes 1 when

∀(c, d) "2 0, (a, b) ≺1 (c, d)⇒ (a, b) ≺2 (c, d)

A weaker condition is (3.1) below.

Proposition 3.4. Let 1 and 2 be two preference intensities on A inducing the
same weak order ∗ on A , with respective uniformities U1 and U2. Then U1 ⊇ U2
if and only if

∀(c, d) "2 0 ∃(u, v) "1 0 such that (a, b) ≺1 (u, v)⇒ (a, b) ≺2 (c, d)(3.1)

Proof. Firstly we show that if U1 ⊇ U2 then (3.1) holds. Let (c, d) "2 0. Since
U2cd := {(x, y) ∈ A×A : (x, y) ≺2 (c, d) and (y, x) ≺2 (c, d)} ∈ U2 ⊆ U1, there is
(u, v) "1 0 such that U1uv := {(x, y) ∈ A×A : (x, y) ≺1 (u, v) and (y, x) ≺1 (u, v)} ⊆
U2cd. If (a, b) ≺1 (u, v) there are two possibilities: either (a, b) "1 0 or (a, b) 1 0;
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in the first case (a, b) ∈ U1uv ⊆ U2cd, and (a, b) ≺2 (c, d); in the second case a ∗ b,
and thus (a, b) 2 0 and again (a, b) ≺2 (c, d). We infer (3.1).
Now we prove that (3.1) implies that U1 ⊇ U2. If (c, d) "2 0 then U2cd :=

{(x, y) ∈ A×A : (x, y) ≺2 (c, d) and (y, x) ≺2 (c, d)} ⊇
U1uv := {(x, y) ∈ A×A : (x, y) ≺1 (u, v) and (y, x) ≺1 (u, v)}, where (u, v) "1 0 is
as defined in (3.1). We conclude that U1 ⊇ U2.
Given 1 and 2 as above, they are said u-equivalent if U2 = U1.

4. U

If U : A× A −→ R is a utility representation of a preference intensity on A,
then utility representations of the weak order ∗ induced on A by are available:

Proposition 4.1. Let be a preference intensity on A. Let y ∈ A. If U : A ×
A −→ R is a utility representation of , then the function u : A −→ R defined by
u(x) := U(x, y), for all x ∈ A, is a utility representation of ∗.

Proof. Let a, b ∈ A. We shall prove that a ∗ b if and only if u(a) ≤ u(b). Firstly,
if a ∗ b, then (a, b) (b, b). By (A.3), taking (b, y) (b, y), we have that
(a, y) (b, y). It follows that U(b, y) ≤ U(b, y), and u(a) ≤ u(b). Conversely, if
u(a) ≤ u(b), then (a, y) (b, y). We apply again (A.3), taking now (y, b) (y, b).
Thus (a, b) (b, b), and a ∗ b.

Definition 4.1. Let be a preference intensity on A. Then U : A × A −→ R is
a value-difference utility representation of iff U is a utility representation of
such that, for every x, y ∈ A,

U(x, y) = u(x)− u(y)
where u : A −→ R is some utility representation of ∗.

The following proposition is immediate from Proposition 4.1.

Proposition 4.2. Let be a preference intensity on A and U : A × A −→ R a
utility representation of . Then U is a value-difference utility representation of
if and only if

U(x, y) = U(x, z)− U(y, z), ∀x, y, z ∈ A(4.1)

Definition 4.2. A cardinal preference intensity on A is a preference intensity on
A admitting a value-difference utility representation.

As for the ensuing uniqueness up to positive linear transformations of the utility
representations of ∗, cf. [9], [3]. In the literature terms like ”preference intensity”,
”strength of preference” ([7]), ”algebraic difference structure” ([9],[11]) or ”value
difference order” ([8]) refer essentially to our ”cardinal preference intensity”.
We consider the relation between the fact that a preference intensity is cardinal

and the semimetrizability of its uniformity.

Proposition 4.3. Let be a cardinal preference intensity on A. Then the unifor-
mity U is semimetrizable.
Proof. Let U : A × A −→ R be a value-difference utility representation of . We
define d : A×A −→ R by d(x, y) := |U(x, y)|, for all x, y ∈ A. By Proposition 4.2,
we have that U(x, x) = 0, U(y, x) = −U(x, y) and U(x, y) = U(x, z)+U(z, y); thus
d is a semimetric on A. We shall prove that U is equal to the uniformity V induced
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by the semimetric d. Recall that B is a base for U , and C := {Vε : ε > 0}, with
Vε := {(x, y) ∈ A×A : d(x, y) < ε}, is a base for V. In order to check that U ⊆ V,
let (b, a) " 0, and consider Uba. We take ε = U(b, a) > 0. Now it is immediate that
Vε ⊆ Uba. We conclude that U ⊆ V. On the other hand, suppose that V - U . Then
there is ε > 0 such that, for every (b, a) " 0, Uba - Vε. It follows that (b, a) /∈ Vε,
and thus U(b, a) ≥ ε, for every (b, a) " 0. This a contradiction: by (A.4) and (4.1),
for given (x, y) " 0 there is (d, y) " 0 such that U(d, y) = (1/2)U(x, y).

