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Abstract

Using regular variation to define heavy tailed distributions, we
show that prominent downside risk measures produce similar and con-
sistent ranking of heavy tailed risk. Thus regardless of the particular
risk measure being used, assets will be ranked in a similar and consis-
tent manner for heavy tailed assets.
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1 Introduction

Dhaene et al. (2003) define downside risk measures as measures of the “dis-
tance” between a risky situation and the corresponding risk-free situation
when only unfavourable discrepancies contribute to the “risk”. The early
literature on downside risk measures dates back to the “safety first” rule
of Roy (1952). Subsequently lower partial moments were proposed which
defined risk as the probability weighted function of the deviations below a
target return (Bawa, 1975; Fishburn, 1977). There is a renewed interest in
downside risk measures due to the prominence of concepts like Value–at–
Risk (VaR) and Expected Shortfall (ES) for financial risk management and
prudential regulation.

Here we consider several important downside risk measures, viz., lower partial
moments (of second, first and zeroth orders), VaR and ES for heavy tailed
asset returns. Using the notion of “regular variation” to define heavy tails, we
provide approximations of the risk measures in the tail region. Further, we
show analytically that the heavy tailed feature induces similar asset rankings
regardless of the particular risk measure being used.

2 Heavy Tailed Distribution and Downside

Risk Measures

Many empirical studies have established that asset returns exhibit heavy tails
(see e.g. Mandelbrot, 1963; Engle, 1982; Jansen and de Vries, 1991; Pagan,
1996). In these studies heavy tailed distributions are often defined in terms
of higher than normal kurtosis. However, higher than normal kurtosis is not
a sufficient condition for heavy tails. Kurtosis only captures the probability
mass of the distribution at the centre relative to the tails. Indeed, it is
straightforward to construct a distribution with truncated tails, and hence
thin tails, which exhibits high kurtosis. In this paper we define a heavy
tailed distribution as one characterised by the failure of the moments of order
m (> 0) or higher. Such distributions have tails that exhibit a power type
behaviour like the Pareto distribution, as is commonly observed in finance.
Such tail behaviour can be mathematically defined by using the notion of
“regular variation”, as defined below.1

1For an encyclopaedic treatment of regular variation, see Bingham et al. (1987); Resnick
(1987).
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2.1 Regular Variation

A cumulative density function (cdf) F (x) varies regularly at minus infinity
with tail index α > 0 if

lim
t→∞

F (−tx)

F (−t)
= x−α ∀x > 0 (1)

This implies that to a first order approximation, all distributions with regular
variation have a tail similar to the Pareto distribution:

F (−x) = Ax−α[1 + o(1)], x > 0, for α > 0 and A > 0 (2)

For distributions with regularly varying tails, moments of order m > α are
unbounded and therefore these distributions display heavy tailed behaviour.
The power α is called the tail index and determines the number of bounded
moments; A is the scale coefficient. It is easily verified that Student–t dis-
tributions vary regularly at infinity with degrees of freedom equal to the tail
index and satisfy the above approximation. Likewise, the stationary distri-
bution of the popular GARCH(1,1) process has regularly varying tails, see
de Haan et al. (1989).

3 Downside Risk Measures for Heavy Tailed

Distributions

We consider the following downside risk measures.

Second Lower Partial Moment (SLPM) For some quantile q < 0,

SLPM(q) =

∫ q

−∞
(q − x)2f(x)dx = 2

∫ q

−∞
(q − x)F (x)dx

First Lower Partial Moment (FLPM) For some quantile q < 0,

FLPM(q) =

∫ q

−∞
(q − x)f(x)dx =

∫ q

−∞
F (x)dx

Zeroth Lower Partial Moment (ZLPM) For some quantile q < 0,

ZLPM(q) =

∫ q

−∞
f(x)dx = F (q)
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Value-at-Risk (VaR) If F (q) is fixed at p, then the inverse of the ZLPM
gives VaR as

VaR(p) = −F−1(p) = −q where q < 0

VaR(p) is the maximum potential loss to an investment with a pre–
specified confidence level (1 − p).

Expected Shortfall (ES) When the return distribution is continuous, ES
at confidence level (1 − p) is defined as

ES(q) = −E(x|x ≤ q)

= −
∫ q

−∞
x

f(x)

F (q)
dx

= −q +
FLPM(q)

F (q)
where q < 0 and F (q) = p

Proposition 1 If the asset return distribution is heavy tailed with tail index
α > 0 and scale coefficient A > 0, then for q < 0 the downside risk measures
can be approximated as follows:

1. SLPM(q) ≈ 2A(−q)2−α

(α−1)(α−2)
, α > 2

2. FLPM(q) ≈ A(−q)1−α

α−1
, α > 1

3. ZLPM(q) ≈ A(−q)−α, α > 0

4. VaR(p) ≈
(

A
p

) 1
α

where F (q) = p

5. ES(q) ≈ α
α−1

(
A
p

) 1
α

, α > 1

Proof. See Appendix A.