5. C

Let be a preference intensity on A. We consider the case when A is compact
(with the order topology τor(≺∗)).
The following proposition is a ”uniqueness” result. In contrast with Theorem 2.3,

now compactness is assumed instead of connectedness, and the conclusion refers to
preference intensities. This proposition is an immediate consequence of Theorem
3.3, recalling that a compact space has at most one uniformity which induces its
topology.

Proposition 5.1. Let 1 and 2 be two preference intensities on A inducing the
same weak order ∗ on A. If A is compact, then 1 and 2 are u-equivalent.

If is a preference intensity on A whose corresponding uniformity U is semi-
metrizable, then A (with the order topology τor(≺∗)) is paracompact (since it is
semimetrizable). Let N be the set of all neighbourhoods of the diagonal∆, in A×A
(with the product topology). We recall that the paracompactness of A implies that
N is a uniformity and generates the topology of A; moreover, N is the largests
uniformity generating τor(≺∗).
We can observe the uniformity U corresponding to a cardinal preference intensity
on A. If A is compact, then obviously U = N . Conversely, we may conclude the

compactness of A from the fact that U = N , as it is stated in the next corollary.
Proposition 5.2. Let be a preference intensity on A whose corresponding uni-
formity U is semimetrizable. Then A is compact if and only if U = N .
Proof. One of the implications is trivial. Conversely, suppose that the unifor-
mity corresponding to is N ; we shall prove that A is compact. By hypoth-
esis, there is a semimetric d inducing the uniformity N , and thus inducing the
order topology τor(≺∗) of A. We write A3 := A/ ∼∗. Let π : A −→ A3 be
the quotient map defined by π(x) := [x], for all x ∈ A, where [x] is the equiv-
alence class of x. Since A is regular and ∼∗ saturates τor(≺∗), we have that
[x] = cl({x}). Therefore [x] = {y ∈ A : d(x, y) = 0}. Hence D : A3 × A3 −→ R de-
fined by D([x], [y]) = d(x, y), for x, y ∈ A, is a metric on A3 inducing the quotient
topology. Let N 3 be the set of all neighbourhoods of the diagonal ∆3 in A3 × A3,
and D the uniformity on A3 induced by the metric D. Now we shall show that
N 3 ⊆ D. Let π × π : A × A −→ A3 × A3 be defined by π × π(x, y) := ([x], [y]),
for all x, y ∈ A. If M 3 ∈ N 3, then (π × π)−1(M 3) is a neighbourhood of the di-
agonal ∆ in A × A, since π × π is continuous. As d induces the uniformity N ,
there is ε > 0 such that {(x, y) ∈ A×A : d(x, y) < ε} ⊆ (π × π)−1(M 3). Therefore
{([x], [y]) ∈ A3 ×A3 : D([x], [y]) < ε} ⊆ (π × π)({(x, y) ∈ A×A : d(x, y) < ε}) ⊆
M 3, and we obtain that M 3 ∈ D. We have shown that N 3 ⊆ D. Now A3 is para-
compact (since it is metrizable), and thus N 3 is the largests uniformity generating
its topology. It follows that N 3 = D.
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We shall prove that A3 has no isolated points. Suppose that there is an isolated
point [z] of A3. Then there is ][a], [b][ such that {[z]} ∩ ][a], [b][ = {[z]}, with
[a], [b] ∈ A3 ∪ {±∞}. There is no loss of generality in assuming that A3 has more
than one point (otherwise A is compact by Proposition 2.1), and thus, say, [a] ∈ A3.
By (A.4), there exists d ∈ A such that (a, d) ∼ (d, z). Now (d, a) " 0 (otherwise
(d, a) (a, a) and (z, d) (a, a), thus (z, a) (a, a), a contradiction, since a ≺∗ z)
and (z, d) " 0 (otherwise (z, d) (a, a) and (d, a) (a, a), thus (z, a) (a, a), a
contradiction again). Therefore a ≺∗ d ≺∗ z, a contradiction, because ][a], [z][ = ∅.
If [b] ∈ A3 we are analogously led to a contradiction. We conclude that A3 has no
isolated points. To summarize, we have obtained that A3 is a uniform space without
isolated points such that N 3 (the set of all neighbourhoods of the diagonal) is a
metrizable uniformity. By a known result (see e.g. Section 14.4 in [13]), A3 is
compact. The compactness of A follows from Proposition 2.1.

The next corollary follows by considering Proposition 4.3.

Corollary 5.3. Let be a cardinal preference intensity on A. Then A is compact
if and only if the uniformity corresponding to is N .
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