3.1 Ordering Risk Measures

Suppose that asset returns X and Y have regularly varying tails with tail
indexes α1 > 0 and α2 > 0 and scale coefficients A1 > 0 and A2 > 0
respectively. Suppose that α1 �= α2 but A1 = A2. In this case the asset
return with lower tail index is more heavy tailed, and hence more risky than
the asset with higher value of the tail index.
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Proposition 2 If α1 > α2 and A1 = A2, then the following relationships
hold.

1. SLPMX(q) < SLPMY (q) for α1 > 2, α2 > 2

2. FLPMX(q) < FLPMY (q) for α1 > 1, α2 > 1

3. ZLPMX(q) < ZLPMY (q)

4. VaRX(p) < VaRY (p)

5. ESX(q) < ESY (q) for α1 > 1, α2 > 1

Proof. Differentiating the expressions for the downside risk measures as in
Proposition 1, it follows that each downside risk measure is decreasing in α.
Hence the result.

Even when A1 �= A2, for q << 0, the above rankings will hold for α1 > α2.
This is because, in the expressions in Proposition 1, the coefficient A appears
in a linear manner while −α appears as a power of −q . Therefore, for
q << 0, α will have a more dominating influence on the ranking of assets
than A. Thus, going far enough out in the tail will make the asset ranking
consistent with the fact that α1 > α2, regardless of whether or not A1 = A2.
We state this as a corollary:2

Corollary 1 Suppose that asset returns X and Y have regularly varying tails
with tail indexes α1 and α2 and scale coefficients A1 and A2 respectively.
Suppose that α1 > α2 and A1 �= A2. In this case for large loss levels, q,
eventually the risk measures will rank the asset return with the lower tail
index as more risky.

The Corollary means that the risk measures rank the two alternatives even-
tually lexicographically over (α,A).

Now, suppose that α1 = α2 but the scale coefficients A1 �= A2. Without loss
of generality, let A1 < A2. In this case FX(−x) < FY (−x), hence Y is more
risky than X.

Proposition 3 If α1 = α2 but A1 < A2, then for large q, the following
relationships hold.

1. SLPMX(q) < SLPMY (q)

2We are grateful to the referee for suggesting this corollary.
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2. FLPMX(q) < FLPMY (q)

3. ZLPMX(q) < ZLPMY (q)

4. VaRX(p) < VaRY (p)

5. ESX(q) < ESY (q)

Proof. Above can be proved easily by using the results from the Proposition
1.

Thus, all the risk measures give consistent ordering of the assets X and Y in
this case.

Propositions 2 and 3 imply that in the tail region, we can order X and Y
in a clear manner with respect to each of the downside risk measures. The
ordering is consistent with the assumption that X is less risky than Y . The
similar preference ordering of risk, as observed above, is in line with the
empirical findings of Hahn et al. (2002). Using data from the trading book
of an investment bank, they found empirically that many of the downside risk
measures, including those considered here, assess risk of the trading portfolios
in nearly the same way. Propositions 2 and 3 explain this similarity in an
analytical manner.

4 Conclusion

We examine downside risk measures for heavy tailed distributions defined
as distributions with regularly varying tails. Using tail approximations of
regularly varying tails, we provide expressions that approximate the various
downside risk measures as functions of the tail coefficient and scale index. We
show that all downside risk measures provide preference ordering consistent
with the notion of risk conveyed by the tail indexes and the scale coefficients
of heavy tailed assets. Thus, for heavy tailed distributions, choice of downside
risk measures does not seem to matter much as all downside risk measures
order heavy tailed risk in a similar manner.
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Appendix A: Derivation of the Expressions in

Proposition 1

Suppose that the distribution of X has a regularly varying tail. Then, to a
first order approximation,

F (−x) ≈ A x−α, as x → ∞ where A > 0, α > 0

1. SLPM(q)

SLPM(q) = 2

∫ q

−∞
(q − x) F (x)dx, q < 0

≈ 2

∫ q

−∞
(q − x) A(−x)−αdx

= 2

∫ ∞

−q

(q + y)Ay−αdy where y = −x

= 2qA

∣∣∣∣ y1−α

1 − α

∣∣∣∣
∞

−q

+ 2A

∣∣∣∣ y2−α

2 − α

∣∣∣∣
∞

−q

α > 2

=
2A(−q)2−α

(α − 1)(α − 2)
, α > 2

2. FLPM(q)

FLPM(q) =

∫ q

−∞
F (x)dx

≈
∫ q

−∞
A(−x)−αdx

=

∫ ∞

−q

Ay−αdy where y = −x

=
A(−q)1−α

α − 1
, α > 1

3. ZLPM(q)

ZLPM(q) = F (q)

≈ A(−q)−α
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4. VaR(p)

F (q) = p

p ≈ A(−q)−α

VaR(p) = −q ≈
(

A

p

) 1
α

5. ES(q)

ES(q(p)) = −q +
FLPM(q)

F (q)

≈ −q +
A(−q)1−α

A(−q)−α (α − 1)

=
α

α − 1
(−q)

=
α

α − 1

(
A

p

) 1
α
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